Organisms Diversity & Evolution

, Volume 17, Issue 1, pp 305–319 | Cite as

Regional differentiation of felid vertebral column evolution: a study of 3D shape trajectories

  • Marcela Randau
  • Andrew R. Cuff
  • John R. Hutchinson
  • Stephanie E. Pierce
  • Anjali Goswami
Original Article


Recent advances in geometric morphometrics provide improved techniques for extraction of biological information from shape and have greatly contributed to the study of ecomorphology and morphological evolution. However, the vertebral column remains an under-studied structure due in part to a concentration on skull and limb research, but most importantly because of the difficulties in analysing the shape of a structure composed of multiple articulating discrete units (i.e. vertebrae). Here, we have applied a variety of geometric morphometric analyses to three-dimensional landmarks collected on 19 presacral vertebrae to investigate the influence of potential ecological and functional drivers, such as size, locomotion and prey size specialisation, on regional morphology of the vertebral column in the mammalian family Felidae. In particular, we have here provided a novel application of a method—phenotypic trajectory analysis (PTA)—that allows for shape analysis of a contiguous sequence of vertebrae as functionally linked osteological structures. Our results showed that ecological factors influence the shape of the vertebral column heterogeneously and that distinct vertebral sections may be under different selection pressures. While anterior presacral vertebrae may either have evolved under stronger phylogenetic constraints or are ecologically conservative, posterior presacral vertebrae, specifically in the post-T10 region, show significant differentiation among ecomorphs. Additionally, our PTA results demonstrated that functional vertebral regions differ among felid ecomorphs mainly in the relative covariation of vertebral shape variables (i.e. direction of trajectories, rather than in trajectory size) and, therefore, that ecological divergence among felid species is reflected by morphological changes in vertebral column shape.


Geometric morphometrics Morphological evolution Regionalisation Phenotypic trajectory analysis Ecomorphology Axial skeleton 



We thank the two peer reviewers for their excellent, constructive criticisms of the first draft of this paper. For access to museum collections, we thank R. Portela Miguez and R. Sabin at the Natural History Museum, London; M. Lowe and R. Asher at the University Museum of Zoology, Cambridge; C. Lefèvre at the Muséum National d’Histoire Naturelle, Paris; J. Chupasko at the Harvard Museum of Natural History, Cambridge; E. Westwig at the American Museum of Natural History, New York; W. Stanley at the Field Museum of Natural History, Chicago; and D. Lunde at the Smithsonian National Museum of Natural History, Washington D.C. This work was supported by Leverhulme Trust grant RPG 2013-124 to AG and JRH. This research received support from the SYNTHESYS project which is financed by European Community Research Infrastructure Action under the FP7 ‘Capacities’ Program. The SYNTHESYS grant was awarded to MR.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

13127_2016_304_MOESM1_ESM.pdf (224 kb)
ESM 1 (PDF 224 kb)
13127_2016_304_MOESM2_ESM.docx (43 kb)
ESM 2 (DOCX 42 kb)


  1. Adams, D. C. (2014a). A generalized K statistic for estimating phylogenetic signal from shape and other high-dimensional multivariate data. Systematic Biology, 63(5), 685–697. doi: 10.1093/sysbio/syu030.CrossRefPubMedGoogle Scholar
