Organisms Diversity & Evolution

, Volume 16, Issue 2, pp 363–389 | Cite as

Review of data for a morphological look on Xenacoelomorpha (Bilateria incertae sedis)

  • Gerhard HaszprunarEmail author


Recent investigations by means of high-tech morphology, evo-devo studies and molecular data suggest that the taxon Xenacoelomorpha (Nemertodermatida and Acoela plus Xenoturbella), formerly considered as primitive flatworms (Plathelminthes) or even bivalve Mollusca, represents either a quite plesiomorphic grouping as the earliest bilaterian offshoot or but is a substantially reduced and simplified sidebranch of ambulacralian Deuterostomia. Herein, I provide a compilation and review of the current morphological data and possible interpretations of the various character states. Phenotypic and genotypic data suggest monophyly of Xenacoelomorpha. There is no specific similarity between xenacoelmorphs and deuerostome larvae, and reduction appears improbable in free-living and predatory animals. Accordingly, Xenacoelomorpha are more likely similar to Urbilateria rather than degenerated and simplified coelomate deuterostomes. If so, the ground pattern of Bilateria has been retained only partially in the remaining main bilaterian clades (Nephrozoa) after the deviation of the Xenacoelomorpha, namely the nervous system in the Deuterostomia and the body cavity conditions in the acoelomate Lophotrochozoa (particularly Platyzoa), Gastrotricha and cycloneuralian Ecdysozoa.


Xenacoelomorpha Urbilateria Phylogeny 



I thank two anonymous reviewers for their valuable comments on the draft of the typescript.


  1. Achatz, J. G., & Martinez, P. (2012). The nervous system of Isodiametra pulchra (Acoela) with a discussion on the neuroanatomy of the Xenacoelomorpha and its evolutionary implications. Frontiers in Zoology, 9(27). 21 pp.Google Scholar
  2. Achatz, J. G., Hooge, M., Wallberg, A., Jondelius, U., & Tyler, S. (2010). Systematic revision of acoels with 9+0 sperm ultrastructure (Convolutida) and the influence of sexual conflict on morphology. Journal of Zoological Systematics and Evolutionary Research, 48, 9–32.CrossRefGoogle Scholar
  3. Achatz, J. G., Chiodin, M., Salvenmoser, W., Tyler, S., & Martinez, P. (2013). The Acoela: on their kind and kinships, especially with nemertodermatids and xenoturbellids (Bilateria incertae sedis). Organisms, Diversity & Evolution, 13, 267–286.CrossRefGoogle Scholar
  4. Åkerman, M. (2004). On the behaviour and ecology of Xenoturbella sp. Masters-thesis at the University of Gotenbourg: 40 pp.Google Scholar
  5. Åkesson, B., Gschwentner, R., Hendelberg, J., Ladurner, P., Müller, J., & Rieger, R. (2001). Fission in Convolutriloba longifissura: asexual reproduction in acoelous turbellarians revisited. Acta Zoologica (Stockholm), 82, 231–240.Google Scholar
  6. Andrade, S., Novo, M., Kawauchi, G., Worsaae, K., Pleijel, F., Giribet, G., & Rouse, G. W. (2015). Articulating the “archiannelids”: a phylogenomic approach to annelid relationships with emphasis on meiofaunal taxa. Molecular Biology & Evolution, 32, 2860–2875.CrossRefGoogle Scholar
  7. Apelt, G. (1969a). Die Symbiose zwischen dem acoelen Turbellar Convoluta convoluta und Diatomeen der Gattung Licmophora. Marine Biology, 3, 165–187.CrossRefGoogle Scholar
  8. Apelt, G. (1969b). Fortpflanzungsbiologie, Entwicklungszyklen und vergleichende Frühentwicklung acoeler Turbellarien. Marine Biology, 4, 267–325.Google Scholar
  9. Arendt, D., & Wittbrodt, J. (2001). Reconstructing the eyes of Urbilateria. Philosophical Transactions of the Royal Society of London B: Biological Sciences 356, 1545–1563. doi: 10.1098/rstb.2001.0971
  10. Ax, P. (1996). Multicellular animals. Vol. 1. A new approach to the phylogenetic order in nature. New York: Springer Verlag. 220 pp.Google Scholar
  11. Ax, P., & Schulz, E. (1959). Ungeschlechtliche Fortpflanzung durch Paratomie bei acoelen Turbellarien. Biologisches Zentralblatt, 78, 613–622.Google Scholar
