Organisms Diversity & Evolution

, Volume 17, Issue 1, pp 1–10 | Cite as

Integrating selection, niche, and diversification into a hierarchical conceptual framework

  • Davi Mello Cunha Crescente Alves
  • José Alexandre Felizola Diniz-Filho
  • Fabricio Villalobos
Forum Paper

Abstract

Recently, new phylogenetic comparative methods have been proposed to test for the association of biological traits with diversification patterns, with species ecological “niche” being one of the most studied traits. In general, these methods implicitly assume natural selection acting at the species level, thus implying the mechanism of species selection. However, natural selection acting at the organismal level could also influence diversification patterns (i.e., effect macroevolution). Owing to our scarce knowledge on multi-level selection regarding niche as a trait, we propose a conceptual model to discuss and guide the test between species selection and effect macroevolution within a hierarchical framework. We first assume niche as an organismal as well as a species’ trait that interacts with the environment and results in species-level differential fitness. Then, we argue that niche heritability, a requirement for natural selection, can be assessed by its phylogenetic signal. Finally, we propose several predictions that can be tested in the future by disentangling both types of evolutionary processes (species selection or effect macroevolution). Our framework can have important implications for guiding analyses that aim to understand the hierarchical perspective of evolution.

Keywords

Individual-based models Niche conservatism Macroevolution Phylogenetic comparative methods Species selection Trait 