  2. Adams, D. C. (2014b). A method for assessing phylogenetic least squares models for shape and other high-dimensional multivariate data. Evolution, 68(9), 2675–2688. doi: 10.1111/evo.12463.CrossRefPubMedGoogle Scholar
  3. Adams, D. C., & Collyer, M. L. (2007). Analysis of character divergence along environmental gradients and other covariates. Evolution, 61(3), 510–515. doi: 10.1111/j.1558-5646.2007.00063.x.CrossRefPubMedGoogle Scholar
  4. Adams, D. C., & Collyer, M. L. (2009). A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution, 63(5), 1143–1154. doi: 10.1111/j.1558-5646.2009.00649.x.CrossRefPubMedGoogle Scholar
  5. Adams, D. C., & Collyer, M. L. (2015). Permutation tests for phylogenetic comparative analyses of high-dimensional shape data: what you shuffle matters. Evolution and Development, 69(3), 823–829. doi: 10.1111/evo.12596.CrossRefGoogle Scholar
  6. Adams, D. C., & Nistri, A. (2010). Ontogenetic convergence and evolution of foot morphology in European cave salamanders (Family: Plethodontidae). BMC Evolutionary Biology, 10, 216. doi: 10.1186/1471-2148-10-216.CrossRefPubMedPubMedCentralGoogle Scholar
  7. Adams, D. C., & Otarola-Castillo, E. (2013). geomorph: an R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution, 4, 393–399.CrossRefGoogle Scholar
  8. Adams, D. C., Rohlf, F. J., & Slice, D. E. (2013). A field comes of age: geometric morphometrics in the 21st century. Hystrix, 24(1), 1-10.Google Scholar
  9. Adams, D. S., Collyer, M., & Sherrat, E. (2015). geomorph: software for geometric morphometric analyses. R package version 2.1.x. (2.1.x ed.).Google Scholar
  10. Alvarez, A., Ercoli, M. D., & Prevosti, F. J. (2013). Locomotion in some small to medium-sized mammals: a geometric morphometric analysis of the penultimate lumbar vertebra, pelvis and hindlimbs. Zoology (Jena, Germany), 116(6), 356–371. doi: 10.1016/j.zool.2013.08.007.CrossRefGoogle Scholar
  11. Andersson, K., & Werdelin, L. (2003). The evolution of cursorial carnivores in the Tertiary: implications of elbow-joint morphology. Proceedings of Royal Society of London B, 270(Suppl 2), S163–S165. doi: 10.1098/rsbl.2003.0070.CrossRefGoogle Scholar
  12. Arnold, P., Forterre, F., Lang, J., & Fischer, M. S. (2016). Morphological disparity, conservatism, and integration in the canine lower cervical spine: insights into mammalian neck function and regionalization. Mammalian Biology, 81(2), 153–162. doi: 10.1016/j.mambio.2015.09.004.Google Scholar
  13. Bell, E., Andres, B., & Goswami, A. (2011). Integration and dissociation of limb elements in flying vertebrates: a comparison of pterosaurs, birds and bats. Journal of Evolutionary Biology, 24(12), 2586–2599. doi: 10.1111/j.1420-9101.2011.02381.x.CrossRefPubMedGoogle Scholar
  14. Bennett, V. C., & Goswami, A. (2011). Does developmental strategy drive limb integration in marsupials and monotremes? Mammalian Biology, 76(1), 79–83. doi: 10.1016/j.mambio.2010.01.004.Google Scholar
  15. Benoit, M. H. (2010). What’s the difference? A multiphasic allometric analysis of fossil and living lions. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: new views on phylogeny, form and function (pp. 165–188). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  16. Böhmer, C., Rauhut, O. W., & Wörheide, G. (2015). Correlation between Hox code and vertebral morphology in archosaurs. Proceedings of the Royal Society B, 282(1810), doi: 10.1098/rspb.2015.0077.
