Organisms Diversity & Evolution

, Volume 17, Issue 1, pp 157–162 | Cite as

The first fossil Athyreini beetle (Coleoptera: Geotrupidae)

  • Ming Bai
  • Ruie Nie
  • Weiwei Zhang
  • Dong Ren
  • Chungkun Shih
  • Xingke Yang
Original Article


The first fossil Athyreini in the subfamily of Bolboceratinae from the family of Geotrupidae, †Amberathyreus beuteli Bai et Zhang gen. et sp. nov., is described based on a specimen from the mid-Cretaceous Myanmar (Burmese) amber from northern Myanmar. Its external morphology (including 3D reconstruction of the head and pronotum) was analyzed and compared with all known genera of Athyreini. †Amberathyreus’ close relationship between Athyreini and Bolboceratini is supported. †Amberathyreus was likely active at night and lived in a lowland environment. The finding of †Amberathyreus greatly enrich our knowledge of Athyreini.


Coleoptera Athyreini Myanmar amber Amberathyreus New genus 



This research was supported by the National Natural Science Foundation of China (Nos. 31172143, 31230065), the National Science Fund for Fostering Talents in Basic Research (Special Subjects in Animal Taxonomy, NSFC-J0630964/J0109, J1210002), Research Equipment Development Project of Chinese Academy of Sciences (YZ201509), Special Fiscal Funds of Shaanxi Province (No. 2013–19), and by a Humboldt Fellowship (M.B.) from Alexander von Humboldt Foundation, Program for Changjiang Scholars and Innovative Research Team in University (IRT13081).

Authors’ contributions

MB and XY conceived the general idea of the study, collected and analyzed the data, and drafted the manuscript. RN, WZ, DR, and CS conceived the design of the study, analyzed and discussed the data, and reviewed the manuscript. All authors read and approved the final manuscript.

Compliance with ethical standard

Competing interests

The authors declare that they have no competing interests.


