Organisms Diversity & Evolution

, Volume 17, Issue 1, pp 163–180 | Cite as

Ecological patterns strongly impact the biogeography of western Palaearctic longhorn beetles (Coleoptera: Cerambycoidea)

Original Article


We aim to unravel the biogeographic structuring of western Palaearctic longhorn beetles with focus on the location of different refugia, barriers to dispersal and postglacial range expansions with their particular filters. The interaction of different ecological features with these structures is analysed. The western Palaearctic was divided into 95 geographic entities. We produced presence-only matrices for all 955 Cerambycoidea species autochthonous to this area and derived species richness distributions and extracted faunal regions and faunal elements by cluster analyses and principal component analyses. Similar analyses were performed for sub-families and ecological groups. Longhorn beetles show a strong biogeographic structuring in the western Palaearctic. Species numbers strongly decrease to the north and west. Less mobile species and root feeders mostly contribute to the fauna of the Mediterranean region, whilst mobile species are more widespread. Feeders on broad-leaved trees dominate in western Europe, whilst feeders on coniferous trees are most important in northern Europe. Our results support multiple refugia in the Mediterranean region and underline the importance of Provence, Crimea and Crete as such refugia. Crete even might be an area of old endemism. The Atlanto- and the Ponto-Mediterranean regions are more strongly structured than assumed in classical biogeography. Mediterranean assemblages are mostly composed of non-flying species, root feeders and species with small distributions not found outside their glacial refugia. Tree feeders left their glacial retreats with their host plants. These range dynamics result in biogeographic structures with several dispersal barriers and filters composed of mountains, sea straits and climatic conditions.


Biogeographic filters Ecological features Glacial refugia Island biogeography Postglacial colonisation Species diversity 



We thank the Fonds National de la Recherche de Luxembourg (grant 955375) for granting the scholarship of FV.

Supplementary material

13127_2016_290_MOESM1_ESM.doc (162 kb)
ESM 1 (DOC 161 kb)


  1. Akin, C., Bilgin, C. C., Beerli, P., Westaway, R., Ohst, T., Litvinchuk, S. N., et al. (2010). Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by geological processes and climate change in the Late Cenozoic. Journal of Biogeography, 37, 2111–2124.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Araújo, M. B., Nogués-Bravo, D., Diniz-Filho, J. A. F., Haywood, A. M., Valdes, P. J., & Rahbek, C. (2008). Quarternary climate changes explain diversity among reptiles and amphibians. Ecography, 31, 8–15.CrossRefGoogle Scholar
  3. Baquero, R. A., & Telleria, J. L. (2001). Species richness, rarity and endemicity of European mammals: a biogeographical approach. Biodiversity and Conversation, 10, 29–44.CrossRefGoogle Scholar
  4. Baselga, A. (2008). Determinants of species richness, endemism and turnover in European longhorn beetles. Ecography, 31, 263–271.CrossRefGoogle Scholar
  5. Baselga, A. (2010). Partitioning the turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 19, 134–143.CrossRefGoogle Scholar
  6. Baselga, A. (2012). The relationship between species replacement, dissimilarity derived from nestedness, and nestedness. Global Ecology and Biogeography, 21, 1223–1232.CrossRefGoogle Scholar
