Organisms Diversity & Evolution

, Volume 17, Issue 1, pp 137–156 | Cite as

Molecular and morphological delimitation of Australian Triops species (Crustacea: Branchiopoda: Notostraca)—large diversity and little morphological differentiation

Original Article


Australia has a very rich and diverse large branchiopod fauna with approximately 140 described or provisionally delimited species, but only one species of Triops, Triops australiensis (Spencer and Hall 1895), is currently recognized. Previous studies identified extensive genetic diversity within T. australiensis that suggested the presence of cryptic species. Herein, we employed an integrative approach to taxonomy to delimit putative species, integrating COI and EF1α sequence data and morphological data. Putative species were initially delimited based on COI by two computational approaches (GMYC and ABGD). The results were interpreted in the light of several species concepts, with particular emphasis on reproductive isolation. Twenty to 27 genetic lineages were delimited. Of these, up to 26 represent species following an evolutionary or phylogenetic species concept. Eighteen are biological species, though reproductive isolation could not be unambiguously established for allopatric species or species without known males. The level of co-occurrences was exceptionally high for Triops, with up to three syntopic and six sympatric species. Species delimitation was impeded by extensive overlap between intraspecific variability and interspecific variation in the genetic as well as morphological datasets. Without prior delimitation of putative species via COI, morphological delimitation would have been impossible. A potential explanation for the morphological variability is the retention of ancestral polymorphisms over long periods of time and across multiple speciation events without subsequent differentiation.


Ancestral polymorphisms Intraspecific variability Interspecific variation Species concepts 



We are particularly thankful to Prof Dr S. Richter (Universität Rostock) for his invaluable help and support in planning and conducting this study. We also like to thank Dr R. Bastrop (Universität Rostock), Dr D. C. Rogers (Kansas University) as well as Dr S. Keable and Dr G. D. F. Wilson (Australian Museum) for their support and patience and Dr A. Cardini (Università di Modena e Reggio Emilia) and Felix Quade (Universität Rostock) for their help with the morphometric analyses. A special thank goes to Dr B. Timms (Australian Museum and University of NSW) whose enthusiasm and support during fieldwork made this study possible. Two anonymous reviewers contributed valuable suggestions, which greatly improved the quality of this publication and for which we are very thankful. Martin Schwentner was financially supported by a scholarship provided by the Studienstiftung des deutschen Volkes. The study was financed by the Deutsche Forschungsgemeinschaft through one grant granted to Prof Dr Stefan Richter (DFG RI 837/12-1,2) and another one granted to Martin Schwentner (DFG SCHW 1810/1-1).

Supplementary material

13127_2016_306_MOESM1_ESM.docx (58 kb)
Supplement Table S1 (DOCX 57 kb)
13127_2016_306_MOESM2_ESM.docx (40 kb)
Supplement Table S2 (DOCX 39 kb)