  12. Babcock, R. C., & Ryland, J. S. (1990). Larval development of a tropical zoanthid (Protopalythoa sp.). Invertebrate Reproduction & Development, 17, 229–236.CrossRefGoogle Scholar
  13. Baguña, J., & Riutort, M. (2004a). Molecular phylogeny of the Platyhelminthes. Canadian Journal of Zoology, 82, 168–193.CrossRefGoogle Scholar
  14. Baguña, J., & Riutort, M. (2004b). The dawn of bilaterian animals: the case of acoelomorph flatworms. BioEssays, 26, 1046–1057.PubMedCrossRefGoogle Scholar
  15. Baguña, J., Ruiz-Trillo, I., Paps, J., Loukota, M., Ribera, C., Londelius, U., & Riutort, M. (2002). The first bilaterian organisms: simple or complex? New molecular evidence. International Journal of Developmental Biology, 45(Suppl), S133–S134.Google Scholar
  16. Baguña, J., Martinez, P., Paps, J., & Riutort, M. (2008). Unravelling body-plan and axial evolution in the Bilateria with molecular phylogenetic markers. In A. Minelli & G. Fusco (Eds.), Evolving pathways: key themes in evolutionary developmental biology (pp. 213–235). Cambridge: Cambridge University Press.Google Scholar
  17. Bailly, X., Reichert, H., & Hartenstein, V. (2013). The urbilaterian brain revisited: novel insights into old questions from new flatworm clades. Development, Genes & Evolution, 223, 149–157.CrossRefGoogle Scholar
  18. Bailly, X., Laguerre, L., Correc, G., Dupont, S., Kurth, T., Pfannkuchen, A., Entzeroth, R., Probert, I., Vinogradov, S., Lechauve, C., Garet-Delmas, M. J., Reichert, H., & Hartenstein, V. (2014). The chimerical and multifaceted marine acoel Symsagittifera roscoffensis: from photosymbiosis to brain regeneration. Frontiers in Microbiology, 5(498). 13 pp.Google Scholar
  19. Balavoine, G., & Adoutte, A. (2003). The segmented Urbilateria: a testable scenario. Integrative & Comparative Biology, 43, 137–147.CrossRefGoogle Scholar
  20. Barneah, O., Brickner, I., Hooge, M., Weis, V. M., & Benayahu, Y. (2007). First evidence of maternal transmission of algal endosymbionts at an oocyte stage in a triploblastic host, with observations on reproduction in Waminoa brickneri (Acoelomorpha). Invertebrate Biology, 126, 113–119.CrossRefGoogle Scholar
  21. Bebenek, I. G., Gates, R. D., Morris, J., Hartenstein, V., & Jacobs, D. K. (2004). sine oculis in basal Metazoa. Development, Genes & Evolution, 214, 342–351.CrossRefGoogle Scholar
  22. Bedini, C., & Lanfranchi, A. (1991). The central and peripheral nervous system of Acoela (Plathelminthes). An electron microscopical study. Acta Zoologica (Stockholm), 72, 101–106.CrossRefGoogle Scholar
  23. Bedini, C., & Papi, F. (1970). Peculiar patterns of microtubular organisation in spermatozoa of lower Turbellaria. In B. Baccetti (Ed.), Comparative Spermatology. Accademia Nazionale dei Lincei (Vol. 137, pp. 363–368). New York: Academic.Google Scholar
  24. Bedini, C., & Papi, F. (1974). Fine structure of the turbellarian epidermis. In N. W. Riser & M. P. Morse (Eds.), Biology of the Turbellaria (pp. 108–147). New York: McGraw-Hill.Google Scholar
  25. Bedini, C., Ferrero, E., & Lanfranchi, A. (1973). The ultrastructure of the ciliary sensory cells in two Turbellaria Acoela. Tissue & Cell, 5, 359–372.CrossRefGoogle Scholar
  26. Bedini, C., Lanfranchi, A., & Santerini, D. (2001). Is GABA present in the nervous system of acoel plathelminthes? An electron immunocytochemical study. Italian Journal of Zoology, 68, 23–27.CrossRefGoogle Scholar
  27. Bely, A. E., & Sikes, J. M. (2010). Acoel and platyhelminth models for stem-cell research. Journal of Biology, 9(14). 4 pp.Google Scholar
  28. Berney, C., Pawlowski, J., & Zaninetti, L. (2000). Elongation factor 1-Alpha sequences do not support an early divergence of the Acoela. Molecular Biology & Evolution, 17, 1032–1037.CrossRefGoogle Scholar