References

  1. Araújo, M. S., Bolnick, D. S., & Layman, C. A. (2011). The ecological causes of individual specialization. Ecology Letters, 14, 948–958.CrossRefPubMedGoogle Scholar
  2. Barraclough, T. G., & Vogler, A. P. (2000). Detecting the geographical pattern of speciation from species‐level phylogenies. American Naturalist, 155, 419–434.PubMedGoogle Scholar
  3. Birand, A., Vose, A., & Gavrilets, S. (2012). Patterns of species ranges, speciation, and extinction. The American Naturalist, 179, 1–21.Google Scholar
  4. Bolnick, D. I., Svanback, R., Fordyce, J. A., Yang, L. H., Davis, J. M., Hulsey, C. D., et al. (2003). The ecology of individuals: incidence and implications of individual specialization. American Naturalist, 161, 1–28.CrossRefPubMedGoogle Scholar
  5. Burin, G., Kissling, W.D., Guimarães Jr, P.R., Şekercioğlu, Ç.H., & Quental, T.B. (2016). Omnivory in birds is a macroevolutionary sink. Nature Communications, 7.Google Scholar
  6. Cardillo, M. (2015). Geographic range shifts do not erase the historic signal of speciation in mammals. The American Naturalist, 185, 343–353.Google Scholar
  7. Cavender‐Bares, J., Kozak, K. H., Fine, P. V., & Kembel, S. W. (2009). The merging of community ecology and phylogenetic biology. Ecology Letter, 12, 693–715.CrossRefGoogle Scholar
  8. Ceballos, G., & Ehrlich, P. R. (2002). Mammal population losses and the extinction crisis. Science, 296, 904–907.CrossRefPubMedGoogle Scholar
  9. Chevin, L. M. (2016). Species selection and random drift in macroevolution. Evolution, 70, 513–525.CrossRefPubMedGoogle Scholar
  10. Colwell, R. K., & Rangel, T. F. (2009). Hutchinson’s duality: the once and future niche. Proceedings of the National Academy of Science of the United States of America, 106, 19651–19658.CrossRefGoogle Scholar
  11. Darwin, C. (1859). On the origin of species. London: J. Murray.Google Scholar
  12. DeAngelis, D. L., & Mooij, W. M. (2005). Individual-based modeling of ecological and evolutionary processes. Annual Review of Ecology, Evolution, and Systematics, 36, 147–168.CrossRefGoogle Scholar
  13. Diniz-Filho, J. A. F. (2004). Macroecology and the hierarchical expansion of evolutionary theory. Global Ecology and Biogeography, 13, 1–5.CrossRefGoogle Scholar
  14. Diniz-Filho, J. A. F., Terribile, L. C., Da Cruz, M. J. R., & Vieira, L. C. G. (2010). Hidden pattern of phylogenetic non-stationarity overwhelm comparative analyses of niche conservatism and divergence. Global Ecology and Biogeography, 19, 916–926.CrossRefGoogle Scholar
  15. Diniz‐Filho, J. A. F., Alves, D. M. C. C., Villalobos, F., Sakamoto, M., Brusatte, S. L., & Bini, L. M. (2015). Phylogenetic eigenvectors and non‐stationarity in the evolution of theropod dinosaur skulls. Journal of Evolutionary Biology, 28, 1410–1416.CrossRefPubMedGoogle Scholar
  16. Eldredge, N., & Gould, S. J. (1972). Punctuated equilibria: an alternative to phyletic gradualism. In T. J. M. Schopf (Ed.), Models in Paleobiology (pp. 82–115). San Francisco: Freeman, Cooper and Company.Google Scholar
  17. Felsenstein, J. (1985). Phylogenies and the comparative method. American Naturalist, 125, 1–15.CrossRefGoogle Scholar
  18. Freckleton, R. P., Harvey, P. H., & Pagel, M. (2002). Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist, 160, 712–726.Google Scholar
  19. Gascuel, F., Ferrière, R., Aguilée, R., & Lambert, A. (2015). How ecology and landscape dynamics shape phylogenetic trees. Systematic Biology, 64, 590–607.CrossRefPubMedGoogle Scholar
  20. Goldberg, E. E., Kohn, J. R., Lande, R., Robertson, K. A., Smith, S. A., & Igić, B. (2010). Species selection maintains self-incompatibility. Science, 330, 493–495.CrossRefPubMedGoogle Scholar
  21. Gómez‐Rodríguez, C., Baselga, A., & Wiens, J. J. (2015). Is diversification rate related to climatic niche width? Global Ecology and Biogeography, 24, 383–395.CrossRefGoogle Scholar
  22. Gould, S. J. (1982). Darwinism and the expansion of evolutionary theory. Science, 216, 380–386.CrossRefPubMedGoogle Scholar
  23. Grimm, V., & Railsback, S. F. (2005). Individual-based modeling and ecology. New Jersey: Princeton University Press.CrossRefGoogle Scholar
  24. Harvey, P. H., & Pagel, M. D. (1991). The comparative method in evolutionary biology. Oxford: Oxford University Press.Google Scholar
  25. Hubbell, S. P. (2001). The unified neutral theory of biodiversity and biogeography. New Jersey: Princeton University Press.Google Scholar
