Organisms Diversity & Evolution

, Volume 17, Issue 1, pp 67–85 | Cite as

A vanishing hotspot—the impact of molecular insights on the diversity of Central European Bythiospeum Bourguignat, 1882 (Mollusca: Gastropoda: Truncatelloidea)

  • Ira Richling
  • Yaron Malkowsky
  • Jacqueline Kuhn
  • Hans-Jörg Niederhöfer
  • Hans D. Boeters
Original Article

Abstract

The current study investigates the Central European groundwater snails of the genus Bythiospeum which are currently regarded as highly diverse with a hotspot in south-western Germany coupled with high rates of endemism. This systematic concept combined with the fragility of their habitat results in a high rate of threatened species (76–96 %). The analyses of the mitochondrial COI fragment of nearly 200 specimens from 35 localities in Germany, Switzerland and marginally Austria and France including type localities of 14 taxa revealed five well-distinguished clades with genetic distances from 3.6 to 16.4 % while variability within clades and populations is very low. Morphological investigations focused on parts of the reproductive systems showed rather great uniformity with only minor differences in penis shape, size and localisation. Previous species concepts based on conchology and morphology do not correspond to the current results, and shell shape is suspected as poor indicator for species delineation. Our data indicate a significantly lower diversity in Central Europe, e.g. only three species occurring in Germany instead of 25. Taxonomic implications of our hypothesis are given and discussed. Accordingly, most of the German populations belong to Bythiospeum acicula (Held, 1838) while B. husmanni (C. R. Boettger, 1963) is a very restricted relict. In comparison with other groundwater organisms, two of the more northerly distributed species show a large range stretching over at least 410 or 490 km respectively. Post-glacial re-colonisation from refugia is discussed as most likely explanation of the recent distribution pattern.

Keywords

Groundwater organisms Synonymy COI Systematics Taxonomy Biogeography 

References

  1. Altermatt, F, Alther, R., Fišer, C., Jokela, J., Konec, M., Küry, D., Mächler, E., Stucki, P., & Westram, A. M. (2014). Diversity and distribution of freshwater amphipod species in Switzerland (Crustacea: Amphipoda). PLoS ONE, 9(10), doi:10.1371/journal.pone.0110328.
  2. Arbeitsgruppe Mollusken BW am Staatlichen Museum für Naturkunde Stuttgart [M. Colling, G. Falkner, K. Groh, J. H. Jungbluth, M. Klemm, H.-J. Niederhöfer, G. Schmid, W. Rähle] (2008). Rote Liste der Schnecken und Muscheln Baden-Württembergs. Naturschutz-Praxis, Artenschutz, 12, 1–185Google Scholar
  3. Benke, M., Braendle, M., Albrecht, C., & Wilke, T. (2011). Patterns of freshwater biodiversity in Europe: lessons from the spring snail genus Bythinella. Journal of Biogeography, 38(10), 2021–2032.CrossRefGoogle Scholar
  4. Bernasconi, R. (1967). Les Hydrobiinae (Mollusques Gastéropodes) cavernicoles de Suisse et des régions limitrophes. Aperçu historique et distribution zoogéographique.—Annales de Spéléologie, 22(3), 523–535.Google Scholar
  5. Bernasconi, R. (1973). Les Hydrobiidae (Mollusques Gastéropodes) carvernicoles de Suisse et des régions limitrophes, III. Essai de révision des Bythiospeum Bourguignat. Annales de Spéleologie, 27(4), 761–772 [1972].Google Scholar
  6. Bernasconi, R. (1974). Les Hydrobiidae (Mollusques Gastéropodes) cavernicoles de Suisse et des régions limitrophes, 4. Anatomie de Bythiospeum acicula helveticum du Lac de Thoune. Annales de Spéleologie, 29, 627–629.Google Scholar