  7. Baselga, A., & Leprieur, F. (2015). Comparing methods to separate components of beta diversity. Methods in Ecology and Evolution, 6, 1069–1079.CrossRefGoogle Scholar
  8. Böhme, M. U., Fritz, U., Kotenko, T., Džukić, G., Ljubisavljević, K., Tzankov, N., et al. (2007). Phylogeography and cryptic variation within the Lacerta viridis complex (Lacertidae, Reptilia). Zoologica Scripta, 36, 119–131.CrossRefGoogle Scholar
  9. Bosmans, R., Van Keer, J., Russel-Smith, A., Kronestedt, T., Alderweireldt, M., Bosselaers, J., et al. (2013). Spiders of Crete (Araneae). A catalogue of all currently known species from the Greek island of Crete. Nieuwsbrief van de Belgische Arachnologische Vereniging, 28, 5–147. Supplement 1.Google Scholar
  10. Cellinese, N., Smith, S. A., Edwards, E. J., Kim, S.-T., Haberle, R. C., Avramakis, M., et al. (2009). Historical biogeography of the endemic Campanulaceae of Crete. Journal of Biogeography, 36, 1253–1269.CrossRefGoogle Scholar
  11. Cooper, S. J., Ibrahim, K. M., & Hewitt, G. M. (1995). Postglacial expansion and genome subdivision in the European grasshopper Chorthippus parallelus. Molecular Ecology, 4, 49–60.CrossRefPubMedGoogle Scholar
  12. Danilevsky, M. L. (2010a). Additions and corrections to the new Catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010. Russian Entomological Journal, 19, 215–239.Google Scholar
  13. Danilevsky, M. L. (2010b). Additions and corrections to the new Catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010, Part II. Russian Entomological Journal, 19, 313–324.Google Scholar
  14. Danilevsky, M. L. (2012a). Additions and corrections to the new catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010, Part III. Munis Entomology & Zoology, 7, 109–173.Google Scholar
  15. Danilevsky, M. L. (2012b). Additions and corrections to the new catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010, Part IV. Humanity Space International Almanac, 1, 86–136.Google Scholar
  16. Danilevsky, M. L. (2012c). Additions and corrections to the new catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010, Part V. Humanity Space International Almanac, 1, 695–741.Google Scholar
  17. Danilevsky, M. L. (2012d). Additions and corrections to the new catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010, Part VI. Humanity Space International Almanac, 1, 900–943.Google Scholar
  18. Danilevsky, M. L. (2013). Additions and corrections to the new catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana. 2010, Part VII. Humanity Space International Almanac, 2, 170–210.Google Scholar
  19. Dapporto, L., Schmitt, T., Vila, R., Scalercio, S., Biermann, H., Dinca, V., et al. (2011). Phylogenetic island disequilibrium: evidence for ongoing long-term population dynamics in two Mediterranean butterflies. Journal of Biogeography, 38, 854–867.CrossRefGoogle Scholar
  20. Dapporto, L., Bruschini, C., Dincă, V., Vila, R., & Dennis, R. L. (2012). Identifying zones of phenetic compression in West Mediterranean butterflies (Satyrinae): refugia, invasion and hybridization. Diversity and Distributions, 18, 1066–1076.CrossRefGoogle Scholar
  21. Dapporto, L., Ramazzotti, M., Fattorini, S., Talavera, G., Vila, R., & Dennis, R. L. (2013). Recluster: an unbiased clustering procedure for beta‐diversity turnover. Ecography, 36, 1070–1075.CrossRefGoogle Scholar
  22. Dapporto, L., Fattorini, S., Vodă, R., Dincă, V., & Vila, R. (2014). Biogeography of western Mediterranean butterflies: combining turnover and nestedness components of faunal dissimilarity. Journal of Biogeography, 41, 1639–1650.CrossRefGoogle Scholar