  26. Hutchinson, G. E. (1957). Concluding remarks. Cold Spring Harbor Symposium on Quantitative Biology, 22, 415–427.CrossRefGoogle Scholar
  27. Hutchinson, G. E. (1978). An introduction to population ecology. Yale University Press.Google Scholar
  28. Jablonski, D. (1987). Heritability at the species level: analyses of geographic ranges of Cretaceous Mollusks. Science, 238, 360–363.CrossRefPubMedGoogle Scholar
  29. Jablonski, D. (2007). Scale and hierarchy on macroevolution. Paleontology, 50, 87–109.CrossRefGoogle Scholar
  30. Jablonski, D. (2008). Species selection: theory and data. Annual Review of Ecology, Evolution, and Systematics, 39, 501–524.CrossRefGoogle Scholar
  31. Kozak, K. H., & Wiens, J. J. (2010). Accelerated rates of climatic‐niche evolution underlie rapid species diversification. Ecology Letters, 13, 1378–1389.Google Scholar
  32. Lewontin, R. C. (1970). The units of selection. Annual Review of Ecology and Systematics, 1, 1–18.CrossRefGoogle Scholar
  33. Lieberman, B. S., & Vrba, E. S. (2005). Stephen Jay Gould on species selection: 30 years of insight. Paleobiology, 31, 113–121.CrossRefGoogle Scholar
  34. Lloyd, E. A., & Gould, S. J. (1993). Species selection on variability. Proceedings of the National Academy of Science of the United States of America, 90, 595–599.CrossRefGoogle Scholar
  35. Losos, J. B. (2008). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995–1007.CrossRefPubMedGoogle Scholar
  36. Machac, A., Zrzavý, J., & Storch, D. (2011). Range size heritability in Carnivora is driven by geographic constraints. The American Naturalist, 177, 767–779.Google Scholar
  37. Maddison, W. P., Midford, P. E., & Otto, S. P. (2007). Estimating a binary character's effect on speciation and extinction. Systematic biology, 56, 701–710.Google Scholar
  38. Marquet, P. A., & Taper, M. L. (1998). On size and area: patterns of mammalian body size extremes across landmasses. Evolutionary Ecology, 12, 127–139.CrossRefGoogle Scholar
  39. Maurer, B. A. (1998). The evolution of body size in birds. I. Evidence for non-random diversification. Evolutionary Ecology, 12, 925–934.CrossRefGoogle Scholar
  40. Mayr, E. (1963). Animal species and evolution. Cambridge: Belknap Press of Harvard University Press.CrossRefGoogle Scholar
  41. McInerny, G. J., & Etienne, R. S. (2012). Stitch the niche—a practical philosophy and visual schematic for the niche concept. Journal of Biogeography, 39, 2103–2111.CrossRefGoogle Scholar
  42. Morlon, H. (2014). Phylogenetic approaches for studying diversification. Ecology letters, 17, 508–525.Google Scholar
  43. Myers, C. E., & Saupe, E. E. (2013). A macroevolutionary expansion of the modern synthesis and the importance of extrinsic abiotic factors. Palaeontology, 56, 1179–1198.Google Scholar
  44. Ozinga, W. A., Colles, A., Bartish, I. V., Hennion, F., Hennekens, S. M., Pavoine, S., Poschlod, P., Hermant, M., Schaminée, J. H. J., & Prinzing, A. (2013). Specialists leave fewer descendants within a region than generalists. Global Ecology and Biogeography, 22, 213–222.CrossRefGoogle Scholar
  45. Pearman, P. B., Guisan, A., Broennimann, O., & Randin, C. F. (2008). Niche dynamics in space and time. Trends in Ecology & Evolution, 23, 149–158.Google Scholar
  46. Pennell, M. W., & Harmon, L. J. (2013). An integrative view of phylogenetic comparative methods: connections to population genetics, community ecology, and paleobiology. Annals of the New York Academy of Science, 1289, 90–105.CrossRefGoogle Scholar
  47. Peterson, A. T., & Soberón, J. (2012). Species distribution modeling and ecological niche modeling: getting the concepts right. Natureza & Conservação, 10, 102–107.CrossRefGoogle Scholar
  48. Price, S. A., Hopkins, S. S., Smith, K. K., & Roth, V. L. (2012). Tempo of trophic evolution and its impact on mammalian evolution. Proceedings of the National Academy of Science of the United States of America, 109, 7008–7012.CrossRefGoogle Scholar
  49. Pyron, R. A., & Wiens, J. J. (2013). Large-scale phylogenetic analyses reveal the causes of high tropical amphibian diversity. Proceedings of the Royal Society of London B, 280, 1–10.CrossRefGoogle Scholar
  50. Quintero, I., & Wiens, J. J. (2013). What determines the climatic niche width of species? The role of spatial and temporal climatic variation in three vertebrate clades. Global Ecology and Biogeography, 22, 422–432.CrossRefGoogle Scholar
  51. Rabosky, D. L., & Goldberg, E. E. (2015). Model inadequacy and mistaken inferences of trait-dependent speciation. Systematic Biology, 64, 340–355.CrossRefPubMedGoogle Scholar