  29. Bernt, M., Bleidorn, C., Brabant, A., Dambach, J., Donath, A., Fritzsch, G., Golombek, A., Hadrys, H., Jühling, F., Meusemann, K., Middendorf, M., Misof, B., Perseke, M., Podsiadlowski, L., von Reumont, B., Schierwater, B., Schlegel, M., Schrödl, M., Simon, S., Stadler, P. F., Stöger, I., & Struck, T. H. (2013). A comprehensive analysis of bilaterian mitochondrial genomes and phylogeny. Molecular Phylogenetics and Evolution, 69(2), 352–364.PubMedCrossRefGoogle Scholar
  30. Bery, A., & Martinez, P. (2011). Acetycholinesterase activity in the developing and regenerating nervous system of the acoel Symsagittifera roscoffensis. Acta Zoologica (Stockholm), 92, 383–392.CrossRefGoogle Scholar
  31. Bery, A., Cardona, A., Martinez, P., & Hartenstein, V. (2010). Structure of the central nervous system of a juvenile acoel, Symsagittifera roscoffensis. Development, Genes & Evolution, 220, 61–76.CrossRefGoogle Scholar
  32. Birstein, V. J. (1990). First contribution to karyology of two acoels (Turbellaria) and a dinophilid (Annelida). Biologisches Zentralblatt, 109, 169–174.Google Scholar
  33. Boelsterli, U. (1977). An electron microscopic study of early developmental stages, myogenesis, oogenesis and cnidogenesis in the anthomedusa Podocoryne carnea M. Sars. Journal of Morphology, 154, 259–290.PubMedCrossRefGoogle Scholar
  34. Boguta, K. K. (1972). Early ontogenesis of Anaperus biaculeatus (Turbellaria, Acoela) (in Russian, English abstract). Zoologicheskii Zhurnal, 51, 332–340.Google Scholar
  35. Boguta, K. K. (1976). Morphodynamics of the nervous system in the regenerative processes of Convoluta convoluta (Turbellaria, Acoela) (in Russian). Arkhiv Anatomii, Gistologii i Embriologii, 70, 98–103.PubMedGoogle Scholar
  36. Boguta, K.K., & Mamkaev, Yu.V. (1972).Structure of the parenchyma of acoelous turbellarians (in Russian). Vestnik Leningradskogo Gosudarstvennogo Universiteta. Seriya Biologii, 1972/2(9), 15–29.Google Scholar
  37. Boone, M., Bert, W., Claeys, M., Houthoofd, W., & Artois, T. (2011a). Spermatogenesis and the structure of the testes in Nemertodermatida. Zoomorphology, 130, 273–282.CrossRefGoogle Scholar
  38. Boone, M., Willems, M., Claeys, M., & Artois, T. (2011b). Spermatogenesis and the structure of the testes in Isodiametra pulchra (Isodiametridae, Acoela). Acta Zoologica (Stockholm), 92, 101–108.CrossRefGoogle Scholar
  39. Børve, A., & Hejnol, A. (2011). The molecular patterning of the digestive tract of the nemertodermatid Meara stichopi—implication on bilaterian gut evolution. Abstracts of ICIM, 2011, 44.Google Scholar
  40. Børve, A., & Hejnol, A. (2014). Development and juvenile anatomy of the nemertodermatid Meara stichopi (Bock) Westblad 1949 (Acoelomorpha). Frontiers in Zoology, 11(50). 14 pp.Google Scholar
  41. Bourlat, S. J., Nielsen, C., Lockyer, A. E., Littlewood, D. T., & Telford, M. J. (2003). Xenoturbella is a deuterostome that eats molluscs. Nature (London), 424, 925–928.CrossRefGoogle Scholar
  42. Bourlat, S. J., Juliusdottir, T., Lowe, C. J., Freeman, R., Aronowic, J., Kirschner, M., Lander, E. S., Throndyke, M., Nakano, H., Kohn, A. B., Heyland, A., Moroz, L. L., Copley, R. R., & Telford, M. J. (2006). Deuterostome phylogeny reveals monophyletic chordates and the new phylum Xenoturbellida. Nature (London), 444, 85–89.CrossRefGoogle Scholar
  43. Bourlat, S. J., Nakano, H., Åkerman, M., Telford, M. J., Throndyke, M. C., & Obst, M. (2008). Feeding ecology of Xenoturbella bocki (phylum Xenoturbellida) revealed by genetic barcoding. Molecular Ecology Resources, 8, 18–22.PubMedCrossRefGoogle Scholar
  44. Bourlat, S. J., Rota-Stabelli, O., Lanfear, R., & Telford, M. J. (2009). The mitochondrial genome structure of Xenoturbella bocki (phylum Xenoturbellida) is ancestral within the deuterostomes. BMC Evolutionary Biology, 9(107). 14 pp.Google Scholar
  45. Bowie, E., Kaschutnig, P., Intwala, A.R., & Smith, J. III. (2012). The Hedgehog pathway in the basal bilaterian Isodiametra pulchra (Acoelomorpha). Abstracts of South Carolina INBRE. <>.
