Organisms Diversity & Evolution

, Volume 16, Issue 3, pp 533–547 | Cite as

Update of genetic information for the white-clawed crayfish in Spain, with new insights into its population genetics and origin

  • B. Matallanas
  • M. D. Ochando
  • F. Alonso
  • C. Callejas
Original Article


The white-clawed crayfish is endemic to western and southern Europe and its populations have decreased over recent decades. Spanish populations are generally poorly represented in scientific reports and are usually studied only with a single molecular marker. Here, we use two mitochondrial markers (cytochrome oxidase subunit I and rDNA 16S genes) to examine levels and patterns of genetic structure across the range of the species’ distribution in Spain. Data reveal the existence of two main genetic groups of white-clawed crayfish in Spain with the Ebro basin as a possible contact zone. Processes occurred in historical and recent times, such as genetic drift and translocations, contribute greatly to this genetic structure. Levels of genetic variability and genetic structure of Spanish populations together with demographic inferences suggest that the species established in the Iberian Peninsula, at least since the Late Pleistocene. Knowing the true origin of the Spanish populations is crucial when deciding upon the management policies that should be followed. Given the lack of any clear evidence against its indigenous status, we propose that current protection and conservation measures should be maintained. From a management point of view, we suggest that Spanish population should be considered as a single evolutionary significant unit (ESU) with two management units (MUs) corresponding with the genetic clusters detected in the present study.


Austropotamobius italicus Cytochrome oxidase subunit I rDNA 16S Genetic population structure Phylogeography 



This work was funded by the Project MCYT CGL2005-05727/BOS and Convenio MMA-UCM 415–2634. The authors are very grateful to E. Bassols, B. Beroiz, S. Bertocchi, S. Brusconi, M.C. Cano, J.M. Casanova, E. Castién, J. Diéguez-Uribeondo, J.M. Gil, J. A. Juncal, J. Lamora, I. Lasheras, A. Lombart, M.L. Martín, J.L. Múzquiz, B. Palacios, J. Pinedo, V. Sancho, C. Temiño and M. I. Vidal for providing crayfish samples for this study. We also would like to thank to the two anonymous referees for their useful advises and comments. During the present work, B. Matallanas received partial funding from the Convenio MMA-UCM.

Supplementary material

13127_2016_268_MOESM1_ESM.pdf (44 kb)
ESM 1 (PDF 43 kb)