  7. Bernasconi, R. (1976). Les Hydrobiides (Mollusques Gastéropodes) cavernicoles de Suisse et des régions limitrophes, 6. Anatomie de Bythiospeum charpyi Paladilhe. Annales de Spéleologie, 31, 189–191.Google Scholar
  8. Bernasconi, R. (1979). Anatomische Untersuchungen von Bythiospeum der Umgebung Basels (Moll. Gast. Orientalidae Horatiinae). Actes du 6e Congrès suisse de Spéléologie [1978], 9–15.Google Scholar
  9. Bernasconi, R. (1984). Hydrobides de France: Moitessieria, Bythiospeum et Hauffenia des départements Gard, Ain, Isère (Gastéropodes Prosobranches). Revue Suisse de Zoologie, 91, 203–215.CrossRefGoogle Scholar
  10. Bernasconi, R. (1985). Bythiospeum (Mollusca Gasteropoda Hydrobidae) de France, nouveau ou faisant l’objet d’une révision. Revue Suisse de Zoologie, 92, 333–349.Google Scholar
  11. Bernasconi, R. (1988). Bythiospeum alpinum n. sp. (Mollusca Gasteropoda Prosobranchia Hydrobiidae) des eaux souterraines du réseau karstique Schrattenfluh-Sieben Hengste-Hohgant (LU/BE, Suisse). Revue Suisse de Zoologie, 95, 785–789.CrossRefGoogle Scholar
  12. Bernasconi, R. (1990). Revision of the genus Bythiospeum (Mollusca Prosobranchia Hydrobiiidae) of France, Switzerland and Germany. Münchenbuchsee: R. Bernasconi.Google Scholar
  13. Bernasconi, R. (1997). Bythiospeum rhenanum turneri n. subsp., a new phraetic snail (Mollusca Prosobranchia Hydrobiidae Horatiinae) from the groundwater of Töss valley, eastern Switzerland. Proceedings of the 12th International Congress of Speleology, 337–340.Google Scholar
  14. Bibus, E., & Rähle, W. (2005). Molluskenführung und Deckschichtengliederung von Höhenschottervorkommen bei Haigerloch (Eyachtal) und Rottenburg (Neckartal) in Württemberg. Jahresberichte und Mitteilungen des Oberrheinischen Geologischen Vereins, Neue Folge, 87, 343–360.CrossRefGoogle Scholar
  15. Bibus, E., Rähle, W., & Wedel, J. (2002). Profilausbau, Molluskenführung und Parallelisierungsmöglichkeiten des Altwürmabschnitts im Lössprofil Mainz-Weisenau. Eiszeitalter und Gegenwart, 51, 1–14.Google Scholar
  16. Bichain, J.-M., Boisselier-Dubayle, M.-C., Bouchet, P., & Samadi, S. (2007). Species delimitation in the genus Bythinella (Mollusca: Caenogastropoda: Rissooidea): a first attempt combining molecular and morphometric data. Malacologia, 49(2), 293–311.CrossRefGoogle Scholar
  17. Boeters, H. D. (1971). Iglica pezzolii n. sp. und ein neues Merkmal zur Unterscheidung zwischen Bythiospeum und Paladilhia (Prosobranchia, Hydrobiidae). Archiv für Molluskenkunde, 101(1/4), 169–173.Google Scholar
  18. Boeters, H. D. (1984a). Gedanken zu einer Revision der Gattung Bythiospeum in Deutschland. Mitteilungen der Deutschen Malakozoologischen Gesellschaft, 37, 142–171.Google Scholar
  19. Boeters, H. D. (1984b). Zur Identität des Bythiospeum-Typus (Prosobranchia: Hydrobiidae). Heldia, 1(1), 6–7. pl. 1a.Google Scholar
  20. Boeters, H. D. (2002). Ein Beitrag zu Bythiospeum im Einzugsgebiet der Isar in Oberbayern. Collectanea Malacologica. Festschrift für Gerhard Falkner, 21-31Google Scholar
  21. Boeters, H. D., & Falkner, G. (2009). Unbekannte westeuropäische Prosobranchia, 15. Neue und alte Quell- und Grundwasserschnecken aus Frankreich (Gastropoda: Moitessieriidae et Hydrobiidae). Heldia, 5(6), 149–162. pls. 20-22.Google Scholar
  22. Boeters, H. D., Callot-Girardi, H., & Knebelsberger, T. (2015). News of Pseudamnicola (Corrosella) of Spain and France (Mollusca: Gastropoda: Truncatelloidea). Folia Malacologica, 23, 95–119.CrossRefGoogle Scholar