  46. Boyer, B. C. (1971). Regulative development in an embryo as shown by cell deletion experiments on the acoel Childia. Journal of Experimental Zoology, 176, 97–105.PubMedCrossRefGoogle Scholar
  47. Boyer, B. C., & Smith, G. W. (1982). Sperm morphology and development in two acoel turbellarians from the Philippines. Pacific Science, 36, 365–380.Google Scholar
  48. Boyer, B. C., Henry, J. Q., & Martindale, M. Q. (1996). Modified spiral cleavage: the duet cleavage pattern and early blastomere fates in the acoel turbellarian Neochildia fusca. Biological Bulletin, 191, 285–286.CrossRefGoogle Scholar
  49. Boyer, B.C., Henry, J.Q., & Martindale, M.Q. (2001). The development of Neochildia fusca supports the position of the acoels as basal bilaterians. In E. Saló, N.A. Watson, & E. Schockaert (Eds.): Proceedings of the 9th International Symposium “Biology of the Turbellaria”, Barcelona 2000. Belgian Journal of Zoology, 131 (Suppl 1), 59–60.Google Scholar
  50. Bresslau, E. (1904). Beiträge zur Entwicklungsgeschichte der Turbellarien. 1. Die Entwicklung der Rhabdocoelen und Alloecoelen. Zeitschrift für wissenschaftliche Zoologie, 76, 213–332. pls. 14-20.Google Scholar
  51. Brüggemann, J. (1985a). Ultrastructure and formation of the bursa mouthpiece of Philocelis cellata (Platyhelminthes, Acoela). Hydrobiologia., 128, 23–30.CrossRefGoogle Scholar
  52. Brüggemann, J. (1985b). Ultrastruktur und Bildungsweise genitaler Hartstrukturen bei freilebenden Plathelminthen. Zoomorphology, 105, 143–189.CrossRefGoogle Scholar
  53. Brüggemann, J. (1986). Ultrastructural investigations on the differentiation of genital hard structures in free-living platyhelminths and their phylogenetic significance. Hydrobiologia, 132, 151–156.CrossRefGoogle Scholar
  54. Butts, T., Holland, P. W. H., & Ferrier, D. E. K. (2008). The Urbilaterian Super-Hox cluster. Trends in Genetics, 24, 259–262.PubMedCrossRefGoogle Scholar
  55. Carranza, S., Baguña, J., & Riutort, M. (1997). Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Molecular Biology & Evolution, 14, 485–497.CrossRefGoogle Scholar
  56. Chandler, R. M., Thomas, M. B., & Smith, J. P. S., III. (1992). The role of shell granules and accessory cells in eggshell formation in Convoluta pulchra (Turbellaria, Acoela). Biological Bulletin, 182, 54–65.CrossRefGoogle Scholar
  57. Chernova, E. E., Zabotin, Y. I., & Golubev, A. I. (2012). Ultrastructure of gametes and their formation in the acoel turbellarian Convoluta convoluta (Acoela) (in Russian). Uchenye Zapiski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 154, 129–138.Google Scholar
  58. Chiodin, M., Achatz, J. G., Wanninger, A., & Martinez, P. (2011). Molecular architecture of muscles in an acoel and its evolutionary implications. Journal of Experimental Zoology, Series B: Molecules, Development & Evolution, 316, 427–439.CrossRefGoogle Scholar
  59. Chiodin, M., Børve, A., Berezikov, E., Ladurner, P., Martinez, P., & Hejnol, A. (2013). Mesodermal gene expression in the acoel Isodiametra pulchra indicates a low number of mesodermal cell types and the endomesodermal origin of the gonads. PLoS ONE, 8(2), e55499 (15 pp).PubMedPubMedCentralCrossRefGoogle Scholar
  60. Cook, C. E., Jiménez, E., Akam, M., & Saló, E. (2004). The Hox gene complement of acoel flatworms, a basal bilaterian clade. Evolution & Development, 6, 154–163.CrossRefGoogle Scholar