  1. Ahrens, D., & Vogler, A. P. (2008). Towards the phylogeny of chafers (Sericini): analysis of alignment-variable sequences and the evolution of segment numbers in the antennal club. Molecular Phylogenetics and Evolution, 47(2), 783–798.CrossRefPubMedGoogle Scholar
  2. Ahrens, D., Schwarzer, J., & Vogler, A. P. (2014). The evolution of scarab beetles tracks the sequential rise of angiosperms and mammals. Proceedings of the Royal Society B-Biological Sciences, 281, 20141470.CrossRefPubMedCentralGoogle Scholar
  3. Arrow, G. J. (1951). Horned beetles. Netherlands: Springer.CrossRefGoogle Scholar
  4. Bai, M., Krell, F., Ren, D., & Yang, X. K. (2010). A new, well-preserved species of Glaresidae (Coleoptera: Scarabaeoidea) from the Jehol Biota of China. Acta Geologica Sinica (English Edition), 84, 676–679.CrossRefGoogle Scholar
  5. Bai, M., Ren, D., & Yang, X. K. (2011). Prophaenognatha, a new Aclopinae genus from the Yixian Formation, China and its phylogenetic position based on morphological characters (Coleoptera: Scarabaeidae). Acta Geologica Sinica - English Edition, 85, 984–993.CrossRefGoogle Scholar
  6. Bai, M., Ahrens, D., Yang, X. K., & Ren, D. (2012a). New fossil evidence of the early diversification of scarabs: Alloioscarabaeus cheni (Coleoptera: Scarabaeoidea) from the Middle Jurassic of Inner Mongolia, China. Insect Science, 19, 159–171.Google Scholar
  7. Bai, M., Ren, D., & Yang, X. K. (2012b). Prosinodendron krelli from the Yixian Formation, China: a missing link among Lucanidae, Diphyllostomatidae and Passalidae (Coleoptera: Scarabaeoidea). Cretaceous Research, 34, 334–339Google Scholar
  8. Bai, M., Beutel, R. G., Liu, W. G., Li, S., Zhang, M. N., Lu, Y. Y., Song, K. Q., Ren, D., & Yang, X. K. (2014). Description of a new species of Glaresidae (Coleoptera: Scarabaeoidea) from the Jehol Biota of China with a geometric morphometric evaluation. Arthropod Systematics & Phylogeny, 72, 223–236.Google Scholar
  9. Bai, M., Beutel, R. G., Shih, C. K., Ren, D., & Yang, X. K. (2013). Septiventeridae, a new and ancestral fossil family of Scarabaeoidea (Insecta: Coleoptera) from the Late Jurassic to Early Cretaceous Yixian Formation. Journal of Systematic Palaeontology, 11(3), 359–374. doi: 10.1080/14772019.2012.660995.CrossRefGoogle Scholar
  10. Bai, M., Zhang, W. W., Ren, D., Shih, C. K., & Yang, X. K. (2016a). Hybosorus ocampoi: the first hybosorid from the Cretaceous Myanmar amber (Coleoptera: Scarabaeoidea). Organisms Diversity & Evolution, 16, 233–240.Google Scholar
  11. Bai, M., Beutel, R. G., Klass, K. D., Zhang, W. W., Yang, X. K., & Wipfler, B. (2016b). †Alienoptera—a new insect order in the roach—mantodean twilight zone. Gondwana Research. doi: 10.1016/
  12. Boilly, O. (2012). Descriptions of two new Athyreus MacLeay, 1819 (Coleoptera, Scarabaeoidea, Geotrupidae). Bulletin de la Societe Entomologique de France, 117(2), 193–197.Google Scholar
  13. Boilly, O. (2014). Descriptions of a new Neoathyreus from French Guiana and the male of Athyreus conspicuus (Coleoptera, Scarabaeoidea, Geotrupidae). Bulletin de la Societe Entomologique de France, 119(3), 307–310.Google Scholar
  14. Boucher, S., Bai, M., Wang, B., Zhang, W. W., & Yang, X. K. (2016). †Passalopalpidae, a new family from the Cretaceous Burmese amber, as the possible sister group of Passalidae Leach (Coleoptera: Scarabaeoidea). Cretaceous Research, 64, 67–78.CrossRefGoogle Scholar
  15. Browne, J., & Scholtz, C. H. (1999). A phylogeny of the families of Scarabaeoidea (Coleoptera). Systematic Entomology, 24, 51–84.CrossRefGoogle Scholar
  16. Carpaneto, G. M., Mignani, R., & Piattella, E. (2000). A taxonomic overview of the genus Pseudoathyreus Howden and Martinez, and redescription of two related species from southern Africa (Coleoptera: Geotrupidae: Bolboceratinae). Coleopterists Bulletin, 54(2), 239–247.CrossRefGoogle Scholar
  17. Cruickshank, R. D., & Ko, K. (2003). Geology of an amber locality in the Hukawng Valley, northern Myanmar. Journal of Asian Earth Sciences, 21, 441–455.CrossRefGoogle Scholar
  18. Ezcurra, M. D., & Agnolín, F. L. (2012). A new global palaeobiogeographical model for the Late Mesozoic and Early Tertiary. Systematic Biology, 61, 553–566.CrossRefPubMedGoogle Scholar
  19. Grimaldi, D. A., Engel, M. S., & Nascimbene, P. C. (2002). Fossiliferous cretaceous amber from Myanmar (Burma): its rediscovery, biotic diversity, and paleontological significance. American Museum Novitates, 3361, 1–71.CrossRefGoogle Scholar
  20. Howden, H. F. (1955). Description of a new Peruvian Athyreus with notes on the method of illustration. Entomologische Arbeiten Munich, 6, 667–673.Google Scholar
  21. Howden, H. F. (1980). Athyreus Macleay, 1819, and Glyptus Brulle, 1835 (Insecta: Coleoptera): proposed conservation. Z.N. (S.)1583. Bulletin of Zoological Nomenclature, 37(3), 191–192.Google Scholar
  22. Howden, H. F. (1985a). A revision of the South American genus Parathyreus Howden and Martinez (Coleoptera: Scarabaeidae: Geotrupinae). Coleopterists Bulletin, 39(2), 161–173.Google Scholar
  23. Howden, H. F. (1985b). A revision of the South American species in the genus Neoathyreus Howden and Martinez (Coleoptera, Scarabaeidae, Geotrupinae). Contributions of the American Entomological Institute, 21(4), 1–95.Google Scholar