  17. Boszczyk, B. M., Boszczyk, A. A., & Putz, R. (2001). Comparative and functional anatomy of the mammalian lumbar spine. Anatomical Records, 264, 157–168.CrossRefGoogle Scholar
  18. Breit, S., & Künzel, W. (2004). A morphometric investigation on breed‐specific features affecting sagittal rotational and lateral bending mobility in the canine cervical spine (C3–C7). Anatomia, Histologia, Embryologia, 33(4), 244–250.CrossRefPubMedGoogle Scholar
  19. Buchholtz, E. A. (2001a). Swimming styles in Jurassic ichthyosaurs. Journal of Vertebrate Paleontology, 21, 61–73.CrossRefGoogle Scholar
  20. Buchholtz, E. A. (2001b). Vertebral osteology and swimming style in living and fossil whales (Order: Cetacea). Journal of Zoology, 253, 175–190.CrossRefGoogle Scholar
  21. Buchholtz, E. A. (2014). Crossing the frontier: a hypothesis for the origins of meristic constraint in mammalian axial patterning. Zoology (Jena, Germany), 117(1), 64–69. doi: 10.1016/j.zool.2013.09.001.CrossRefGoogle Scholar
  22. Buchholtz, E. A., Bailin, H. G., Laves, S. A., Yang, J. T., Chan, M. Y., & Drozd, L. E. (2012). Fixed cervical count and the origin of the mammalian diaphragm. Evolution and Development, 14(5), 399–411. doi: 10.1111/j.1525-142X.2012.00560.x.CrossRefPubMedGoogle Scholar
  23. Buchholtz, E. A., Wayrynen, K. L., & Lin, I. W. (2014). Breaking constraint: axial patterning in Trichechus (Mammalia: Sirenia). Evolution and Development, 16(6), 382–393.CrossRefPubMedGoogle Scholar
  24. Carbone, C., Mace, G. M., Roberts, S. C., & Macdonald, D. W. (1999). Energetic constraints on the diet of terrestrial carnivores. Nature, 402, 286–288.CrossRefPubMedGoogle Scholar
  25. Carbone, C., Teacher, A., & Rowcliffe, J. M. (2007). The costs of carnivory. PLoS Biology, 5(2), e22. doi: 10.1371/journal.pbio.0050022.CrossRefPubMedPubMedCentralGoogle Scholar
  26. Cardini, A., & Loy, A. (2013). On growth and form in the “computer area”: from geometric to biological morphometrics. Hystrix, 24(1), 1–5. doi: 10.4404/hystrix-24.1-8749.Google Scholar
  27. Chatzigianni, A., & Halazonetis, D. J. (2009). Geometric morphometric evaluation of cervical vertebrae shape and its relationship to skeletal maturation. American Journal of Orthodontics and Dentofacial Orthopedics, 136(4), 481.e481–481.e489.Google Scholar
  28. Chen, X., Milne, N., & O’Higgins, P. (2005). Morphological variation of the thoracolumbar vertebrae in Macropodidae and its functional relevance. Journal of Morphology, 266(2), 167–181.CrossRefPubMedGoogle Scholar
  29. Collyer, M. L., & Adams, D. C. (2013). Phenotypic trajectory analysis: comparison of shape change patterns in evolution and ecology. Hystrix, 24(1), 75–83. doi: 10.4404/hystrix-24.1-6298.Google Scholar
  30. Collyer, M. L., Sekora, D. J., & Adams, D. C. (2014). A method for analysis of phenotypic change for phenotypes described by high-dimensional data. Heredity. doi: 10.1038/hdy.2014.75.PubMedPubMedCentralGoogle Scholar
  31. Cuff, A. R., Sparkes, E. L., Randau, M., Pierce, S. E., Kitchener, A. C., Goswami, A., et al. (2016a). The scaling of postcranial muscles in cats (Felidae) I: forelimb, cervical, and thoracic muscles. Journal of Anatomy, 229(1), 128–141. doi: 10.1111/joa.12477.CrossRefPubMedGoogle Scholar
  32. Cuff, A. R., Sparkes, E. L., Randau, M., Pierce, S. E., Kitchener, A. C., Goswami, A., et al. (2016b). The scaling of postcranial muscles in cats (Felidae) II: hindlimb and lumbosacral muscles. Journal of Anatomy, 229(1), 142–152. doi: 10.1111/joa.12474.CrossRefPubMedGoogle Scholar