  61. Costello, D. P., Henley, C., & Ault, C. (1969). Microtubules in spermatozoa of Childia (Turbellaria, Acoela) revealed by negative staining. Science, 163, 678–679.PubMedCrossRefGoogle Scholar
  62. Crezée, M. (1975). Monograph of the Solenofilomorphidae (Turbellaria: Acoela). Internationale Revue der gesamten Hydrobiologie, 60, 769–845.CrossRefGoogle Scholar
  63. Crezée, M., & Tyler, S. (1976). Hesiolicium gen.n. (Turbellaria, Acoela) and observations on its ultrastructure. Zoologica Scripta, 5, 207–216.CrossRefGoogle Scholar
  64. De Mendoza, A., & Ruiz-Trillo, I. (2011). The mysterious evolutionary origin for the GNE gene and the root of Bilateria. Molecular Biology & Evolution, 28, 2987–2991.CrossRefGoogle Scholar
  65. De Mulder, K., Kuales, G., Pfister, D., Willems, M., Egger, B., Salvenmoser, W., Thaler, M., Gorny, A.-K., Hrouda, M., Borgonie, G., & Ladurner, P. (2009). Characterization of the stem cell system of the acoel Isodiametra pulchra. BMC Developmental Biology, 9(69). 17 pp.Google Scholar
  66. Deutsch, J. S. (2008). Do acoels climb up the “Scale of Beings”? Evolution & Development, 10, 135–240.CrossRefGoogle Scholar
  67. Deutsch, J. S., & LeGuyader, H. (1998). The neuronal zootype. An hypothesis. Comptes Rendus de l’Academie des Sciences de Paris, III, 321, 713–719.Google Scholar
  68. Dewel, R. A. (1999). Colonial origin for Eumetazoa: major morphological transitions and the origin of bilaterian complexity. Journal of Morphology, 243, 355–374.Google Scholar
  69. Doe, D. A. (1981). Comparative ultrastructure of the pharynx simplex in Turbellaria. Zoomorphology, 97, 133–193.CrossRefGoogle Scholar
  70. Dorey, A. E. (1965). The organization and replacement of the epidermis in acoelous turbellarians. Quarterly Journal of microscopical Science, 106, 147–172.PubMedGoogle Scholar
  71. Drobysheva, I.M. (1979). New data on the morphology of Convoluta convoluta (Turbellaria, Acoela). In: Evolutionary morphology in invertebrates (in Russian, English abstract). Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 84, 3–6, pls. 1–2.Google Scholar
  72. Drobysheva, I. M. (1983). Autoradiographic study of the digestive parenchyma in Convoluta convoluta (Turbellaria, Acoela) (in Russian, English abstract). Tsitologiya, 25, 1270–1277. pls. 1–2.Google Scholar
  73. Drobysheva, I. M. (1986). Physiological regeneration of the digestive parenchyma in Convoluta convoluta and Oxyposthia praedator (Turbellaria, Acoela). Hydrobiologia, 132, 189–193.CrossRefGoogle Scholar
  74. DuBuc, T. Q., Ryan, J. F., Shinzato, C., Satoh, N., & Martindale, M. Q. (2012). Coral comparative genomics reveal expanded Hox cluster in the cnidarian-bilaterian ancestor. Integrative & Comparative Biology, 52, 835–841.CrossRefGoogle Scholar
  75. Duffy, J. E., & Tyler, S. (1984). Quantitative differences in mitochondrial ultrastructure of a thiobiotic and an oxybiotic turbellarian. Marine Biology, 83, 95–102.CrossRefGoogle Scholar
  76. Egger, B., Steinke, D., Tarui, H., Funayama, N., Gschwentner, R., Hartenstein, V., Hobmayer, B., Hooge, M., Hrouda, M., Ishida, S., Kobayashi, C., Kuales, G., Nishimura, O., Pfister, D., Rieger, R., Salvenmoser, W., Smith, J. P. S. I. I. I., Technau, U., Tyler, S., Agata, K., Salzburger, W., & Ladurner, P. (2009). To be or not to be a flatworm: the acoel controversy. PLoS ONE, 4(5), e5502 (10 pp).PubMedPubMedCentralCrossRefGoogle Scholar