  23. Dapporto, L., Ciolli, G., Dennis, R. L., Fox, R., & Shreeve, T. G. (2015). A new procedure for extrapolating turnover regionalization at mid‐small spatial scales, tested on British butterflies. Methods in Ecology and Evolution, 6, 1287–1297.CrossRefGoogle Scholar
  24. Davis, M. (1984). The flight and migration ecology of the red milkweed beetle (Tetraopes tetraophthalmus). Ecology, 65, 230–234.CrossRefGoogle Scholar
  25. De Keyser, R., Shreeve, T. G., Breuker, C. J., Hails, R. S., & Schmitt, T. (2012). Polyommatus icarus butterflies in the British Isles: evidence for a bottleneck. Biological Journal of the Linnean Society, 107, 123–136.CrossRefGoogle Scholar
  26. De Lattin, G. (1949). Beiträge zur Zoogeographie des Mittelmeergebietes. Verhandlungen der deutschen Zoologischen Gesellschaft, Kiel, 143–151.Google Scholar
  27. De Lattin, G. (1967). Grundriß der Zoogeographie. Jena: G. Fischer Verlag.Google Scholar
  28. Dengler, J. (2009). Which function describes the species-area relationship best? Review and empirical evaluation. Journal of Biogeography, 36, 728–744.CrossRefGoogle Scholar
  29. Dennis, R. L. H., Williams, W. R., & Shreeve, T. G. (1991). A multivariate approach to the determination of faunal structures among European butterfly species (Lepidoptera: Rhopalocera). Zoological Journal of the Linnean Society, 101, 1–49.CrossRefGoogle Scholar
  30. Dennis, R. L. H., Shreeve, T. G., & Williams, W. R. (1995). Taxonomic differentiation in species richness gradients among European butterflies (Papilionoidea, Hesperioidea): contribution of macroevolutionary dynamics. Ecography, 18, 27–40.CrossRefGoogle Scholar
  31. Dennis, R. L. H., Williams, W. R., & Shreeve, T. G. (1998). Faunal structures among European butterflies: evolutionary implications of bias for geography, endemism and taxonomic affiliations. Ecography, 21, 181–203.CrossRefGoogle Scholar
  32. Dobrovolski, R., Melo, A. S., Cassemiro, F. A., & Diniz‐Filho, J. A. F. (2012). Climatic history and dispersal ability explain the relative importance of turnover and nestedness components of beta diversity. Global Ecology and Biogeography, 21, 191–197.CrossRefGoogle Scholar
  33. Fattorini, S. (2014). Tenebrionid beetle distributional patterns in Italy: multiple colonisation trajectories in a biogeographical crossroad. Insect Conservation and Diversity, 7, 144–160.CrossRefGoogle Scholar
  34. Fattorini, S., & Ulrich, W. (2012). Spatial distributions of European Tenebrionidae point to multiple postglacial colonization trajectories. Biological Journal of the Linnean Society, 105, 318–329.CrossRefGoogle Scholar
  35. Felesaki, I., Stoev, P., Simaiakis, S. M., & Mylonas, M. (2010). A catalogue of the millipedes of Crete (Myriapoda: Diplopoda). Natura Montenegrina, 9, 357–368.Google Scholar
  36. Fritz, U., Guicking, D., Kami, H., Arakelyan, M., Auer, M., Ayaz, D., et al. (2007). Mitochondrial phylogeography of European pond turtles (Emys orbicularis, Emys trinacris)—an update. Amphibia-Reptilia, 28, 418–426.CrossRefGoogle Scholar
  37. Goodwin, S., Pettit, M. A., & Spohr, J. (1994). Acalolepta vastator (Newman) (Coleoptera: Cerambycidae) infesting grapevines in the Hunter Valley, New South Wales 1. Distribution and dispersion. Australian Journal of Entomology, 33, 385–390.CrossRefGoogle Scholar
  38. Guilhaumon, F., Gimenez, O., Gaston, K. J., & Mouillot, D. (2008). Taxonomic and regional uncertainty in species-area relationships and the identification of richness hotspots. Proceedings of the National Academy of Sciences of the United States of America, 105, 15458–15463.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Habel, J. C., Schmitt, T., & Müller, P. (2005). The fourth paradigm pattern of post-glacial range expansion of European terrestrial species: the phylogeography of the Marbled White butterfly (Satyrinae, Lepidoptera). Journal of Biogeography, 32, 1489–1497.CrossRefGoogle Scholar