  1. Allendorf, F. W., & Luikart, G. H. (2007). Conservation and the genetics of populations. Malden, Massachusetts: Blackwell Publishing.Google Scholar
  2. Alonso, F. (2012). Austropotamobius pallipes. In VV.AA., Bases ecológicas preliminares para la conservación de las especies de interés comunitario en España: Invertebrados (p. 69). Madrid: Ministerio de Agricultura, Alimentación y Medio Ambiente.Google Scholar
  3. Alonso, F., Temiño, C., & Diéguez- Uribeondo, J. (2000). Status of the white-clawed crayfish Austropotamobius pallipes (Lereboullet 1858), in Spain distribution and legislation. Bulletin Francais de la Peche et de la Pisciculture, 356, 31–54.CrossRefGoogle Scholar
  4. Armitage, V. (2000). Observations of radio tracked crayfish (Austropotamobius pallipes) in a northern British river (pp. 63–69). Leeds: Proceedings of the Crayfish Conference.Google Scholar
  5. Avise, J. C. (1992). Molecular population structure and the biogeographic history of a regional fauna: a case history with lessons for conservation biology. Oikos, 63, 62–76.CrossRefGoogle Scholar
  6. Avise, J. C. (2000). Phylogeography: the history and formation of species. Massachusetts, USA: Harvard University Press.Google Scholar
  7. Avise, J. C. (2007). Twenty-five key evolutionary insights from the phylogeographic revolution in population genetics. In S. Weiss & N. Ferrand (Eds.), Phylogeography of Southern European Refugia (pp. 7–21). Dordrecht, The Netherlands: Springer.CrossRefGoogle Scholar
  8. Beerli, P. (2006). Comparison of Bayesian and maximum likelihood inference of population genetic parameters. Bioinformatics, 22, 341–345.CrossRefPubMedGoogle Scholar
  9. Beerli, P. (2008). MIGRATE documentation (version 3.0). Technical Report ( Accessed 19 May 2015.
  10. Beerli, P. (2009) How to use MIGRATE or why are Markov chain Monte Carlo programs difficult to use? In: G. Bertorelle, M. W. Bruford, H. C.Hauffe, A. Rizzoli y C. Vernesi (Eds). Population Genetics for Animal Conservation (Conservation Biology, vol 17). Cambridge University Press, Cambridge, UKGoogle Scholar
  11. Beerli, P., & Felsenstein, J. (1999). Maximum likelihood estimation of migration rates and effective population numbers in two populations using a coalescent approach. Genetics, 152, 763–773.PubMedPubMedCentralGoogle Scholar
  12. Beerli, P., & Felsenstein, J. (2001). Maximum likelihood estimation of a migration matrix and effective population sizes in n subpopulations by using a coalescent approach. Proceedings of the National Academy of Sciences of the United States of America, 98, 4563–4568.CrossRefPubMedPubMedCentralGoogle Scholar
  13. Beroiz, B., Callejas, C., Alonso, F., & Ochando, M. D. (2008). Genetic structure of Spanish white-clawed crayfish (Austropotamobius pallipes) populations as determined by RAPD analysis: reasons for optimism. Aquatic Conservation: Marine and Freshwater Ecosystems, 18, 190–201.CrossRefGoogle Scholar
  14. Buhay, J. E. (2009). COI-like sequences are becoming problematic in molecular systematic and DNA barcoding studies. Journal of Crustacean Biology, 29, 96–110.CrossRefGoogle Scholar
  15. Cacho, I., Valero, B., & González–Sampériz, P. (2010). Revisión de las reconstrucciones paleoclimáticas en la península ibérica desde el último periodo glacial. In F. F. Pérez & R. Boscolo (Eds.), Clima en España: pasado, presente y futuro. Informe de evaluación del cambio climático regional (pp. 9–24). España: Red Temática Clivar.Google Scholar
  16. Callejas, C., Beroiz, B., Alonso, F., Vivero, A., Matallanas, B., & Ochando, M. D. (2009). Preserving the biodiversity of freshwater ecosystems in a scenario of increasing desertification: lesson from genetics. In A. Edelstein (Ed.), Handbook of Environmental Research (pp. 261–291). Inc: Nova.Google Scholar
  17. Clavero, M., Nores, C., Kubersky-Piredda, S., Centeno-Cuadros, A. (2015). Interdisciplinary to reconstruct historical introductions: solving the status of cryptogenic crayfish. Biological reviews, doi:  10.1111/brv.12205