  1. Adamowicz, S. J., & Purvis, A. (2005). How many branchiopod crustacean species are there? Quantifying the components of underestimation. Global Ecology and Biogeography, 14, 455–468.CrossRefGoogle Scholar
  2. Blank, M., Laine, A. O., Jürss, K., & Bastrop, R. (2008). Molecular identification key based on PCR/RFLP for three polychaete sibling species of the genus Marenzelleria, and the species’ current distribution in the Baltic Sea. Helgoland Marine Research, 62(2), 129–141.CrossRefGoogle Scholar
  3. Braband, A., Richter, S., Hiesel, R., & Scholtz, G. (2002). Phylogenetic relationships within the Phyllopoda (Crustacea, Branchiopoda) based on mitochondrial and nuclear markers. Molecular Phylogenetics and Evolution, 25, 229–244.CrossRefPubMedGoogle Scholar
  4. deWaard, J. R., Sacherova, V., Cristescu, M. E. A., Remigio, E. A., Crease, T. J., & Hebert, P. D. N. (2006). Probing the relationships of the branchiopod crustaceans. Molecular Phylogenetics and Evolution, 39(2), 491–502.CrossRefPubMedGoogle Scholar
  5. Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.CrossRefPubMedCentralPubMedGoogle Scholar
  6. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29(8), 1969–73.CrossRefPubMedCentralPubMedGoogle Scholar
  7. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3(5), 294–299.PubMedGoogle Scholar
  8. Goloboff, P., Farris, J., & Nixon, K. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.CrossRefGoogle Scholar
  9. Hairston, N. J., & Dillon, T. (1990). Fluctuating selection and response in a population of freshwater copepods. Evolution, 44(7), 1796–1805.CrossRefGoogle Scholar
  10. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and anlysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  11. Hammer, O., Harper, D. A. T., & Ryan, P. D. (2001). PAST—Palaeontological Statistics, software package for education and data analysis. Palaeontologia Electronica, 4(1), 1–9.Google Scholar
  12. Hebert, P. D. N., Cywinska, A., Ball, S. L., & de Waard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Society London B, 270, 313–321.CrossRefGoogle Scholar
  13. Hebert, P., Remigio, E., & Colbourne, J. (2002). Accelerated molecular evolution in halophilic crustaceans. Evolution, 56(5), 909–926.CrossRefPubMedGoogle Scholar
  14. Hendrich, L., Pons, J., Ribera, I., & Balke, M. (2010). Mitochondrial Cox1 sequence data reliably uncover patterns of insect diversity but suffer from high lineage-idiosyncratic error rates. PloS One, 5(12), e14448.CrossRefPubMedCentralPubMedGoogle Scholar
  15. Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.Google Scholar
  16. King, J., & Hanner, R. (1998). Cryptic species in a “living fossil” lineage: taxonomic and phylogenetic relationships within the genus Lepidurus (Crustacea: Notostraca) in North America. Molecular Phylogenetics and Evolution, 10(1), 23–36.CrossRefPubMedGoogle Scholar
  17. Korn, M., Green, A. J., Machado, M., García-de-Lomas, J., Cristo, M., Cancela da Fonseca, L., et al. (2010). Phylogeny, molecular ecology and taxonomy of southern Iberian lineages of Triops mauritanicus (Crustacea: Notostraca). Organisms Diversity & Evolution, 10(5), 409–440.CrossRefGoogle Scholar
  18. Korn, M., & Hundsdoerfer, A. (2006). Evidence for cryptic species in the tadpole shrimp Triops granarius (Lucas, 1864) (Crustacea: Notostraca). Zootaxa, 68, 57–68.Google Scholar
  19. Korn, M., Marrone, F., Pérez-Bote, J. L., Machado, M., Cristo, M., Cancela da Fonseca, L., & Hundsdoerfer, A. K. (2006). Sister species within the Triops cancriformis lineage (Crustacea, Notostraca). Zoologica Scripta, 35(4), 301–322.CrossRefGoogle Scholar
  20. Korn, M., Rabet, N., Ghate, H. V., Marrone, F., & Hundsdoerfer, A. K. (2013). Molecular phylogeny of the Notostraca. Molecular Phylogenetics and Evolution, 69, 1159–1171.CrossRefPubMedGoogle Scholar
  21. Laamanen, T., Petersen, F. T., & Meier, R. (2003). Kelp flies and species concepts—the case of Coelopa frigida (Fabricius, 1805) and C. nebularum Aldrich, 1929 (Diptera: Coelopidae). Journal of Zoological Systematics and Evolutionary Research, 41, 127–136.CrossRefGoogle Scholar