  40. Hagemeier, W. J. M., & Blair, M. J. (1997). The EBCC atlas of European breeding birds. Their distribution and abundance. London: T & AD Poyser.Google Scholar
  41. Hammer Ø., Harper, D. A. T. & Ryan P. D. (2001). Past: paleontological statistics software package for education and data analysis. Palaeontologia Electronica 4(1):9.Google Scholar
  42. Hausdorf, B., & Sauer, J. (2009). Revision of the Helicellinae of Crete (Gastropoda: Hygromiidae). Zoological Journal of the Linnean Society, 157, 373–419.CrossRefGoogle Scholar
  43. Heiser, M., & Schmitt, T. (2010). Do different dispersal capacities influence the biogeography of the western Palearctic dragonflies (Odonata)? Biological Journal of the Linnean Society, 99, 177–195.CrossRefGoogle Scholar
  44. Heiser, M., & Schmitt, T. (2013). Tracking the boundary between the Palaearctic and the Oriental region: new insights from dragonflies and damselflies (Odonata). Journal of Biogeography, 40, 2047–2058.CrossRefGoogle Scholar
  45. Heiser, M., Dapporto, L., & Schmitt, T. (2014). Coupling impoverishment analyses and partitioning of beta diversity allows a comprehensive description of Odonata biogeography in the Western Mediterranean. Organisms, Diversity and Evolution, 14, 203–214.CrossRefGoogle Scholar
  46. Hesselbarth, G., van Oorschot, H., & Wagener, S. (1995). Die Tagfalter der Türkei und angrenzender Länder. Bocholt: S. Wagener Selbstverlag.Google Scholar
  47. Hewitt, G. M. (1996). Some genetic consequences of ice ages, and their role in divergence and speciation. Biological Journal of the Linnean Society, 58, 247–276.CrossRefGoogle Scholar
  48. Hewitt, G. M. (1999). Postglacial recolonization of European biota. Biological Journal of the Linnean Society, 68, 87–112.CrossRefGoogle Scholar
  49. Holt, B. G., Lessard, J.-P., Borregaard, M. K., Fritz, S. A., Araújo, M. B., Dimitrov, D., Fabre, P.-H., Graham, C. H., Graves, G. R., Jønsson, K. A., Nogués-Bravo, D., Wang, Z., Whittaker, R. J., Fjeldså, J., & Rahbek, C. (2013). An update of Wallace’s zoogeographic regions of the world. Science, 339, 74–78.CrossRefPubMedGoogle Scholar
  50. Horn, A., Roux-Morabito, G., Lieutier, F., & Kerdelhue, C. (2006). Phylogeographic structure and past history of the circum-Mediterranean species Tomicus destruens Woll. (Coleoptera: Scolytinae). Molecular Ecology, 15, 1603–1615.CrossRefPubMedGoogle Scholar
  51. Husemann, M., Schmitt, T., Zachos, F. E., Ulrich, W., & Habel, J. C. (2014). Palaearctic biogeography revisited: evidence for the existence of a North African refugium for western Palaearctic biota. Journal of Biogeography, 41, 81–94.CrossRefGoogle Scholar
  52. Johnson, R. J. (1978). Multivariate statistical analysis in geography: a primer on the general linear model. London: Longman.Google Scholar
  53. Junker, M., Zimmermann, M., Ramos, A. A., Gros, P., Konvička, M., Nève, G., Rákosy, L., Tammaru, T., Castilho, R., & Schmitt, T. (2015). Three in one—multiple faunal elements within an endangered European butterfly species. PLoS One, 10, e0142282.CrossRefPubMedPubMedCentralGoogle Scholar
  54. Kindler, C., Böhme, W., Corti, C., Gvoždík Jablonski, D., Jandzik, D., Metallinou, M., et al. (2013). Mitochondrial phylogeography, contact zones and taxonomy of grass snakes (Natrix natrix, N. megalocephala). Zoologica Scripta, 42, 458–472.CrossRefGoogle Scholar