  18. Clavero, M., & Villero, D. (2013). Historical ecology and invasion. Long-term distribution changes of introduced freshwater species. Biology: BioScience. doi: 10.1093/biosci/bit014.Google Scholar
  19. Crandall, K. A., & Fitzpatrick, J. F., Jr. (1996). Crayfish molecular systematics: using a combination of procedures to estimate phylogeny. Systematic Biology, 45, 1–26.CrossRefGoogle Scholar
  20. Diéguez–Uribeondo, J., Royo, F., Souty–Grosset, C., Ropiquet, A., & Grandjean, F. (2008). Low genetic variation of the white-clawed crayfish in the Iberian Peninsula: its origin and management implications. Aquatic Conservation: Marine and Freshwater Ecosystems, 18, 19–31.CrossRefGoogle Scholar
  21. Diéguez–Uribeondo, J., Rueda, A., Castien, E., & Bascones, J. C. (1997). A plan of restoration in Navarra for the native freshwater crayfish species of Spain, Austropotamobius pallipes. Bulletin Francais de la Peche et de la Pisciculture, 347, 625–637.CrossRefGoogle Scholar
  22. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinform Online, 1, 47–50.Google Scholar
  23. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology Biotechnology, 3, 294–299.PubMedGoogle Scholar
  24. Frankham, R. (2010). Where are we in conservation genetics and where do we need to go? Conservation Genetics, 11, 661–663.CrossRefGoogle Scholar
  25. Fratini, S., Zaccara, S., Barbaresi, S., Grandjean, F., Souty–Grosset, C., Crosa, G., & Gherardi, F. (2005). Phylogeography of the threatened crayfish (genus Austropotamobius) in Italy: implications for its taxonomy and conservation. Heredity, 64, 108–118.CrossRefGoogle Scholar
  26. Fu, Y.–. X. (1997). Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genetics, 147, 915–925.PubMedPubMedCentralGoogle Scholar
  27. Füreder, L., Gherardi, F., Holdich, D., Reynolds, J., Sibley, P., Souty – Grosset, C. (2010). Austropotamobius pallipes. In: IUCN 2010. IUCN red list of threatened species. Version 2010.4. Accessed 23 June 2015
  28. Galindo, F. J., Alonso, F., & Diéguez–Uribeondo, J. (2014). Cangrejo de río: la ciencia es aval de su carácter nativo. Quercus, 342, 74–79.Google Scholar
  29. Galindo, J., Nebot, B., Delgado, J. C., & Chirosa, M. (2003). Alarma tras la primera radiografía del cangrejo de río en Andalucía. Quercus, 206, 50–51.Google Scholar
  30. Garassino, A. (1997). The macruran decapod crustacean of the Lower Cretaceous of Las Hoyas. Atti della Società italiana di scienze naturali e del Museo civico di storia naturale di Milano, 137, 101–126.Google Scholar
  31. Goloboff, P., Farris, J., & Nixon, K. (2003). T.N.T.: tree analysis using new technology. Systematic Biology, 54, 176–178.Google Scholar
  32. Gómez, A., & Lunt, D. H. (2007). Refugia within refugia: patterns of phylogeographic concordance in the Iberian Peninsula. In S. Weiss & N. Ferrand (Eds.), Phylogeography of southern European refugia (pp. 155–188). Springer, Dordrecht, The Netherlands: Kluwer.CrossRefGoogle Scholar
  33. González–Sampériz, P., Valero–Garcés, B. L., Moreno, A., Jalut, G., García–Ruiz, J. M., Martí–Bono, C., Delgado–Huertas, A., Navas, A., Otto, T., & Dedoubat, J. J. (2006). Climate variation in the Spanish Pyrenees during the last 30,000 years revealed by the El Portalet sequence. Quaternary Research, 66, 38–52.CrossRefGoogle Scholar
  34. Gopurenko, D., Hughes, J. M., & Keenan, C. P. (1999). Mitochondrial DNA evidence for rapid colonisation of the Indo-West Pacific by the mud crab Scylla serrata. Marine Biology, 134, 227–233.CrossRefGoogle Scholar
  35. Grandjean, F., Bouchon, D., & Souty–Grosset, C. (2002a). Systematic of the European endangered crayfish species Austropotamobius pallipes (Decapoda: Astacidae) with a re-examination of the status of Austropotamobius berndhauseri. Journal of Crustacean Biology, 22, 677–681.CrossRefGoogle Scholar
  36. Grandjean, F., Frelon–Raimond, M., & Souty–Grosset, C. (2002b). Compilation of molecular data for the phylogeny of the genus Austropotamobius: one species or several? Bulletin Francais de la Peche et de la Pisciculture, 367, 671–680.CrossRefGoogle Scholar