  77. Ehlers, U. (1985). Das phylogenetische system der Plathelminthes. Stuttgart: Gustav Fischer. 317 pp.Google Scholar
  78. Ehlers, U. (1991). Comparative morphology of statocysts in the Plathelminthes and the Xenoturbellida. In: S. Tyler (Ed.): Turbellarian Biology. Hydrobiologia, 227, 263–271.CrossRefGoogle Scholar
  79. Ehlers, U. (1992a). Dermonephridia-modified epidermal cells with a probable excretory function in Paratomella rubra (Acoela, Plathelminthes). Microfauna Marina, 7, 253–264.Google Scholar
  80. Ehlers, U. (1992b). On the fine structure of Paratomella rubra Rieger and Ott (Acoela) and the position of the taxon Paratomella Dörjes in a phylogenetic system of the Acoelomorpha (Plathelminthes). Microfauna Marina, 7, 265–293.Google Scholar
  81. Ehlers, U. (1992c). “Pulsatile bodies” in Anaperus tvaerminnensis (Luther, 1912) (Acoela, Plathelminthes) are degenerating epidermal cells. Microfauna Marina, 7, 295–310.Google Scholar
  82. Ehlers, U. (1992d). Frontal glandular and sensory structures in Nemertoderma (Nermertodermatida) and Paratomella (Acoela): ultrastructure and phylogenetic implications for the monophyly of the Euplathelminthes (Plathelminthes). Zoomorphology, 112, 227–236.CrossRefGoogle Scholar
  83. Ehlers, U. (1994). Ultrastructure of the unusual body-wall musculature of Anaperus tvaerminnensis (Acoela, Plathelminthes). Microfauna Marina, 9, 291–301.Google Scholar
  84. Ehlers, U., & Sopott-Ehlers, B. (1997a). Xenoturbella bocki: organization and phylogenetic position as sister taxon of the Bilateria. Verhandlungen der Deutschen Zoologischen Gesellschaft, 90(1), 168.Google Scholar
  85. Ehlers, U., & Sopott-Ehlers, B. (1997b). Ultrastructure of the subepidermal musculature of Xenoturbella bocki, the adelphotaxon of the Bilateria. Zoomorphology, 117, 71–79.CrossRefGoogle Scholar
  86. Erwin, D. H. (2009). Early origin of the bilaterian developmental toolkit. Philosohpical Transactions of the Royal Society of London, B, 364, 2253–2261.CrossRefGoogle Scholar
  87. Erwin, D. A., & Davidson, E. H. (2002). The last common bilaterian ancestor. Development, 129, 3021–3032.PubMedGoogle Scholar
  88. Extavour, C. G. M. (2008). Urbisexuality: the evolution of bilaterian germ cell specification and reproductive systems. In A. Minelli & G. Fusco (Eds.), Evolving pathways: key themes in evolutionary developmental biology (pp. 321–342). Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  89. Falleni, A., & Gremigni, V. (1989). Egg covering formation in the acoel Convoluta psammophila (Platyhelminthes, Turbellaria): an ultrastructural and cytochemical investigation. Acta Embryologiae et Morphologiae Experimentalis (N.S.), 10, 105–112.Google Scholar
  90. Falleni, A., & Gremigni, V. (1990). Ultrastructural study of oogenesis in the acoel turbellarian Convoluta. Tissue & Cell, 22, 301–310.CrossRefGoogle Scholar
  91. Falleni, A., Raikova, O., & Gremigni, V. (1995). Ultrastructural and cytochemical features of the ovary in Paratomella rubra (Platyhelminthes, Acoela). Journal of submicroscopical Cytology and Pathology, 27, 511–523.Google Scholar
  92. Ferrero, E. A. (1973). A fine structure analysis of the statocyst in Turbellaria Acoela. Zoologica Scripta, 2, 5–16.CrossRefGoogle Scholar