  55. Löbl, I., & Smetana, A. (Eds.). (2010). Catalogue of Palaearctic Coleoptera. Vol. 6. Chrysomeloidea. Stenstrup: Apollo Books.Google Scholar
  56. Löbl, I., & Smetana, A. (Eds.). (2011). Catalogue of Palaearctic Coleoptera. Errata (Vol. 7). Stenstrup: Apollo Books.Google Scholar
  57. Magri, D. (2008). Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). Journal of Biogeography, 35, 450–463.CrossRefGoogle Scholar
  58. Magri, D., Fineschi, S., Bellarosa, R., Buonamici, A., Sebastiani, F., Schirone, B., et al. (2007). The distribution of Quercus suber chloroplast haplotypes matches the palaeogeographical history of the western Mediterranean. Molecular Ecology, 16, 5259–5266.CrossRefPubMedGoogle Scholar
  59. Marmi, J., López-Giráldez, F., Macdonald, D. W., Calafell, F., Zholnerovskaya, E., & Domingo-Roura, X. (2006). Mitochondrial DNA reveals a strong phylogeographic structure in the badger across Eurasia. Molecular Ecology, 15, 1007–1020.CrossRefPubMedGoogle Scholar
  60. Meusel, H., Jäger, E., & Weinert, E. (1965). Vergleichende Chorologie der zentraleuropäischen Flora 1 (Text und Karten). Jena: Fischer Verlag.Google Scholar
  61. Miroshnikov, A. I. (2011). The longicorn beetles (Cerambycidae) in «Catalogue of Palaearctic Coleoptera. Stenstrup. 2010» remarks and additions. Entomologia Kubanica, Supplement, 1, 1–113.Google Scholar
  62. Mouillot, D., De Bortoli, J., Leprieur, F., Parravicini, V., Kulbicki, M., & Bellwood, D. R. (2013). The challenge of delineating biogeographical regions: nestedness matters for Indo‐Pacific coral reef fishes. Journal of Biogeography, 40, 2228–2237.CrossRefGoogle Scholar
  63. Özdikmen, H. (2010). The Turkish Dorcadiini with zoogeographical remarks (Coleoptera: Cerambycidae: Lamiinae). Munis Entomology & Zoology, 5, 380–498.Google Scholar
  64. Özdikmen, H. (2011a). Additions and corrections to the new Catalogue of Palaearctic Cerambycidae (Coleoptera) edited by I. Löbl and A. Smetana (2010) for Turkish taxa. Munis Entomology & Zoology, 6, 686–734.Google Scholar
  65. Özdikmen, H. (2011b). A propose for acceptation of a single genus as Judolia Mulsant, 1863 instead of the genera Judolia Mulsant, 1863 and Pachytodes Pic, 1891 (Coleoptera: Cerambycidae: Lepturinae: Lepturini). Munis Entomology & Zoology, 6, 900–904.Google Scholar
  66. Parmakelis, A., Pfenninger, M., Spanos, L., Papagiannakis, G., Louis, C., & Mylonas, M. (2005). Inference of a radiation in Mastus (Gastropoda, Pulmonata, Enidae) on the island of Crete. Evolution, 59, 991–1005.CrossRefPubMedGoogle Scholar
  67. Parmakelis, A., Stathi, I., Chatzaki, M., Simaiakis, S., Spanos, L., Louis, C., et al. (2006). Evolution of Mesobuthus gibbosus (Brullé, 1832) (Scorpiones: Buthidae) in the northeastern Mediterranean region. Molecular Ecology, 15, 2883–2894.CrossRefPubMedGoogle Scholar
  68. Peck, S. B. (2001). Smaller orders of insects of the Galapagos Islands, Ecuador: evolution, ecology, and diversity. Ottawa: NRC Research Press.Google Scholar
  69. Pesarini, C., & Sabbadini, A. (2004). Ricerche sui Dorcadiini di Grecia. I. Le specie del Peloponneso (Coleoptera Cerambycidae). Atti della Società italiana di scienze naturali e del Museo civico di storia naturale di Milano, 145, 133–153.Google Scholar
  70. Pesarini, C., & Sabbadini, A. (2007). Ricerche sui Dorcadiini di Grecia. II. Le specie della Grecia centromeridionale e quelle del gruppo Dorcadion kozanii (Coleoptera Cerambycidae). Atti della Società italiana di scienze naturali e del Museo civico di storia naturale di Milano, 145, 35–83.Google Scholar