  37. Grandjean, F., Gouin, N., Keith, P., Noël, P., Persat, H., Reynolds, J., Schulz, H., S’mietana, P., & Souty-Grosset, C. (2006). Systematics and Phylogeny of freshwater crayfish, with particular reference to historical biogeography of Europe. In C. Souty-Grosset, D. M. Holdich, P. Y. Noël, J. D. Reynolds, & P. Haffner (Eds.), Atlas of Crayfish in Europe (pp. 11–23). Paris: Patrimoines naturels, 64. Muséum national d’Historie naturelle.Google Scholar
  38. Grandjean, F., Gouin, N., Souty–Grosset, C., & Diéguez–Uribeondo, J. (2001). Drastic bottlenecks in the endangered crayfish species, Austropotamobius pallipes in Spain with inference to its colonization history. Heredity, 88, 1–8.Google Scholar
  39. Grandjean, F., & Souty–Grosset, C. (2000). Mitochondrial DNA variation and population genetic structure of the white-clawed crayfish, Austropotamobius pallipes pallipes. Conservation Genetics, 1, 309–319.CrossRefGoogle Scholar
  40. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  41. Haye, P. A., Kornfield, I., & Watling, L. (2004). Molecular insights into Cumacean family relationships (Crustacea, Cumacea). Molecular Phylogenetics and Evolution, 30, 798–809.CrossRefPubMedGoogle Scholar
  42. Hobbs, H. H. I. (1991). Decapoda. In J. H. Thorp & A. P. Covich (Eds.), Ecology and classification of North American Freshwater Invertebrates (pp. 823–858). San Diego, CA, USA: Academic.Google Scholar
  43. Hudson, R. R. (1990). Gene genealogies and the coalescent process. In D. J. Futuyma & J. Antonovics (Eds.), Oxford Surveys in Evolutionary Biology (Vol. 7, pp. 1–44). Oxford: Oxford University Press.Google Scholar
  44. Hudson, R. R. (2000). A new statistic for detecting genetic differentiation. Genetics, 155, 2011–2014.PubMedPubMedCentralGoogle Scholar
  45. Knowlton, N., & Weight, L. A. (1998). New dates and new rates for divergence across the Isthmus of Panama. Proceeding of the Royal Society of London B, 265, 2257–2263.CrossRefGoogle Scholar
  46. Kouba, A., Petrusek, A., & Kozák, P. (2014). Continental-wide distribution of crayfish species in Europe: update and maps. Knowledge and Management of Aquatic Ecosystems, 413, 05. doi: 10.1051/kmae/2014007.CrossRefGoogle Scholar
  47. Largiadèr, C. R., Herger, F., Lörtscher, M., & Scholl, A. (2000). Assessment of natural and artificial propagation of the white-clawed crayfish (Austropotamobius pallipes species complex) in the Alpine region with nuclear and mitochondrial markers. Molecular Ecology, 9, 25–37.CrossRefPubMedGoogle Scholar
  48. Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.CrossRefPubMedGoogle Scholar
  49. Lunt, D. H., Zhang, D. X., Szymura, J. M., & Hewitt, G. M. (1996). The insect cytochrome oxidase I gene: evolutionary patterns and conserved primers for phylogenetic studies. Insect Molecular Biology, 5, 153–165.CrossRefPubMedGoogle Scholar
  50. Machino, Y., Füreder, L., Laurent, P. J., & Petutchnig, J. (2004). Introduction of the white-clawed crayfish Austropotamobius pallipes in Europe. Naturwissenschaftlich-medizinischer Verein Innsbruck, 91, 187–212.Google Scholar
  51. Maldonado, I., Galindo, F. J., Aranda, F., & Nebot, B. (2008). Historia y evolución de las poblaciones de cangrejo de río en España. XIV Congreso Asociación Ibérica de Limnología. Programa final y libro de Resúmenes.Google Scholar
  52. Martínez, R., Rico, E., & Alonso, F. (2003). Characterisation of Austropotamobius italicus (Faxon 1914) populations in a Central Spain area. Bulletin Francais de la Peche et de la Pisciculture, 370–371, 43–56.CrossRefGoogle Scholar
  53. Matallanas, B., Callejas, C., & Ochando, M. D. (2012). A genetic approach to Spanish populations of the threatened Austropotamobius italicus located at three different scenarios. ScientificWorldJournal. doi: 10.1100/2012/975930.PubMedPubMedCentralGoogle Scholar