  23. Bole, J. (1970). Prispevek K Poznavanju Anatomije In Taksonomije Podzemeljskih Hidrobiid (Gastropoda, Prosobranchia) [Beitrag zur Kenntnis der Anatomie und Taxonomie der unterirdischen Hydrobiiden (Gastropoda, Prosobranchia)]. Razprave 4. Razreda, Dissertationes Classis 4, 85–111.Google Scholar
  24. Bolling, W. (1966). Beiträge zum Problem des Genus Bythiospeum Bourguignat (Mollusca-Hydrobiidae). Bericht der Naturforschenden Gesellschaft Bamberg, 40(1965), 21–102.Google Scholar
  25. Castellarini, F., Malard, F., Dole-Olivier, M.-J., & Gibert, J. (2007). Modelling the distribution of stygobionts in the Jura Mountains (eastern France). Implications for the protection of ground waters. Diversity and Distributions, 13, 213–224.CrossRefGoogle Scholar
  26. Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1660.CrossRefPubMedGoogle Scholar
  27. Cornu, J.-F., Eme, D., & Malard, F. (2013). The distribution of groundwater habitats in Europe. Hydrogeology Journal, 21, 949–960.CrossRefGoogle Scholar
  28. Criscione, F., & Ponder, W. F. (2013). A phylogenetic analysis of rissooidean and cingulopsoidean families (Gastropoda: Caenogastropoda). Molecular Phylogenetics and Evolution, 66, 1075–1082.CrossRefPubMedGoogle Scholar
  29. Cuttelod, A., Seddon, M., & Neubert, E. (2011). European Red List of non-marine mollusks. Luxembourg: Publications Office of the European Union.Google Scholar
  30. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Dehm, R. (1951). Mitteldiluviale Kalktuffe und ihre Molluskenfauna bei Schmiechen nahe Blaubeuren (Schwäb. Alb). Neues Jahrbuch für Geologie und Paläontologie ( Abhandlungen), 93, 247–276. pls. 16-17.Google Scholar
  32. Delicado, D., & Ramos, M. A. (2012). Morphological and molecular evidence for cryptic species of springsnails [genus Pseudamnicola (Corrosella) (Mollusca, Caenogastropoda, Hydrobiidae)]. ZooKeys, 190, 55–79.CrossRefGoogle Scholar
  33. Delicado, D., Machordom, A., & Ramos, M. A. (2013). Living on the mountains: patterns and causes of diversification in the springsnail subgenus Pseudamnicola (Corrosella) (Mollusca: Caenogastropoda: Hydrobiidae). Molecular Phylogenetics and Evolution, 68, 387–397.CrossRefPubMedGoogle Scholar
  34. Delicado, D., MAchordom, A., & Ramos, M. A. (2015). Effects of habitat transition on the evolutionary patterns of the microgastropod genus Pseudamnicola (Mollusca, Hydrobiidae). Zoologica Scripta, 44, 403–417.CrossRefGoogle Scholar
  35. Falkner, G., Colling, M., Kittel, K., & Strätz, C. (2004). Rote Liste gefährdeter Schnecken und Muscheln (Mollusca) Bayerns. In Voith, J. (coordination), Rote Liste gefährdeter Tiere Bayerns [3 Fassung]. Schriftenreihe Bayrisches Landesamt für Umweltschutz, 166, 337–347.Google Scholar
  36. Folmer, O., Black, M., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.PubMedGoogle Scholar
  37. Foulquier, A., Malard, F., Lefébure, T., Douady, C. J., & Gibert, J. (2008). The imprint of Quaternary glaciers on the present-day distribution of the obligate groundwater amphipod Niphargus virei (Niphargidae). Journal of Biogeography, 35, 552–564.CrossRefGoogle Scholar
  38. Fregin, S., Haase, M., Olsson, U., & Alström, P. (2012). Pitfalls in comparisons of genetic distances: a case study of the avian family Acrocephalidae. Molecular Phylogenetics and Evolution, 62, 319–328.CrossRefPubMedGoogle Scholar
  39. Fukuda, H., Haga, T., & Tatara, Y. (2008). Niku-nuki: a useful method for anatomical and DNA studies on shell-bearing molluscs. Zoosymposia, 1, 15–38.CrossRefGoogle Scholar