  71. Pesarini, C., & Sabbadini, A. (2008). Ricerche sui Dorcadiini di Grecia. III. Le specie di Neodorcadion Ganglbauer, 1884, quelle del gruppo di Dorcadion ljubetense e descrizione della nuova specie Dorcadion ariannae (Coleoptera Cerambycidae). Atti della Società italiana di scienze naturali e del Museo civico di storia naturale di Milano, 149, 109–124.Google Scholar
  72. Pesarini, C., & Sabbadini, A. (2010). Ricerche sui Dorcadiini di Grecia. IV. Le specie della Macedonia e della Tracia (Coleoptera Cerambycidae). Atti della Società italiana di scienze naturali e del Museo civico di storia naturale di Milano, 151, 179–216.Google Scholar
  73. Podani, J. (1997). On the sensitivity of ordination and classification methods to variation in the input order of data. Journal of Vegetation Science, 8, 153–156.CrossRefGoogle Scholar
  74. Podnar, M., Mayer, W., & Tvrtkovic, N. (2005). Phylogeography of the Italian wall lizard, Podarcis sicula, as revealed by mitochondrial DNA sequences. Molecular Ecology, 14, 575–588.CrossRefPubMedGoogle Scholar
  75. Rákosy, L., Heiser, M., Manci, C.-O., & Schmitt, T. (2013). Strong divergences in regional distributions in Romania: recent ecological constraints in dragonflies (Odonata) versus ancient biogeographical patterns in butterflies (Lepidoptera: Rhopalocera). Insect Conservation and Diversity, 6, 145–154.CrossRefGoogle Scholar
  76. Reinig, W. F. (1937). Die Holarktis. Ein Beitrag zur diluvialen und alluvialen Geschichte der zirkumpolaren Faunen- und Florenelemente. Jena: G. Fischer Verlag.Google Scholar
  77. Reyjol, Y., Hugueny, B., Pont, D., Bianco, P. G., Beier, U., Caiola, N., et al. (2007). Patterns in species richness and endemism of European freshwater fish. Global Ecology and Biogeography, 16, 65–75.CrossRefGoogle Scholar
  78. Santucci, F., Emerson, B., & Hewitt, G. M. (1998). Mitochondrial DNA phylogeography of European hedgehogs. Molecular Ecology, 7, 1163–1172.CrossRefPubMedGoogle Scholar
  79. Sauer, J., & Hausdorf, B. (2010). Reconstructing the evolutionary history of the radiation of the land snail genus Xerocrassa on Crete based on mitochondrial sequences and AFLP markers. BMC Evolutionary Biology, 10, 299.CrossRefPubMedPubMedCentralGoogle Scholar
  80. Schedl, W. (2011). Überblick über die Arten-Diversität der Pflanzenwespen der griechischen Insel Kreta (Insecta: Hymenoptera: Symphyta). Linzer Biologische Beiträge, 43, 1259–1267.Google Scholar
  81. Schmitt, T. (2007). Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology, 4, 11.CrossRefPubMedPubMedCentralGoogle Scholar
  82. Schmitt, T. (2009). Biogeographical and evolutionary importance of the European high mountain systems. Frontiers in Zoology, 6, 9.CrossRefPubMedPubMedCentralGoogle Scholar
  83. Schmitt, T., & Seitz, A. (2001). Allozyme variation in Polyommatus coridon (Lepidoptera: Lycaenidae): identification of ice-age refugia and reconstruction of post-glacial expansion. Journal of Biogeography, 28, 1129–1136.CrossRefGoogle Scholar
  84. Schmitt, T., & Varga, Z. (2009). Biogeography of the butterflies and larger moths of the Carpathian Basin and the Balkan Peninsula. In E. Stloukal, K. Hensel, P. Holec, M. Illyová, D. Jandzík, L. Jedlička, et al. (Eds.), Vývoj prírody Slovenska (pp. 143–166). Bratislava: Faunima.Google Scholar
  85. Schmitt, T., & Varga, Z. (2012). Extra-Mediterranean refugia: the rule and not the exception? Frontiers in Zoology, 9, 22.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Seddon, J. M., Santucci, F., Reeve, N. J., & Hewitt, G. M. (2001). DNA footprints of European hedgehogs, Erinaceus europaeus and E. concolor. Pleistocene refugia, postglacial expansion and colonization routes. Molecular Ecology, 10, 2187–2198.CrossRefPubMedGoogle Scholar