  24. Howden, H. F. (1996). West Indian Neoathyreus and their over-water dispersal (Coleoptera: Scarabaeidae: Geotrupinae). Journal of Natural History, 30(10), 1503–1515. doi: 10.1080/00222939600770851.CrossRefGoogle Scholar
  25. Howden, H. F. (1999). New species of Central and South American Athyreini (Coleoptera: Scarabaeidae: Geotrupinae). Coleopterists Bulletin, 53(4), 339–354.Google Scholar
  26. Howden, H. F. (2002). The Athyreus tribuliformis Felsche complex with descriptions of three new species (Coleoptera: Scarabaeoidea: Geotrupidae: Athyreini). Entomotropica, 17(1), 25–35.Google Scholar
  27. Howden, H. F., & Martinez, A. (1963). The new tribe Athyreini and its included genera (Coleoptera: Scarabaeidae, Geotrupinae). Canadian Entomologist, 95, 345–352.CrossRefGoogle Scholar
  28. Howden, H. F., & Martinez, A. (1978). A review of the New World genus Athyreus Macleay (Scarabaeidae, Geotrupinae, Athyreini). Contributions of the American Entomological Institute, 15(4), 1–70.Google Scholar
  29. Hunt, T., Bergsten, J., Levkanicova, Z., Papadopoulou, A., John, O. S., Wild, R., Hammond, P. M., Ahrens, D., Balke, M., Caterino, M. S., Gomez-Zurita, J., Ribera, I., Barraclough, T. G., Bocakova, M., Bocak, L., & Vogler, A. P. (2007). A comprehensive phylogeny of beetles reveals the evolutionary origins of a superradiation. Science, 318, 1913–1916.CrossRefPubMedGoogle Scholar
  30. Kania, I., Wang, B., & Szwedo, J. (2015). Dicranoptycha Osten Sacken, 1860 (Diptera, Limoniidae) from the earliest Upper Cretaceous Burmese amber. Cretaceous Research, 52, 522–530.CrossRefGoogle Scholar
  31. Krell, F. T. (2007). Catalogue of fossil Scarabaeoidea (Coleoptera: Polyphaga) of the Mesozoic and Tertiary—Version 2007. Denver Museum of Nature & Science Technical Report, 8, 1–79.Google Scholar
  32. Leal, W. S. (1998). Chemical ecology of phytophagous scarab beetles. Annual Review of Entomology, 43, 39–61.CrossRefPubMedGoogle Scholar
  33. McKenna, D. D., Farrell, B. D., Caterino, M. S., Farnum, C. W., Hawks, D. C., Maddison, D. R., et al. (2015a). Phylogeny and evolution of Staphyliniformia and Scarabaeiformia: forest litter as a stepping stone for diversification of nonphytophagous beetles. Systematic Entomology, 40(1), 35–60. doi: 10.1111/syen.12093.CrossRefGoogle Scholar
  34. McKenna, D. D., Wild, A. L., Kanda, K., Bellamy, C. L., Beutel, R. G., Caterino, M. S., et al. (2015b). The beetle tree of life reveals that Coleoptera survived end-Permian mass extinction to diversify during the Cretaceous terrestrial revolution. Systematic Entomology, 40(4), 835–880. doi: 10.1111/syen.12132.CrossRefGoogle Scholar
  35. Meinecke, C. C. (1975). Riechsensillen und Systematik der Lamellicornia. (Insecta: Coleoptera). Zoomorphologie, 82, 1–42.CrossRefGoogle Scholar
  36. Latreille, P. A. (1802). Histoire naturelle, générale et particulière, des crustacés et des insectes. Familles naturelles des genres (Vol. 3). Paris: F. Dufart.Google Scholar
  37. Linnaeus, C. (1758). Systema Naturae per regni tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis, 10th revised ed. Stockholm: Laurentius Salvius.Google Scholar
  38. Lynch Arribálzaga, F. (1878). Notas sobre dos Athyreitae de Buenos Aires. Naturalista Argentino: El Revista de Historia Natural, 1(5), 145–149.Google Scholar
  39. MacLeay, W. S. (1819). Horae entomologicae: or essays on the annulose animals (Vol. I. Part I). London: S. Bagster.CrossRefGoogle Scholar
  40. Mulsant, E. (1842). Lamellicornes. Histoire naturelle des Coléopteres de France. [Tome 2]. Maison. Paris: Deyrolle.Google Scholar
  41. Nikolajev, G. V. (2007). Mezozoiskii Etap Evolyutsii Plastinchatousykh (Insecta: Coleoptera: Scarabaeoidea). Almaty: Kazak Universiteti.Google Scholar
  42. Reinecke, A., Ruther, J., & Hilker, M. (2006). Pre-copulatory isolation in sympatric Melolontha species (Coleoptera: Scarabaeidae). Agricultural Forest Entomology, 8, 289–293.CrossRefGoogle Scholar
  43. Shi, G. H., Grimaldi, D. A., Harlow, G. E., Wang, J., Wang, J., Yang, M. C., Lei, W. Y., Li, Q. L., & Li, X. H. (2012). Age constraint on Burmese amber based on UePb dating of zircons. Cretaceous Research, 37, 155–163.CrossRefGoogle Scholar
  44. Yan, Z., Bai, M., & Ren, D. (2012). A new fossil Hybosoridae (Coleoptera: Scarabaeoidea) from the Yixian Formation of China. Zootaxa, 3478, 201–204.Google Scholar
  45. Yan, Z., Bai, M., & Ren, D. (2013). A new genus and species of fossil Hybosoridae (Coleoptera: Scarabaeoidea) from the Early Cretaceous Yixian Formation of Liaoning, China. Alcheringa: An Australasian Journal of Palaeontology, 37, 139–145.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2016

Authors and Affiliations

  • Ming Bai
    • 1
  • Ruie Nie
    • 1
  • Weiwei Zhang
    • 2
  • Dong Ren
    • 3
  • Chungkun Shih
    • 3
    • 4
  • Xingke Yang
    • 1
  1. 1.Key Laboratory of Zoological Systematics and Evolution, Institute of ZoologyChinese Academy of SciencesBeijingPeople’s Republic of China
  2. 2.ChongqingPeople’s Republic of China
  3. 3.College of Life SciencesCapital Normal UniversityBeijingPeople’s Republic of China
  4. 4.Department of PaleobiologyNational Museum of Natural History, Smithsonian InstitutionWashingtonUSA

Personalised recommendations