  22. Lagebro, L. A., Gueriau, P., Hegna, T. A., Rabet, N., Butler, D., & Budd, G. E. (2015). The oldest notostracan (Upper Devonian Strud locality, Belgium). Palaeontology, 58, 497–509.CrossRefGoogle Scholar
  23. Linder, F. (1947). Abnormal body rings in branchiopod Notostraca. Zoologiska Bidrag Uppsala, 25, 378–385.Google Scholar
  24. Longhurst, A. (1955). A review of the Notostraca. Bulletin of the British Museum (Natural History) Zoology, 3, 1–57.CrossRefGoogle Scholar
  25. Lynch, J. E. (1972). Lepidurus couesii Packard (Notostraca) redescribed with a discussion of specific characters in the genus. Crustaceana, 23(1), 43–49.CrossRefGoogle Scholar
  26. Macdonald, K. I., Sallenave, R., & Cowley, D. (2011). Morphologic and genetic variation in Triops (Branchiopoda: Notostraca) from ephemeral waters of the Northern Chihuahuan Desert of North America. Journal of Crustacean Biology, 31(3), 468–484.CrossRefGoogle Scholar
  27. Mantovani, B., Cesari, M., Luchetti, A., & Scanabissi, F. (2008). Mitochondrial and nuclear DNA variability in the living fossil Triops cancriformis (Bosc, 1801) (Crustacea, Branchiopoda, Notostraca). Heredity, 100(5), 496–505.CrossRefPubMedGoogle Scholar
  28. Mantovani, B., Cesari, M., & Scanabissi, F. (2004). Molecular taxonomy and phylogeny of the “living fossil” lineages Triops and Lepidurus (Branchiopoda: Notostraca). Zoologica Scripta, 33, 367–374.CrossRefGoogle Scholar
  29. Mathers, T. C., Hammond, R. L., Jenner, R. A., Hänfling, B., & Gómez, A. (2013a). Multiple global radiations in tadpole shrimps challenge the concept of “living fossils”. PeerJ, 1, e62.CrossRefPubMedCentralPubMedGoogle Scholar
  30. Mathers, T. C., Hammond, R. L., Jenner, R. A., Zierold, T., Hänfling, B., & Gómez, A. (2013b). High lability of sexual system over 250 million years of evolution in morphologically conservative tadpole shrimps. BMC Evolutionary Biology, 13, 30.CrossRefPubMedCentralPubMedGoogle Scholar
  31. Mayr, E. (1942). Systematics and the origin of species from the viewpoint of a zoologist. New York: Columbia University Press.Google Scholar
  32. Mishler, B. D., & Theriot , E. C. (2000). The phylogenetic species concept (sensu Mishler & Theriot): monophyly, apomorphy and phylogenetic species concepts. In Q. Wheeler & R. Meier (Eds.), Species and phylogenetic theory (pp. 44–54). New York: Columbia University Press.Google Scholar
  33. Montero-Pau, J., Gómez, A., & Muñoz, J. (2008). Application of an inexpensive and high-throughput genomic DNA extraction method for the molecular ecology of zooplanktonic diapausing eggs. Limnology and Oceanography: Methods, 6, 218–222.CrossRefGoogle Scholar
  34. Murugan, G., Maeda-Martínez, A. M., Obregón-Barboza, H., & Hernández-Saavedra, N. Y. (2002). Molecular characterization of the tadpole shrimp Triops (Branchiopoda: Notostraca) from the Baja California Peninsula, México: new insights on species diversity and phylogeny of the genus. Hydrobiologia, 486(5), 101–113.Google Scholar
  35. Murugan, G., Obregón-Barboza, H., Maeda-Martínez, A. M., & Timms, B. V. (2009). Co-occurrence of two tadpole shrimp, Triops cf. australiensis (Branchiopoda: Notostraca), lineages in middle Paroo, north-western New South Wales, with the first record of Triops hermaphrodites for the Australian continent. Australian Journal of Zoology, 57, 77–84.CrossRefGoogle Scholar
  36. Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University.Google Scholar
  37. Obregón-Barboza, H., Maeda-Martínez, A. M., Murugan, G., Timms, B. V., Grygier, M. J., Rogers, D. C., Rodríguez-Almaraz, G., & Dumont, H. J. (2007). Morphology and systematic significance of the mystax, a hitherto undescribed structure of males in certain Notostraca (Branchiopoda). Journal of Crustacean Biology, 27(1), 18–23.CrossRefGoogle Scholar
  38. Packard, A. (1877). A monograph of the phyllopod Crustacea of North America, with remarks on the order of Phyllocarida. 12th Annual Report of the U. S. Geological and Geographical Survey of the Territories, 295–516Google Scholar