  33. Davies, T. J., Meiri, S., Barraclough, T. G., & Gittleman, J. L. (2007). Species co-existence and character divergence across carnivores. Ecology Letters, 10(2), 146–152. doi: 10.1111/j.1461-0248.2006.01005.x.CrossRefPubMedGoogle Scholar
  34. Day, L. M., & Jayne, B. C. (2007). Interspecific scaling of the morphology and posture of the limbs during the locomotion of cats (Felidae). Journal of Experimental Biology, 210(4), 642–654. doi: 10.1242/jeb.02703.CrossRefPubMedGoogle Scholar
  35. De Iuliis, G., & Pulerà, D. (2006). The cat. In The dissection of vertebrates: a laboratory manual (1st ed., pp. 131–226). Burlington, MA USA: Academic Press.Google Scholar
  36. Doube, M., Wiktorowicz-Conroy, A., Christiansen, P., Hutchinson, J. R., & Shefelbine, S. (2009). Three-dimensional geometric analysis of felid limb bone allometry. PloS One, 4(3), e4742. doi: 10.1371/journal.pone.0004742.CrossRefPubMedPubMedCentralGoogle Scholar
  37. Drake, A. G., & Klingenberg, C. P. (2010). Large-scale diversification of skull shape in domestic dogs: disparity and modularity. The American Natural, 175(3), 289–301. doi: 10.1086/650372.CrossRefGoogle Scholar
  38. Dumont, M., Wall, C. E., Botton-Divet, L., Goswami, A., Peigne, S., & Fabre, A. C. (2015). Do functional demands associated with locomotor habitat, diet, and activity pattern drive skull shape evolution in musteloid carnivorans? Biological Journal of the Linnean Society, 117(4), 858–878. doi: 10.1111/bij.12719.CrossRefGoogle Scholar
  39. Ercoli, M. D., Prevosti, F. J., & ÁLvarez, A. (2012). Form and function within a phylogenetic framework: locomotory habits of extant predators and some Miocene Sparassodonta (Metatheria). Zoological Journal of the Linnean Society, 165(1), 224–251. doi: 10.1111/j.1096-3642.2011.00793.x.CrossRefGoogle Scholar
  40. Fabre, A. C., Cornette, R., Peigne, S., & Goswami, A. (2013). Influence of body mass on the shape of forelimb in musteloid carnivorans. Biological Journal of the Linnean Society, 110(1), 91–103. doi: 10.1111/Bij.12103.CrossRefGoogle Scholar
  41. Fabre, A. C., Cornette, R., Huyghe, K., Andrade, D. V., & Herrel, A. (2014). Linear versus geometric morphometric approaches for the analysis of head shape dimorphism in lizards. Journal of Morphology, 275(9), 1016–1026. doi: 10.1002/jmor.20278.CrossRefPubMedGoogle Scholar
  42. Felsenstein, J. (1985). Phylogenies and the comparative method. The American Natural, 125(1), 1–15.CrossRefGoogle Scholar
  43. Figueirido, B., Serrano-Alarcon, F. J., Slater, G. J., & Palmqvist, P. (2010). Shape at the cross-roads: homoplasy and history in the evolution of the carnivoran skull towards herbivory. Journal of Evolutionary Biology, 23(12), 2579–2594. doi: 10.1111/j.1420-9101.2010.02117.x.CrossRefPubMedGoogle Scholar
  44. Finch, M., & Freedman, L. (1986). Functional-morphology of the vertebral column of Thylacoleo carnifex Owen (Thylacoleonidae, Marsupialia). Australian Journal of Zoology, 34, 1–16.CrossRefGoogle Scholar
  45. Foth, C., Brusatte, S. L., & Butler, R. J. (2012). Do different disparity proxies converge on a common signal? Insights from the cranial morphometrics and evolutionary history of Pterosauria (Diapsida: Archosauria). Journal of Evolutionary Biology, 25(5), 904–915. doi: 10.1111/j.1420-9101.2012.02479.x.CrossRefPubMedGoogle Scholar
  46. Gál, J. M. (1993). Mammalian spinal biomechanics II. Intervertebral lesion experiments and mechanisms of bending resistance. Journal of Experimental Biology, 174, 281–297.CrossRefPubMedGoogle Scholar