  87. Seddon, J. M., Santucci, F., Reeve, N., & Hewitt, G. M. (2002). Caucasus mountains divide postulated postglacial colonization routes in the white-breasted hedgehog, Erinaceus concolor. Journal of Evolutionary Biology, 15, 463–467.CrossRefGoogle Scholar
  88. Simaiakis, S., Minelli, A., & Mylonas, M. (2004). The centipede fauna (Chilopoda) of Crete and its satellite islands (Greece, Eastern Mediterranean). Israel Journal of Zoology, 50, 367–418.CrossRefGoogle Scholar
  89. Stewart, J. R., & Lister, A. M. (2001). Cryptic northern refugia and the origins of the modern biota. Trends in Ecology and Evolution, 16, 608–613.CrossRefGoogle Scholar
  90. Stewart, J. R., Lister, A. M., Barnes, I., & Dalén, L. (2010). Refugia revisited: individualistic responses of species in space and time. Proceedings of the Royal Society of London B, 277, 661–671.CrossRefGoogle Scholar
  91. Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453–464.CrossRefPubMedGoogle Scholar
  92. Trigas, P., Panitsa, M., & Tsiftsis, S. (2013). Elevational gradient of vascular plant species richness and endemism in Crete—the effect of post-isolation mountain uplift on a continental island system. PLoS ONE, 8, e59425.CrossRefPubMedPubMedCentralGoogle Scholar
  93. Ursenbacher, S., Conelli, A., Golay, P., Monney, J. C., Zuffi, M. A. L., Thiery, G., et al. (2006). Phylogeography of the asp viper (Vipera aspis) inferred from mitochondrial DNA sequence data: evidence for multiple Mediterranean refugial areas. Molecular Phylogenetics and Evolution, 38, 546–552.CrossRefPubMedGoogle Scholar
  94. Varga, Z. S., & Schmitt, T. (2008). Types of oreal and oreotundral disjunction in the western Palearctic. Biological Journal of the Linnean Society, 93, 415–430.CrossRefGoogle Scholar
  95. Veith, M., Schmidtler, J. F., Kosuch, J., Baran, I., & Seitz, A. (2003). Palaeoclimatic changes explain Anatolian mountain frog evolution: a test for alternating vicariance and dispersal events. Molecular Ecology, 12, 185–199.CrossRefPubMedGoogle Scholar
  96. Vives, E. (1976). Contribución al conocimiento de los Iberodorcadion Breuning (Col. Cerambycidae). Miscellanea Zoologica, 3, 163–168.Google Scholar
  97. Vives, E. (1983). Revision del Género Iberodorcadion Coleopteros Cerambícidos. Madrid: Museo Nacional de Ciences Naturales CSIC.Google Scholar
  98. Vives, E. (2000). Fauna Iberica 12. Coleoptera Cerambycidae. Madrid: Museo Nacional de Ciences Naturales CSIC.Google Scholar
  99. Ysnel, F., Petillon, J., Gerard, E., & Canard, A. (2008). Assessing the conservation value of the spider fauna across the West Palearctic area. Journal of Arachnology, 36, 457–463.CrossRefGoogle Scholar
  100. Zinetti, F., Dapporto, L., Vovlas, A., Chelazzi, G., Bonelli, S., Balletto, E., et al. (2013). When the rule becomes the exception. No evidence of gene flow between two Zerynthia cryptic butterflies suggests the emergence of a new model group. PLoS ONE, 8, e65746.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2016

Authors and Affiliations

  1. 1.National Museum of Natural HistoryLuxembourgLuxembourg
  2. 2.Biogeography, Faculty of Regional and Environmental SciencesTrier UniversityTrierGermany
  3. 3.Senckenberg German Entomological InstituteMünchebergGermany
  4. 4.Zoology, Institute of Biology, Faculty of Natural Sciences IMartin Luther University Halle-WittenbergHalleGermany

Personalised recommendations