  40. Georgiev, D. (2012). Two new species of stygobiotic snails form the genus Bythiospeum (Gastropoda: Hydrobiidae) from Bulgaria. Acta Zoologica Bulgarica, Suppl., 4, 15–18.Google Scholar
  41. Georgiev, D., & Glöer, P. (2015). New taxa of subterranean freshwater snails from Bulgaria (Gastropoda: Hydrobiidae). Ecologica Montenegrina, 3, 19–24.Google Scholar
  42. Geyer, D. (1904). Beiträge zur Vitrellenfauna Württembergs (I). Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg, 60, 298–334. pls. 8–14.Google Scholar
  43. Geyer, D. (1905). Beiträge zur Vitrellenfauna Württembergs II. Jahreshefte des Vereins für Vaterländische Naturkunde in Württemberg, 61, 289–301. pls. 4–7.Google Scholar
  44. Ginet, R. (1971). Biogéographie de Niphargus et Caecosphaeroma (Crustacés troglobies) dans les départements français du Jura et de l’Ain: Origine; influence des glaciations. In Fourth Swiss Speleological Congress, Neuchâtel, Switzerland pp 186–198.Google Scholar
  45. Girardi, H. (2002). Bythiospeum diaphanum michaellensis ssp. nov. du Vaucluse (Prosobranchia: Hydrobiidae: Belgrandiinae). Documents Malacologiques, 3, 57–64.Google Scholar
  46. Girardi, H. (2004a). Contribution à la connaissance de Bythiospeum diaphanum (Michaud, 1831) dans les resurgences gardoises en bordure de la vallée du Rhône. Documents Malacologiques, 4, 53–57.Google Scholar
  47. Girardi, H. (2004b). Bythiospeum rasini (Gastropoda: Hydrobiidae) espece nouvelle d’une exurgence du sud de la France. Documents Malacologiques, 4, 67–69.Google Scholar
  48. Girardi, H. (2009a). Contribution à la connaissance du genre Bythiospeum Bourguignat, 1882, dans la France méridionale (1): Bythiospeum diaphanum regalonense, Bythiospeum diaphanum luberonense, Bythiospeum diaphanum meyrarguense, Bythiospeum diaphanum alpillense, nouvelles sous-espèces (Mollusca: Caenogastropoda: Hydrobiidae: Belgrandiinae). Documents Malacologiques, Hors Serie, 3, 153–162.Google Scholar
  49. Girardi, H. (2009b). Contribution à la connaissance du genre Bythiospeum Bourguignat, 1882, en France (2), Bythiospeum diaphanum montbrunense, nouvelle sous-espèce a Montbrun-les-Bains, Drôme, France (Mollusca: Caenogastropoda: Hydrobiidae: Belgrandiinae). Documents Malacologiques, Hors Serie, 3, 163–166.Google Scholar
  50. Girardi, H. (2009c). Bythiospeum gardonense, nouvelle espèce, dans le canyon inférieur du Gardon, Gard, France. Comparaison et rédéfinition d’un taxon. (Mollusca: Caenogastropoda: Hydrobiidae: Belgrandiinae). Documents Malacologiques, Hors Serie, 3, 167–174.Google Scholar
  51. Girardi, H. (2009d). Bythiospeum bournense, nouvelle espèce, Spiralix thaisensis, nouvelle espèce et observation de Bythiospeum garnieri (Sayn, 1889), de la Grotte de Thais dans le Massif du Vercors, (Drôme, Isère, France). Une malacofaune cavernicole remarquable. (Mollusca: Caenogastropoda: Hydrobiidae: Belgrandiinae). Documents Malacologiques, Hors Serie, 3, 175–184.Google Scholar
  52. Girardi, H. (2009e). Contribution à la connaissance du genre Bythiospeum Bourguignat, 1882, en France (3), Bythiospeum diaphanum fernetense et Bythiospeum diaphanum sarriansense, nouvelles sous-espèces des départements de la Drome et du Vaucluse (Mollusca: Caenogastropoda: Hydrobiidae: Belgrandiinae). Documents Malacologiques, Hors Serie, 3, 185–190.Google Scholar
  53. Girardi, H., & Rosello, M. (2001). Notes sur Bythiospeum klemmi (Boeters, 1969) (Mollusca: Prosobranchia: Hydrobiidae) dans une émergence karstique de la Gardonnenque (Gard, France). Documents Malacologiques, 2, 13–20.Google Scholar