  47. Galis, F., Carrier, D. R., van Alphen, J., van der Mije, S. D., Van Dooren, T. J., Metz, J. A., et al. (2014). Fast running restricts evolutionary change of the vertebral column in mammals. Proceedings of the National Academy of Science USA, 111(31), 11401–11406. doi: 10.1073/pnas.1401392111.CrossRefGoogle Scholar
  48. Garland, T., Jr., Dickerman, A. W., Janis, C. M., & Jones, J. A. (1993). Phylogenetic analysis of covariance by computer simulation. Systematic Biology, 42(3), 265–292.CrossRefGoogle Scholar
  49. Gonyea, W. J. (1978). Functional implications of felid forelimb anatomy. Acta Anatomica (Basel), 102(2), 111–121.CrossRefGoogle Scholar
  50. Goswami, A. (2006). Morphological integration in the carnivoran skull. Evolution, 60(1), 15.CrossRefGoogle Scholar
  51. Goswami, A., & Polly, P. D. (2010). The influence of character correlations of phylogenetic analyses: a case study of the carnivoran cranium. In A. Goswami & A. Friscia (Eds.), Carnivoran evolution: new views on phylogeny, form, and function (pp. 141–164). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  52. Goswami, A., Polly, P. D., Mock, O. B., & Sanchez-Villagra, M. R. (2012). Shape, variance and integration during craniogenesis: contrasting marsupial and placental mammals. Journal of Evolutionary Biology, 25(5), 862–872. doi: 10.1111/j.1420-9101.2012.02477.x.CrossRefPubMedGoogle Scholar
  53. Goswami, A., Smaers, J. B., Soligo, C., & Polly, P. D. (2014). The macroevolutionary consequences of phenotypic integration: from development to deep time. Philosophical Transactions of the Royal Society B, 369(1649), 1–15. doi: 10.1098/rstb.2013.0254.CrossRefGoogle Scholar
  54. Gould, S. J. (1966). Allometry and size in ontogeny and phylogeny. Biological Reviews, 41, 52.CrossRefGoogle Scholar
  55. Gray, H., Standring, S., Ellis, H., & Berkovitz, B. (2005). Gray’s anatomy: the anatomical basis of clinical practice. (39th ed.). Edinburgh: Churchill Livingstone: Elsevier.Google Scholar
  56. Gunz, P., Mitterœcker, P., Neubauer, S., Weber, G. W., & Bookstein, F. L. (2009). Principles for the virtual reconstruction of hominin crania. Journal of Human Evolution, 57, 48–62.CrossRefPubMedGoogle Scholar
  57. Harmon, L., Weir, J., Brock, C., Glor, R., Challenger, W., Hunt, G., et al. (2014). Analysis of evolutionary diversification. (2.0.6 ed., pp. Methods for fitting macroevolutionary models to phylogenetic trees.).Google Scholar
  58. Head, J. J., & Polly, P. D. (2015). Evolution of the snake body form reveals homoplasy in amniote Hox gene function. Nature, 520(7545), 86–89. doi: 10.1038/nature14042.CrossRefPubMedGoogle Scholar
  59. Hildebrand, M. (1959). Motions of the running cheetah and horse. Journal of Mammalogy, 40(4), 481–495.CrossRefGoogle Scholar
  60. Hua, S. (2003). Locomotion in marine mesosuchians (Crocodylia): the contribution of the ‘locomotion profiles’. Neues Jahrbuch für Geologie und Paläontologie Abhandlungen, 227, 139–152.Google Scholar
  61. Johnson, D. R., McAndrew, T. J., & Oguz, O. (1999). Shape differences in the cervical and upper thoracic vertebrae in rats (Rattus norvegicus) and bats (Pteropus poiocephalus): can we see shape patterns derived from position in column and species membership ? Journal of Anatomy, 194(2), 249–253.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Jones, K. E. (2015). Evolutionary allometry of the thoracolumbar centra in felids and bovids. Journal of Morphology, 276(7), 818–831. doi: 10.1002/jmor.20382.CrossRefPubMedGoogle Scholar