  39. Padial, J. M., & De La Riva, I. (2010). A response to recent proposals for integrative taxonomy. Biological Journal of the Linnaean Society, 101(3), 747–756.CrossRefGoogle Scholar
  40. Pérès, J.-M. (1939). Contribution a la connaisance des Notostracés du Maroc. Bulletin de la Societe des Sciences Naturelles du Maroc, 19, 23–32.Google Scholar
  41. Pons, J., Barraclough, T., Gomez-Zurita, J., Cardoso, A., Duran, D., Hazell, S., et al. (2006). Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55(4), 595–609.CrossRefPubMedGoogle Scholar
  42. Puillandre, N., Lambert, A., Brouillet, S., & Achaz, G. (2012). ABGD, Automatic Barcode Gap Discovery for primary species delimitation. Molecular Ecology, 21(8), 1864–1877.CrossRefPubMedGoogle Scholar
  43. Rabet, N., Clarac, F., Lluch, P., Gallerne, E., & Korn, M. (2015). Review of the Eulimnadia (Branchiopoda: Spinicaudata) from North Africa and adjacent regions, with two new species from Mauritania. Journal of Crustacean Biology, 35(3), 461–472.CrossRefGoogle Scholar
  44. Richter, S., Olesen, J., & Wheeler, W. (2007). Phylogeny of Branchiopoda (Crustacea) based on a combined analysis of morphological data and six molecular loci. Cladistics, 23, 1–36.CrossRefGoogle Scholar
  45. Rogers, D. C. (2001). Revision of the Nearctic Lepidurus (Notostraca). Journal of Crustacean Biology, 21(4), 991–1006.CrossRefGoogle Scholar
  46. Rogers, D. C., & Timms, B. V. (2014). Anostracan (Crustacea: Branchiopoda) zoogeography III. Australian bioregions. Zootaxa, 3881(5), 453–487.CrossRefPubMedGoogle Scholar
  47. Sassaman, C., Simovich, M., & Fugate, M. (1997). Reproductive isolation and genetic differentiation in North American species of Triops (Crustacea: Branchiopoda: Notostraca). Hydrobiologia, 359, 125–147.CrossRefGoogle Scholar
  48. Schwendinger, P. J., & Giribet, G. (2005). The systematics of the south-east Asian genus Fangensis Rambla (Opiliones:Cyphophthalmi:Stylocellidae). Invertebrate Systematics, 19, 297–323.CrossRefGoogle Scholar
  49. Schwentner, M., Timms, B. V., & Richter, S. (2011). An integrative approach to species delineation incorporating different species concepts: a case study of Limnadopsis (Branchiopoda: Spinicaudata). Biological Journal of the Linnean Society, 104(3), 575–599.CrossRefGoogle Scholar
  50. Schwentner, M., Timms, B. V., & Richter, S. (2012a). Description of four new species of Limnadopsis from Australia (Crustacea: Branchiopoda: Spinicaudata). Zootaxa, 3315, 42–64.Google Scholar
  51. Schwentner, M., Timms, B. V., & Richter, S. (2012b). Flying with the birds? Recent large-area dispersal of four Australian Limnadopsis species (Crustacea: Branchiopoda: Spinicaudata). Ecology and Evolution, 2(7), 1605–1626.CrossRefPubMedCentralPubMedGoogle Scholar
  52. Schwentner, M., Clavier, S., Fritsch, M., Olesen, J., Padhye, S., Timms, B. V., & Richter, S. (2013). Cyclestheria hislopi (Crustacea: Branchiopoda): a group of morphologically cryptic species with origins in the Cretaceous. Molecular Phylogenetics and Evolution, 66(3), 800–810.CrossRefPubMedGoogle Scholar
  53. Schwentner, M., Timms, B. V., & Richter, S. (2014). Evolutionary systematics of the Australian Eocyzicus fauna (Crustacea: Branchiopoda: Spinicaudata) reveals hidden diversity and phylogeographic structure. Journal of Zoological Systematics and Evolutionary Research, 52(1), 15–31.CrossRefGoogle Scholar
  54. Schwentner, M., Just, F., & Richter, S. (2015a). Evolutionary systematics of the Australian Cyzicidae (Crustacea, Branchiopoda, Spinicaudata) with the description of a new genus. Zoological Journal of the Linnean Society, 173(2), 271–295.CrossRefGoogle Scholar
  55. Schwentner, M., Timms, B. V., & Richter, S. (2015b). Spinicaudata (Branchiopoda: Diplostraca) in Australia’s arid zone: unparalleled diversity at regional scales and within water bodies. Journal of Crustacean Biology, 35(3), 366–378.CrossRefGoogle Scholar