  54. Matallanas, B., Ochando, M. D., Alonso, F., & Callejas, C. (2013). Phylogeography of the white-clawed crayfish (Austropotamobius italicus) in Spain: inferences from microsatellite markers. Molecular Biology Reports, 40, 5327–5338. doi: 10.1007/s11033-013-2633-0.CrossRefPubMedGoogle Scholar
  55. Matallanas, B., Ochando, M.D., Vivero, A., Beroiz, B., Alonso, F., Callejas, C. (2011). Mitochondrial DNA variability in Spanish populations of A. italicus inferred from the analysis of a COI region. Knowledge and Management of Aquatic Ecosystems, doi:  10.1051/kmae/ 2011052
  56. Meyran, J. C., Monnerot, M., & Taberlet, P. (1997). Taxonomic status and phylogenetic relationships of some species of the genus Gammarus (Crustacea, Amphipoda) deduced from mitochondrial DNA sequences. Molecular Phylogenetics and Evolution, 8, 1–10.CrossRefPubMedGoogle Scholar
  57. Meyran, J. C., & Taberlet, P. (1998). Mitochondrial DNA polymorphism among alpine populations of Gammarus lacustris (Crustacea, Amphipoda). Freshwater Biology, 39, 259–265.CrossRefGoogle Scholar
  58. Misof, B., Anderson, C. L., Buckley, T. R., Erpenbeck, D., Rickert, A., & Misof, K. (2002). An empirical analysis of mt 16S rRNA covariation-like evolution in insects: site-specific rate variation is clustered and frequently detected. Journal of Molecular Evolution, 55, 460–469.CrossRefPubMedGoogle Scholar
  59. Moritz, C. (1994). Defining ‘evolutionary significant units’ for conservation. Trends in Ecology & Evolution, 9, 373–375.CrossRefGoogle Scholar
  60. Moritz, C. (2002). Strategies to protect biological diversity and the evolutionary processes that sustain it. Systematic Biology, 51, 238–254.CrossRefPubMedGoogle Scholar
  61. Moritz, C., Dowling, T. E., & Brown, W. M. (1987). Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Annual Review of Ecology and Systematics, 18, 269–292.CrossRefGoogle Scholar
  62. Palacios, D., de Andrés, N., de Marcos, J., & Vázquez–Selem, L. (2012). Glacial landforms and their paleoclimatic significance in Sierra de Guadarrama, Central Iberian Peninsula. Geomorphology, 139 – 140, 67–78.CrossRefGoogle Scholar
  63. Palacios, D., de Marcos, J., & Vázquez–Selem, L. (2011). Last glacial maximum and deglaciation of Sierra de Gredos, central Iberian Peninsula. Quaternary International, 233, 16–26.CrossRefGoogle Scholar
  64. Pedraza–Lara, C., Alda, F., Carranza, S., & Doadrio, I. (2010). Mitochondrial DNA structure of the Iberian populations of the white-clawed crayfish, Austropotamobius italicus italicus (Faxon, 1914). Molecular Phylogenetics and Evolution, 57, 327–342.CrossRefPubMedGoogle Scholar
  65. Posada, D. (2008). jModeltest: phylogenetic model averaging. Molecular Biology and Evolution. doi: 10.1093/molbev/msn083.PubMedCentralGoogle Scholar
  66. Posada, D., & Crandall, K. A. (2001). Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology & Evolution, 16, 37–45.CrossRefGoogle Scholar
  67. Rambaut, A., & Drummond, A.J. (2009) Tracer v1.5. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh, United Kingdom. Accessed 19 May 2015.
  68. Ramos–Onsins, S. E., & Rozas, J. (2002). Statistical properties of new neutrality tests against population growth. Molecular Biology and Evolution, 19, 2092–2100.CrossRefPubMedGoogle Scholar
  69. Reed, D. H., & Frankham, R. (2003). Correlation between fitness and genetic diversity. Conservation Biology, 17, 230–237.CrossRefGoogle Scholar
  70. Reidys, C., Stadler, P. F., & Schuster, P. (1997). Generic properties of combinatory maps. Neutral networks of RNA secondary structure. Bulletin Math Biology, 59, 339–397.CrossRefGoogle Scholar
  71. Rice, W. R. (1989). Analyzing tables of statistical tests. Evolution, 43, 223–225.CrossRefGoogle Scholar
  72. Robinson, C. A., Thom, T. J., & Lucas, M. C. (2000). Ranging behaviour of a large freshwater invertebrate, the white-clawed crayfish Austropotamobius pallipes. Freshwater Biology, 43, 1–13.CrossRefGoogle Scholar
  73. Rogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–569.PubMedGoogle Scholar
  74. Rohlf, F. J. (2000). NTSYSpc: Numerical Taxonomy System, ver. 2.10q. Setauket, NY: Exeter Publishing, Ltd.Google Scholar