  63. Jones, K. E., & German, R. Z. (2014). Ontogenetic allometry in the thoracolumbar spine of mammal species with differing gait use. Evolution and Development, 16(2), 110–120. doi: 10.1111/ede.12069.CrossRefPubMedGoogle Scholar
  64. Jones, K. E., & Pierce, S. E. (2015). Axial allometry in a neutrally buoyant environment: effects of the terrestrial-aquatic transition on vertebral scaling. Journal of Evolutionary Biology, 29(3), 594–601. doi: 10.1111/jeb.12809.CrossRefGoogle Scholar
  65. Klingenberg, C. P., & Marugán-Lobón, J. (2013). Evolutionary covariation in geometric morphometric data: analyzing integration, modularity, and allometry in a phylogenetic context. Systematic Biology, 62(4), 591–610. doi: 10.1093/sysbio/syt025.CrossRefPubMedGoogle Scholar
  66. Koob, T. J., & Long, J. H. (2000). The vertebrate body axis: evolution and mechanical function. American Zoologist, 40(1), 1–18. doi: 10.1668/0003-1569(2000)040[0001:Tvbaea]2.0.Co;2.Google Scholar
  67. Lauder, G. V. (1995). On the inference of function from structure. In J. J. Thomason (Ed.), Functional anatomy of vertebrates: an evolutionary perspective (pp. 11–18). Cambridge: Cambridge University Press.Google Scholar
  68. Long, J. H., Jr., Pabst, D. A., Shepherd, W. R., & McLellan, W. A. (1997). Locomotor design of dolphin vertebral columns: bending mechanics and morphology of Delphinus delphis. Journal of Experimental Biology, 200, 65–81.PubMedGoogle Scholar
  69. Macpherson, J. M., & Fung, J. (1998). Activity of thoracic and lumbar epaxial extensors during postural responses in the cat. Experimental Brain Research, 119(3), 315–323. doi: 10.1007/s002210050347.CrossRefPubMedGoogle Scholar
  70. Manfreda, E., Mitterœcker, P., Bookstein, F. L., & Schæfer, K. (2006). Functional morphology of the first cervical vertebra in humans and nonhuman primates. The Anatomical Record, 289B(5), 184–194.CrossRefGoogle Scholar
  71. Martin-Serra, A., Figueirido, B., & Palmqvist, P. (2014). A three-dimensional analysis of morphological evolution and locomotor performance of the carnivoran forelimb. PloS One, 9(1), e85574. doi: 10.1371/journal.pone.0085574.CrossRefPubMedPubMedCentralGoogle Scholar
  72. Meachen, J. A., O’Keefe, F. R., & Sadleir, R. W. (2014). Evolution in the sabre-tooth cat, Smilodon fatalis, in response to Pleistocene climate change. Journal of Evolutionary Biology, 27(4), 714–723. doi: 10.1111/jeb.12340.CrossRefPubMedGoogle Scholar
  73. Meachen-Samuels, J., & Van Valkenburgh, B. (2009a). Craniodental indicators of prey size preference in the Felidae. Biological Journal of the Linnean Society, 96(4), 784–799. doi: 10.1111/j.1095-8312.2008.01169.x.CrossRefGoogle Scholar
  74. Meachen-Samuels, J., & Van Valkenburgh, B. (2009b). Forelimb indicators of prey-size preference in the Felidae. Journal of Morphology, 270(6), 729–744. doi: 10.1002/jmor.10712.CrossRefPubMedGoogle Scholar
  75. Mitteroecker, P., & Gunz, P. (2009). Advances in geometric morphometrics. Evolutionary Biology, 36(2), 235–247. doi: 10.1007/s11692-009-9055-x.CrossRefGoogle Scholar
  76. Mitteroecker, P., Gunz, P., Windhager, S., & Schæfer, K. (2013). A brief review of shape, form, and allometry in geometric morphometrics, with applications to human facial morphology. Hystrix, 21(1), 59–66. doi: 10.4404/hystrix-24.1-6369.Google Scholar
  77. Molnar, J. L., Pierce, S. E., Bhullar, B.-A. S., Turner, A. H., & Hutchinson, J. R. (2015). Morphological and functional changes in the vertebral column with increasing aquatic adaptation in crocodylomorphs. Royal Society Open Science, 2, 1–22. doi: 10.1098/rsos.150439.CrossRefGoogle Scholar