  56. Spencer, B., & Hall, T. (1895). Preliminary description of a new species of Apus. The Victorian Naturalist, 11, 161–162.CrossRefGoogle Scholar
  57. Suno-Uchi, N., Sasaki, F., Chiba, S., & Kawata, M. (1997). Morphological stasis and phylogenetic relationships in tadpole shrimps, Triops (Crustacea: Notostraca). Biological Journal of the Linnean Society, 61(4), 439–457.Google Scholar
  58. Tamura, K., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefPubMedCentralPubMedGoogle Scholar
  59. Thiéry, A. (1991). Multispecies coexistence of branchiopods (Anostraca, Notostraca & Spinicaudata) in temporary ponds of Chaouia plain (western Morocco): sympatry or syntopy between usually allopatric species. Hydrobiologia, 212, 117–136.CrossRefGoogle Scholar
  60. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22(22), 4673–4680.CrossRefPubMedCentralPubMedGoogle Scholar
  61. Timms, B. V. (2013). A revision of the Australian species of Lynceus Müller, 1776 (Crustacea: Branchiopoda: Laevicaudata, Lynceidae). Zootaxa, 3702(6), 501–533.CrossRefPubMedGoogle Scholar
  62. Timms, B. V. (2012). An appraisal of the diversity and distribution of large branchiopods (Branchiopoda: Anostraca, Laevicaudata, Spinicaudata, Cyclestherida, Notostraca) in Australia. Journal of Crustacean Biology, 32(4), 615–623.CrossRefGoogle Scholar
  63. Trusheim, F. (1938). Triopsiden (Crust. Phyll.) aus dem Keuper Frankens. Paläontologische Zeitschrift, 19, 198–216.CrossRefGoogle Scholar
  64. Tyler, M. J., Davies, M., Watson, G. F., & Williams, D. J. (1996). Significant extension in northern Australia of the known geographic range of the shield shrimp Triops australiensis (Crustacea: Notostraca). Hydrobiologia, 318, 135–137.CrossRefGoogle Scholar
  65. Vanschoenwinkel, B., Pinceel, T., Vanhove, M. P. M., Denis, C., Jocque, M., Timms, B. V., & Brendonck, L. (2012). Toward a global phylogeny of the “living fossil” crustacean order of the Notostraca. PloS One, 7(4), e34998.CrossRefPubMedCentralPubMedGoogle Scholar
  66. Wheeler, Q. D., & Platnick, N. I. (2000). The phylogenetic species concept (sensu Wheeler and Platnick). In Q. D. Wheeler & R. Meier (Eds.), Species and phylogenetic theory (pp. 55–69). New York: Columbia University. Press.Google Scholar
  67. Wiley, E., & Mayden, R. (2000). The evolutionary species concept. In Q. D. Wheeler & R. Meier (Eds.), Species and phylogenetic theory (pp. 70–89). New York: Columbia University Press.Google Scholar
  68. Will, K. W., Mishler, B. D., & Wheeler, Q. D. (2005). The perils of DNA barcoding and the need for integrative taxonomy. Systematic Biology, 54(5), 844–51.CrossRefPubMedGoogle Scholar
  69. Williams, W. D. (1966). The distribution of Triops and Lepidurus (Branchiopoda) in Australia. Crustaceana, 14, 119–126.CrossRefGoogle Scholar
  70. Wolf, E. (1911). Phyllopoda. In Die Fauna Südwest-Australiens. Ergebnisse der Hamburger süd-westaustralischen Forschungsreise 1905, 253–276).Google Scholar
  71. Zelditch, M. L., Swiderski, D. L., Sheets, H. D. & Fink, W. L. (2004). Geometric morphometrics for biologists: a primer. New York: Academic.Google Scholar
  72. Zierold, T. (2006). Morphological variation and genetic diversity of Triops cancriformis (Crustacea: Notostraca) and their potential for understanding the influence of postglacial distribution and habitat fragmentation. Dissertation. Technische Universität Bergakademie Freiberg.Google Scholar
  73. Zierold, T., Hanfling, B., & Gómez, A. (2007). Recent evolution of alternative reproductive modes in the ‘living fossil’ Triops cancriformis. BMC Evolutionary Biology, 7, 161.CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2016

Authors and Affiliations

  1. 1.Institut für Biowissenschaften, Allgemeine und Spezielle ZoologieUniversität RostockRostockGermany
  2. 2.Institut für Biologie, Vergleichende ZoologieHumboldt-Universität zu BerlinBerlinGermany
  3. 3.Museum of Comparative Zoology, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA

Personalised recommendations