  93. Ferrero, E. A., & Bedini, C. (1991). Ultrastructural aspects of nervous-system and statocyst morphogenesis during embryonic development of Convoluta psammophila (Turbellaria, Acoela). In S. Tyler (Ed.), Turbellarian Biology. Hydrobiologia, 227, 131–137.CrossRefGoogle Scholar
  94. Franzén, A. (1989). Xenoturbella bocki, en unik djurart fran svenska vastkusten. Fauna och Flora, 84, 251–261.Google Scholar
  95. Franzén, A., & Afzelius, B. A. (1987). The ciliated epidermis of Xenoturbella bocki (Platyhelminthes, Xenoturbellida) with some phylogenetic considerations. Zoologica Scripta, 16, 9–17.CrossRefGoogle Scholar
  96. Fritzsch, G., Böhme, M. U., Thorndyke, M., Nakano, H., Israelsson, O., Stach, T., Schlegel, M., Hankeln, T., & Stadler, P. F. (2008). PCR survey of Xenoturbella bocki Hox Genes. Journal of Experimental Biology, B: Molecular Biology & Evolution, 310, 278–284.Google Scholar
  97. Gaerber, G. W., Salvenmoser, W., Rieger, R. M., & Gschwentner, R. (2007). The nervous system of Convolutriloba (Acoela) and its patterning during regeneration after asexual reproduction. Zoomorphology, 126, 72–87.CrossRefGoogle Scholar
  98. Gazizova, G. R., Zabotin, Y. I., Malyutina, L. V., & Golubev, A. I. (2013). Structure of parenchyma in turbellarians: ultrastructural and phylogenetic aspects (in Russian, English abstract). Uchenye Zapinski Kazanskogo Universiteta. Seriya Estestvennye Nauki, 155, 99–115.Google Scholar
  99. Gee, H. (2003). Zoology: you aren’t what you eat [comment to Bourlat et al. 2003]. Nature (London), 424, 885–886.CrossRefGoogle Scholar
  100. Ghysen, A. (2003). The origin and evolution of the nervous system. International Journal of Developmental Biology, 47, 555–562.PubMedGoogle Scholar
  101. Grande, C., Martín-Durán, J. M., Kenny, N. J., Truchado-Garcia, M., & Hejnol, A. (2014). Evolution, divergence and loss of the Nodal signalling pathway: new data and a synthesis across the Bilateria. International Journal of Developmental Biology, 58, 521–532.PubMedCrossRefGoogle Scholar
  102. Gruhl, A., Wegener, I., & Bartolomaeus, T. (2009). Ultrastructure of the body cavities in Phylactolaemata (Bryozoa). Journal of Morphology, 270, 306–318.PubMedCrossRefGoogle Scholar
  103. Gschwentner, R., Ladurner, P., Salvenmoser, W., Rieger, R., & Tyler, S. (1999). Fine structure and evolutionary significance of sagittocysts of Convolutriloba longifissura (Acoela, Platyhelminthes). Invertebrate Biology, 118, 332–345.CrossRefGoogle Scholar
  104. Gschwentner, R., Ladurner, P., Nimeth, K., & Rieger, R. (2001). Stem cells in a basal bilaterian: S-phase and mitotic cells in Convolutriloba longifissura (Acoela, Platyhelminthes). Cell & Tissue Research, 304, 401–408.CrossRefGoogle Scholar
  105. Gschwentner, R., Baric, S., & Rieger, R. (2002). New model for the formation and function of sagittocysts: Symsagittifera corsicae n.sp. (Acoela). Invertebrate Biology, 121, 95–103.CrossRefGoogle Scholar
  106. Gschwentner, R., Müller, M., Ladurner, P., Rieger, R., & Tyler, S. (2003). Unique patterns of longitudinal body-wall musculature in the Acoela: the ventral musculature of Convolutriloba longifissura. Zoomorphology, 122, 55–62.Google Scholar
  107. Gureeva, M. A. (1985). Enantiomorphism during cleavage of acoelic turbellarians. Doklady of the Academy of Sciences of the U.S.S.R., 281, 116–117.Google Scholar