  75. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2011). MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.CrossRefGoogle Scholar
  76. Saccheri, I., Kuussaari, M., Kankare, M., Vikman, P., Fortelius, W., & Hanski, I. (1998). Inbreeding and extinction in a butterfly population. Nature, 392, 491–494.CrossRefGoogle Scholar
  77. Santucci, F., Iaconelli, M., Andreani, P., Cianchi, R., Nascetti, G., & Bullini, L. (1997). Allozyme diversity of European crayfish of the genus Austropotamobius. Bulletin Francais de la Peche et de la Pisciculture, 347, 663–676.CrossRefGoogle Scholar
  78. Schull, H. C., Pérez–Losada, M., Blair, D., Sewell, K., Sinclair, E. A., Lawler, S., Ponniah, M., & Crandall, K. A. (2005). Phylogeny and biogeography of the freshwater crayfish Euastacus (Decapoda: Parastacidae) based on nuclear and mitochondrial DNA. Molecular Phylogenetics and Evolution, 37, 249–263.CrossRefGoogle Scholar
  79. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting and phylogenetic utility of the mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651–701.CrossRefGoogle Scholar
  80. Sneath, P. H. A., & Sokal, R. R. (1973). Numerical taxonomy. San Francisco: W. H. Freeman and Co.Google Scholar
  81. Song, H., Buhay, J. E., Whiting, M. F., & Crandall, K. A. (2008). Many species in one: DNA barcoding overestimates the number of species when nuclear mitochondrial pseudogenes are coamplified. Proceedings of the National Academy of Sciences, 105, 13486–13491.CrossRefGoogle Scholar
  82. Souty–Grosset, C., Grandjean, F., Raimond, R., Frelon, M., Debenest, C., & Bramard, M. (1997). Conservation genetics of the white-clawed crayfish Austropotamobius pallipes: the usefulness of the mitochondrial DNA marker. Bulletin Francais de la Peche et de la Pisciculture, 347, 677–692.CrossRefGoogle Scholar
  83. Stefani, F., Zaccara, S., Delmastro, G. B., & Buscarino, M. (2009). The endangered white-clawed crayfish Austropotamobius pallipes (Decapoda, Astacidae) east and west of the Maritime Alps: a result of human translocation? Conservation Genetics, 12, 51–60.CrossRefGoogle Scholar
  84. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.PubMedPubMedCentralGoogle Scholar
  85. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  86. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The Clustal X window interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleid Acids Research, 24, 4876–4882.CrossRefGoogle Scholar
  87. Torre, M., & Rodríguez, P. (1964). El cangrejo de río. Servicio Nacional de Pesca Fluvial y Caza. Madrid: Ministerio de Agricultura.Google Scholar
  88. Trontelj, P., Machino, Y., & Sket, B. (2005). Phylogenetic and phylogeographic relationships in the crayfish genus Austropotamobius inferred from mitochondrial COI gene sequences. Molecular Phylogenetics and Evolution, 34, 212–226.CrossRefPubMedGoogle Scholar
  89. van der Peer, Y., Neefs, J. M., de Rijk, P., & de Wachter, R. (1993). Reconstructing evolution from eukaryotic small—ribosomal—subunit RNA sequences: calibration of the molecular clock. Journal of Molecular Evolution, 37, 221–232.CrossRefPubMedGoogle Scholar
  90. Vedia, I., & Miranda, R. (2013). Review of the state of knowledge of crayfish species in the Iberian Peninsula. Limnetica, 32(2), 269–286.Google Scholar
  91. Versteegen, M., & Lawler, S. (1997). Population genetics of the Murray River crayfish, Euastacus armatus. Freshwater Crayfish, 11, 146–157.Google Scholar
  92. Weir, B. S., & Cockerham, C. C. (1984). Estimating F—statistics for the analysis of population structure. Evolution, 38, 1358–1370.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2016

Authors and Affiliations

  • B. Matallanas
    • 1
  • M. D. Ochando
    • 1
  • F. Alonso
    • 2
  • C. Callejas
    • 1
  1. 1.Departamento de Genética, Facultad de Ciencias BiológicasUniversidad Complutense de MadridMadridSpain
  2. 2.Servicio de Montes y Espacios NaturalesCuencaSpain

Personalised recommendations