  78. Monteiro, L. R. (2013). Morphometrics and the comparative method: studying the evolution of biological shape. Hystrix, 24(1), 25–32. doi: 10.4404/hystrix-24.1-6282.Google Scholar
  79. Müller, J., Scheyer, T. M., Head, J. J., Barrett, P. M., Werneburg, I., Ericson, P. G., et al. (2010). Homeotic effects, somitogenesis and the evolution of vertebral numbers in recent and fossil amniotes. Proceedings of the National Academy of Sciences of the United States of America, 107(5), 2118–2123. doi: 10.1073/pnas.0912622107.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Narita, Y., & Kuratani, S. (2005). Evolution of the vertebral formulae in mammals: a perspective on developmental constraints. Journal of Experimental Zoology Part B: Molecular and Developmental Evolution, 304(2), 91–106. doi: 10.1002/jez.b.21029.CrossRefGoogle Scholar
  81. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290. doi: 10.1093/bioinformatics/btg412.CrossRefPubMedGoogle Scholar
  82. Pierce, S. E., Angielczyk, K. D., & Rayfield, E. J. (2008). Patterns of morphospace occupation and mechanical performance in extant crocodilian skulls: a combined geometric morphometric and finite element modeling approach. Journal of Morphology, 269(7), 840–864. doi: 10.1002/jmor.10627.CrossRefPubMedGoogle Scholar
  83. Pierce, S. E., Angielczyk, K. D., & Rayfield, E. J. (2009). Shape and mechanics in thalattosuchian (Crocodylomorpha) skulls: implications for feeding behaviour and niche partitioning. Journal of Anatomy, 215(5), 555–576. doi: 10.1111/j.1469-7580.2009.01137.x.CrossRefPubMedPubMedCentralGoogle Scholar
  84. Pierce, S. E., Clack, J. A., & Hutchinson, J. R. (2011). Comparative axial morphology in pinnipeds and its correlation with aquatic locomotory behaviour. Journal of Anatomy, 219(4), 502–514. doi: 10.1111/j.1469-7580.2011.01406.x.CrossRefPubMedPubMedCentralGoogle Scholar
  85. Piras, P., Maiorino, L., Teresi, L., Meloro, C., Lucci, F., Kotsakis, T., et al. (2013). Bite of the cats: relationships between functional integration and mechanical performance as revealed by mandible geometry. Systematic Biology, 62(6), 878–900. doi: 10.1093/sysbio/syt053.CrossRefPubMedGoogle Scholar
  86. Polly, P. D., Lawing, A. M., Fabre, A. C., & Goswami, A. (2013). Phylogenetic principal components analysis and geometric morphometrics. Hystrix, 24(1), 33–41. doi: 10.4404/hystrix-24.1-6383.Google Scholar
  87. R Foundation (2015). The R project for statistical computing. (3.2.3 ed.).Google Scholar
  88. Randau, M., Goswami, A., Hutchinson, J. R., Cuff, A. R., & Pierce, S. E. (2016). Cryptic complexity in felid vertebral evolution: shape differentiation and allometry of the axial skeleton. Zoological Journal of the Linnean Society, 178(1), 183–202. doi: 10.1111/zoj.12403.CrossRefGoogle Scholar
  89. Rudwick, M. J. S. (2005). Denizens of a former world. In M. J. S. Rudwick (Ed.), Bursting the limits of time: the reconstruction of geohistory in the age of revolution (pp. 349–416). Chicago: The University of Chicago Press.CrossRefGoogle Scholar
  90. Schilling, N., & Long, J. H., Jr. (2014). Axial systems and their actuation: new twists on the ancient body of craniates. Zoology (Jena, Germany), 117(1), 1–6. doi: 10.1016/j.zool.2013.11.002.CrossRefGoogle Scholar