  54. Giusti, F., & Pezzoli, E. (1980). Gasteropodi, 2 (Gastropoda: Prosobranchia: Hydrobioidea, Pyrguloidea). In Guide per il riconoscimento delle specie animali delle acque interne italiane, 8. 67 pp.Google Scholar
  55. Glöer, P., & Grego, J. (2015). New subterranean freshwater molluscs from Bosnia & Hercegovina (Mollusca: Hydrobiidae). Ecologica Montenegrina, 2(4), 307–314.Google Scholar
  56. Glöer, P., & Pesic, V. (2014). New subterranean freshwater gastropods of Montenegro (Mollusca: Gastropoda: Hydrobiidae), with description of one new genus and two new species. Ecologica Montenegrina, 1(4), 244–248.Google Scholar
  57. Guindon, S., & Gascuel, O. (2003). A simple, fast and accurate method to estimate large phylogenies by maximum-likelihood. Systematic Biology, 52, 696–704.CrossRefPubMedGoogle Scholar
  58. Haase, M. (1995). The stygobiont genus Bythiospeum in Austria: a basic revision and anatomical description of B. cf. geyeri from Vienna (Caenogastropoda: Hydrobiidae). American Malacological Bulletin, 11(2), 123–137.Google Scholar
  59. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleid Acids Symposium Series, 41, 95–98.Google Scholar
  60. Harl, J., Páll-Gergely, B., Kirchner, S., Sattmann, H., Duda, M., Kruckenhauser, L., & Haring, E. (2014). Phylogeography of the land snail genus Orcula (Orculidae, Stylommatophora) with emphasis on the Eastern Alpine taxa: speciation, hybridization and morphological variation. BMC Evolutionary Biology, 14, 223. doi:10.1186/s12862-014-0223-y.CrossRefPubMedPubMedCentralGoogle Scholar
  61. Hasegawa, M., Kishino, K., & Yano, T. (1985). Dating the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160–174.CrossRefPubMedGoogle Scholar
  62. Held, F. (1847). Die Wassermollusken Bayerns. Jahresbericht der k. Kreis-Landwirthschafts- u. Gewerb-Schule und der königl. polytechnischen Schule zu München, 1846/47, 3-25.Google Scholar
  63. Hershler, R., Liu, H. P., & Mulvey, M. (1999). Phylogenetic relationships within the aquatic snail genus Tryonia: implications for biogeography of the North American Southwest. Molecular Phylogenetics and Evolution, 13, 377–391.CrossRefPubMedGoogle Scholar
  64. Hershler, R., Liu, H. P., & Thompson, F. G. (2003). Phylogenetic relationships of North American nymphophiline gastropods based on mitochondrial DNA sequences. Zoologica Scripta, 32, 357–366.CrossRefGoogle Scholar
  65. Holsinger, J. R., Mort, J. S., & Recklies, A. D. (1983). The subterranean crustacean fauna of Castleguard Cave, Columbia ice-fields, Alberta, Canada, and its zoogeographic significance. Arctic and Alpine Research, 15(4), 543–549.CrossRefGoogle Scholar
  66. Hoy, M. S., & Rodriguez, R. J. (2013). Intragenomic sequence variation at the ITS1–ITS2 region and at the 18S and 28S nuclear ribosomal DNA genes of the New Zealand mud snail, Potamopyrgus antipodarum (Hydrobiidae: Mollusca). Journal of Molluscan Studies, 79(3), 205–217.CrossRefGoogle Scholar
  67. Hurt, C. R. (2004). Genetic divergence, population structure and historical demography or rare springsnails (Pyrgolopsis) in the lower Colorado River basin. Molecular Ecology, 13, 1173–1187.CrossRefPubMedGoogle Scholar
  68. Jungbluth J. H., & Knorre, D. von with contributions of U. Bößneck, K. Groh, E. Hackenberg, H. Kobialka, G. Körnig, H. Menzel-Harloff, H.-J. Niederhöfer, S. Petrick, K. Schniebs, V. Wiese, W. Wimmer & M. Zettler (2012) [“2011”]. Rote Liste und Gesamtartenliste der Binnenmollusken (Schnecken und Muscheln; Gastropoda et Bivalvia) Deutschlands. 6., überarbeitete Fassung, Stand Februar 2010. Naturschutz und Biologische Vielfalt, 70(3), 647–708.Google Scholar