  52. Rabosky, D. L., & McCune, A. R. (2009). Reinventing species selection with molecular phylogenies. Trends in Ecology and Evolution, 25, 68–74.CrossRefPubMedGoogle Scholar
  53. Reed, D. H., Lowe, E. H., Briscoe, D. A., & Frankham, R. (2003). Inbreeding and extinction: effects of rate of inbreeding. Conservation genetics, 4, 405–410.Google Scholar
  54. Reed, D. H. (2005). Relationship between population size and fitness. Conservation Biology, 19, 563–568.Google Scholar
  55. Revell, L. J., Harmon, L. J., & Collar, D. C. (2008). Phylogenetic signal, evolutionary process, and rate. Systematic Biology, 57, 591–601.Google Scholar
  56. Rojas, D., Vale, Á., Ferrero, V., & Navarro, L. (2012). The role of frugivory on the diversification of bats in the Neotropics. Journal of Biogeography, 39, 1948–1960.CrossRefGoogle Scholar
  57. Rolland, J., & Salamin, N. (2016). Niche width impacts vertebrate diversification. Global Ecology and Biogeography. doi:10.1111/geb.12482.
  58. Rosindell, J., Harmon, L. J., & Etienne, R. S. (2015). Unifying ecology and macroevolution with individual‐based theory. Ecology Letters, 18, 472–482.CrossRefPubMedPubMedCentralGoogle Scholar
  59. Simpson, G. G. (1944). Tempo and mode in evolution. New York: Columbia University Press.Google Scholar
  60. Slatyer, R. A., Hirst, M., & Sexton, J. P. (2013). Niche breadth predicts geographical range size: a general ecological pattern. Ecology Letters, 16, 1104–1114.CrossRefPubMedGoogle Scholar
  61. Soberón, J. (2007). Grinnellian and Eltonian niches and geographic distributions of species. Ecology Letters, 10, 1115–1123.CrossRefPubMedGoogle Scholar
  62. Soberón, J. (2014). Commentary on Ditch, Stitch and Pitch: the niche is here to stay. Journal of Biogeography, 41, 414–417.CrossRefGoogle Scholar
  63. Soberón, J., & Nakamura, M. (2009). Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Science of the United States of America, 106, 19644–19650.CrossRefGoogle Scholar
  64. Soberón, J., & Peterson, A. T. (2005). Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics, 2, 1–10 (2005). doi:10.17161/bi.v2i0.4.
  65. Stanley, S. M. (1975). A theory of evolution above the species level. Proceedings of the National Academy of Science of the United States of America, 72, 646–650.CrossRefGoogle Scholar
  66. Thuiller, W., Lavorel, S., & Araújo, M. B. (2005). Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography, 14, 347–357.CrossRefGoogle Scholar
  67. Title, P. O., & Burns, K. J. (2015). Rates of climatic niche evolution are correlated with species richness in a large and ecologically diverse radiation of songbirds. Ecology Letters, 18, 433–440.CrossRefPubMedGoogle Scholar
  68. Vrba, E. S. (1987). Ecology in relation to speciation rates: some case histories of Miocene-Recent mammal clades. Evolutionary Ecology, 1, 283–300.Google Scholar
  69. Vrba, E. S., & Eldredge, N. (1984). Individuals, hierarchies and processes: towards a more complete evolutionary theory. Paleobiology, 10, 146–171.CrossRefGoogle Scholar
  70. Vrba, E. S., & Gould, S. J. (1986). The hierarchical expansion of sorting and selection: sorting and selection cannot be equated. Paleobiology, 12, 217–228.CrossRefGoogle Scholar
  71. Webb, T. J., & Gaston, K. J. (2003). On the heritability of geographic range sizes. The American Naturalist, 161, 553–566.Google Scholar
  72. Wiens, J. J. (2008). Comentary on Losos (2008): niche conservatism déjà vu. Ecology Letters, 11, 995–1007.CrossRefGoogle Scholar
  73. Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., et al. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13, 1310–1324.CrossRefPubMedGoogle Scholar
  74. Wilson, D. S., & Yoshimura, J. (1994). On the coexistence of specialists and generalists. American Naturalist, 144, 692–707.CrossRefGoogle Scholar
  75. Wright, S. (1943). Isolation by distance. Genetics, 28, 114.PubMedPubMedCentralGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2016

Authors and Affiliations

  • Davi Mello Cunha Crescente Alves
    • 1
    • 2
  • José Alexandre Felizola Diniz-Filho
    • 1
  • Fabricio Villalobos
    • 3
  1. 1.Laboratório de Ecologia Teórica e Síntese, Programa de Ecologia e EvoluçãoUniversidade Federal de GoiásGoiâniaBrazil
  2. 2.Depto de Ecologia, ICBUniversidade Federal de GoiásGoiâniaBrazil
  3. 3.Laboratório de Ecologia Teórica e Síntese, Departamento de Ecologia, Universidade Federal de Goiás, Brasil. Red de Biología EvolutivaInstituto de Ecología, A.C.XalapaMexico

Personalised recommendations