  91. Sears, K. E., Bianchi, C., Powers, L., & Beck, A. L. (2013). Integration of the mammalian shoulder girdle within populations and over evolutionary time. Journal of Evolutionary Biology, 26(7), 1536–1548. doi: 10.1111/jeb.12160.CrossRefPubMedGoogle Scholar
  92. Shapiro, L. (1995). Functional morphology of indrid lumbar vertebrae. American Journal of Physical Anthropology, 98(3), 323–342. doi: 10.1002/ajpa.1330980306.CrossRefPubMedGoogle Scholar
  93. Shapiro, L. J. (2007). Morphological and functional differentiation in the lumbar spine of lorisids and galagids. American Journal of Primatology, 69(1), 86–102. doi: 10.1002/ajp.20329.CrossRefPubMedGoogle Scholar
  94. Sheets, H. D., & Zelditch, M. L. (2013). Studying ontogenetic trajectories using resampling methods and landmark data. Hystrix, 24(1), 67–73. doi: 10.4404/hystrix-24.1-6332.Google Scholar
  95. Slater, G. J., & Van Valkenburgh, B. (2008). Long in the tooth: evolution of sabertooth cat cranial shape. Paleobiology, 34(3), 403–419. doi: 10.1666/07061.1.CrossRefGoogle Scholar
  96. Smeathers, J. E. (1981). A mechanical analysis of the mammalian lumbar spine. Thesis dissertation. University of ReadingGoogle Scholar
  97. Stayton, C. T. (2005). Morphological evolution of the lizard skull: a geometric morphometrics survey. Journal of Morphology, 263(1), 47–59. doi: 10.1002/jmor.10288.CrossRefPubMedGoogle Scholar
  98. Stayton, C. T. (2006). Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution, 60(4), 824–841. doi: 10.1554/04-575.1.s1.CrossRefPubMedGoogle Scholar
  99. Sunquist, M., & Sunquist, F. (2002). Wild cats of the world. Chicago: University of Chicago Press.Google Scholar
  100. Walmsley, A., Elton, S., Louys, J., Bishop, L. C., & Meloro, C. (2012). Humeral epiphyseal shape in the felidae: the influence of phylogeny, allometry, and locomotion. Journal of Morphology, 273(12), 1424–1438. doi: 10.1002/jmor.20084.CrossRefPubMedGoogle Scholar
  101. Ward, A. B., & Mehta, R. S. (2014). Differential occupation of axial morphospace. Zoology (Jena, Germany), 117(1), 70–76. doi: 10.1016/j.zool.2013.10.006.CrossRefGoogle Scholar
  102. Wellik, D. M. (2007). Hox patterning of the vertebrate axial skeleton. Developmental Dynamics, 236(9), 2454–2463. doi: 10.1002/dvdy.21286.CrossRefPubMedGoogle Scholar
  103. Werneburg, I. (2015). Neck motion in turtles and its relation to the shape of the temporal skull region. Comptes Rendus de l’Académie des Sciences Series IIA Earth and Planetary Science, 14(6–7), 527–548. doi: 10.1016/j.crpv.2015.01.007.Google Scholar
  104. Werneburg, I., Wilson, L. A., Parr, W. C., & Joyce, W. G. (2015). Evolution of neck vertebral shape and neck retraction at the transition to modern turtles: an integrated geometric morphometric approach. Systematic Biology, 64(2), 187–204. doi: 10.1093/sysbio/syu072.CrossRefPubMedGoogle Scholar
  105. Zhang, K. Y., Wiktorowicz-Conroy, A., Hutchinson, J. R., Doube, M., Klosowski, M., Shefelbine, S. J., et al. (2012). 3D Morphometric and posture study of felid scapulae using statistical shape modelling. PloS One, 7(4), 771–784. doi: 10.1371/journal.pone.0034619.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2016

Authors and Affiliations

  1. 1.Department of Genetics, Evolution and EnvironmentUniversity College LondonLondonUK
  2. 2.Department of Comparative Biomedical Sciences and Structure & Motion LaboratoryThe Royal Veterinary CollegeLondonUK
  3. 3.Department of Organismic and Evolutionary Biology and Museum of Comparative ZoologyHarvard UniversityCambridgeUSA
  4. 4.Department of Earth SciencesUniversity College LondonLondonUK

Personalised recommendations