  69. Kadolsky, D. (1995). Stratigraphie und Molluskenfaunen von “Landschneckenkalk” und “Cerithienschichten” im Mainzer Becken (Oberoligozän bis Untermiozän?), 2: Revision der aquatischen Mollusken des Landschneckenkalkes. Archiv für Molluskenkunde, 124(1/2), 1–55.Google Scholar
  70. Kiene, M. (2014). Morphologische Variabilität von Höhlenschnecken (Bythiospeum sp./spp.) in Baden-Württemberg. ii + iv + 56 pp. Bachelor thesis at University Konstanz (unpublished).Google Scholar
  71. Kimura, M. (1980). A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111–120.CrossRefPubMedGoogle Scholar
  72. Kuijper, W. J., & Gittenberger, E. (1993). De grondwaterslak Bythiospeum husmanni (Boettger, 1963) in Nederland (Gastropoda Prosobranchia: Hydrobiidae). Basteria, 57, 89–94.Google Scholar
  73. Lefébure, T., Douady, C. J., Gouy, M., & Gibert, J. (2006). Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution, 40, 435–447.CrossRefPubMedGoogle Scholar
  74. Liu, H. P., Hershler, R., & Clift, K. (2003). Mitochondrial DNA sequences reveal extensive cryptic diversity with a western American springsnail. Molecular Ecology, 12, 2771–2782.CrossRefPubMedGoogle Scholar
  75. Maddison, W. P. (1997). Gene trees in species trees. Systematic Biology, 46, 523–542.CrossRefGoogle Scholar
  76. Magniez, G. (1997). Facteurs intrinseques et extrinseques de la distribution actuelle des crustaces isopodes des eaux souterraines d’Europe. Proceedings of the 12th International Congress of Speleology, 3, Symposium 9, Biospeology, 341–344.Google Scholar
  77. Pesic, V., & Glöer, P. (2012). A new species of Bythiospeum Bourguignat, 1882 (Hydrobiidae, Gastropoda) from Montenegro. Biologica Nyssana, 3(1), 17–20.Google Scholar
  78. Radoman, P. (1983). Hydrobioidea a superfamily of Prosobranchia (Gastropoda), 1. Systematics. Posebna Isdanja Srpska Akad. Nauka Umetn. (Odelj. prirod. Matem. Nauka) = Mon. Serb. Acad. Sci. Arts (Sci.), 547(57), 256 pp. Beograd.Google Scholar
  79. Rähle, W., & Bibus, E. (1992). Eine altpleistozäne Molluskenfauna in den Höhenschottern des Neckars bei Rottenburg, Württemberg. Jahreshefte des Geologischen Landesamts Baden-Württemberg, 34, 319–341.Google Scholar
  80. Rähle, W., & Schmid, G. (2006). Aktualisierte Liste der aus den letztinterglazialen Kalktuffen von Dettingen und Dießen bei Horb am Neckar (Baden-Württemberg) bekannt gewordenen Land- und Süßwassermollusken. Mitteilungen der Deutschen Malakozoologischen Gesellschaft, 76, 27–34.Google Scholar
  81. Razkin, O., Sonet, G., Breugelmans, K., Madeira, M. J., Gómez-Moliner, B. J., & Backeljau, T. (2016). Species limits, interspecific hybridization and phylogeny in the cryptic land snail complex Pyramidula: the power of RADseq data. Molecular Phylogenetics and Evolution, 101, 267–278.CrossRefPubMedGoogle Scholar
  82. Rosenbauer, A., & Richling, I. (2013). Wiederfunde zweier verschollener Bythiospeum-Arten in Baden-Württemberg und Neufunde von Bythiospeum clessini posterum. Mitteilungen der Deutschen Malakozoologischen Gesellschaft, 88, 33–40.Google Scholar
  83. Rüetschi, J., Stucki, P., Müller, P., Vicentini, H., & Claude, F. (2012). Rote Liste Weichtiere (Schnecken und Muscheln). Gefährdete Arten der Schweiz, Stand 2010. Neuenburg: Bundesamt für Umwelt, Bern, und Schweizer Zentrum für die Kartografie der Fauna, Neuenburg. Umwelt-Vollzug Nr. 1216.Google Scholar
  84. Schreiber, K., Hauffe, T., Albrecht, C., & Wilke, T. (2012). The role of barriers and gradients in differentiation processes of pyrgulinid microgastropods of Lake Ohrid. Hydrobiologia, 682, 61–73.CrossRefGoogle Scholar
  85. Seibold, W. (1904). Anatomie von Vitrella Quenstedtii (Wiedersheim) Clessin. Jahresheft des Vereins für vaterländische Naturkunde in Württemberg, 60, 198–226. pls. 6-7.Google Scholar
  86. Strayer, D. L., May, S. E., Nielsen, P., Wollheim, W., & Hausam, S. (1995). An endemic groundwater fauna in unglaciated eastern North America. Canadian Journal of Zoology, 73, 502–508.CrossRefGoogle Scholar
  87. Tamura, K. (1992). Estimation of the number of nucleotide substitutions when there are strong transition-transversion and G + C-content biases. Molecular Biology and Evolution, 9, 678–687.PubMedGoogle Scholar
  88. Tamura, K., & Nei, M. (1993). Estimation of the number of nucleotide substitutions in the control region of mitochondrial dna in humans and chimpanzees. Molecular Biology and Evolution, 10, 512–526.PubMedGoogle Scholar
  89. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.CrossRefPubMedPubMedCentralGoogle Scholar
  90. Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences, 17, 57–86.Google Scholar
  91. Trontelj, P., Douady, C. J., Fiser, C., Gibert, J., Goricki, S., Lefébure, T., Sket, B., & Zaksek, V. (2009). A molecular test for cryptic diversity in ground water: how large are the ranges of macro-stygobionts? Freshwater Biology, 54, 727–744.CrossRefGoogle Scholar
  92. Turner, H., Kuiper, J. G. J., Thew, N., Bernasconi, R., Rüetschi, J., Wüthrich, M., & Gosteli, M. (1998). Atlas der Mollusken der Schweiz und Liechtensteins. In SEG & CSCF, Fauna Helvetica 2. 527 pp., Neuchâtel.Google Scholar
  93. Weigand, A. M., Jochum, A., Pfenninger, M., Steinke, D., & Klussmann-Kolb, A. (2011). A new approach to an old conundrum—DNA barcoding sheds new light on phenotypic plasticity and morphological stasis in microsnails (Gastropoda, Pulmonata, Carychiidae). Molecular Ecology Resources, 11, 255–265.CrossRefPubMedGoogle Scholar
  94. Wilke, T., Davis, G. M., Falniowski, A., Giusti, F., Bodon, M., & Szarowska, M. (2001). Molecular systematics of Hydrobiidae (Mollusca: Gastropoda: Rissooidea): testing monophyly and pyhlogenetic relationships. Proceedings of the Academy of Natural Sciences of Philadelphia, 151, 1–21.CrossRefGoogle Scholar
  95. Wilke, T., Davis, G. M., Qiu, D., & Spear, R. C. (2005). Extreme mitochondrial sequence diversity in the intermediate schistosomiasis host Oncomelania hupensis robertsoni: another case of ancestral polymorphism? Malacologia, 48, 143–157.Google Scholar
  96. Wilke, T., Haase, M., Hershler, R., Liu, H.-P., Misof, B., & Ponder, W. (2013). Pushing short DNA fragments to the limit: phylogenetic relationships of ‘hydrobioid’ gastropods (Caenogastropoda: Rissooidea). Molecular Phylogenetics and Evolution, 66, 715–736.CrossRefPubMedGoogle Scholar
  97. Zielske, S., & Haase, M. (2014). When snails inform about geology: Pliocene emergence of islands of Vanuatu indicated by a radiation of truncatelloidean freshwater gastropods (Caenogastropoda: Tateidae). Journal of Zoological Systematics and Evolutionary Research, 52(3), 217–236.CrossRefGoogle Scholar
  98. Zilch, A. (1970). Die Typen und Typoide des Natur-Museums Senckenberg, 45: Mollusca, Hydrobiidae (1): Bythiospeum Bourguignat. Archiv für Molluskenkunde, 100(5/6), 319–346.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2016

Authors and Affiliations

  1. 1.Stuttgart State Museum of Natural HistoryStuttgartGermany
  2. 2.BessenbachGermany
  3. 3.MunichGermany

Personalised recommendations