  108. Gureeva, M. A., & Mamkaev, Y. V. (1985a). Morphological egg-cleavage patterns in acoelous turbellarians (Acoela). 1. Variants of egg-cleavage patterns in the genus Convoluta (in Russian, English abstract). Zoologicheskii Zhurnal, 64, 1621–1631.Google Scholar
  109. Gureeva, M. A., & Mamkaev, Y. V. (1985b). Morphological egg-cleavage patterns in acoelous turbellarians (Acoela). Variants of egg-cleavage patterns in Oxyposthia predator (in Russian, English abstract). Zoologicheskii Zhurnal, 64, 1783–1794.Google Scholar
  110. Gureeva, M.A., & Mamkaev, Yu.V. (1989). Embryonal development of Oxyposthia preadator (Turbellaria, Acoela): implications to the problem of the primitivity of the Acoela (in Russian). In Yu.V. Mamkaev & B.I. Joffe (Eds.), Morphology of Turbellarians. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 195, 3–13, pls. 2–4.Google Scholar
  111. Hanson, E. D. (1967). Regeneration in acoelous flatworms: the role of the peripheral parenchyma. Roux’ Archiv der Entwicklungsmechanik, 159, 298–313.CrossRefGoogle Scholar
  112. Haszprunar, G. (1986). Feinmorphologische Untersuchungen an Sinnesstrukturen ursprünglicher Solenogastres (Mollusca). Zoologischer Anzeiger, 217, 345–362.Google Scholar
  113. Haszprunar, G. (1996a). Plathelminthes and Plathelminthomorpha—paraphyletic taxa. Journal of Zoological Systematics and Evolutionary Research, 34, 41–48.CrossRefGoogle Scholar
  114. Haszprunar, G. (1996b). The Mollusca: coelomate turbellarians or mesenchymate annelids? In J. D. Taylor (Ed.), Origin and evolutionary radiation of the Mollusca (pp. 1–28). Oxford: Oxford University Press.Google Scholar
  115. Haszprunar, G. (2011). Species delimitations—not ‘only descriptive’. Organisms, Diversity & Evolution, 11, 249–252.CrossRefGoogle Scholar
  116. Hejnol, A. (2015a). Acoelomorpha and Xenoturbellida. In A. Wanninger (Ed.), Evolutionary developmental biology of invertebrates vol. 1: introduction, non-Bilateria, Acoelomorpha, Xenoturbellida, Chaetognatha. Wien, Springer Verlag, pp. 203–214.Google Scholar
  117. Hejnol, A. (2015b). Acoelomorpha. In: A. Schmidt-Rhaesa, S. Harzsch, & G. Purschk (Eds.), Structure and evolution of invertebrate nervous systems. Oxford, Oxford University Press (in press).Google Scholar
  118. Hejnol, A., & Martindale, M.Q. (2008a). Acoel development supports a simple planula-like urbilaterian. In M.J. Telford & D.T.J. Littlewood (Eds.), Evolution of the animals—a Linnean terceniary celebration. Philosophical Transactions of the Royal Society of London, B 363, 1493–1501.Google Scholar
  119. Hejnol, A., & Martindale, M. Q. (2008b). Acoel development indicates the independent evolution of the bilaterian mouth and anus. Nature (London), 456, 382–384.CrossRefGoogle Scholar
  120. Hejnol, A., & Martindale, M. Q. (2008c). From nerve net to CNS—evolutionary impacts from the development of an acoel. Abstracts of ICIM-1. Journal of Morphology, 269, 1459.Google Scholar
  121. Hejnol, A., & Martindale, M. Q. (2009). Coordinated spatial and temporal expression of Hox genes during embryogenesis in the acoel Convolutriloba longifissura. BMC Biology, 7(65). 17 pp.Google Scholar
  122. Hejnol, A., & Martín-Durán, J. M. (2015). Getting to the bottom of anal evolution. Zoologischer Anzeiger, 256, 61–74.CrossRefGoogle Scholar
  123. Hendelberg, J. (1969). On the development of different types of spermatozoa from spermatids with two flagella in the Turbellaria with remarks on the ultrastructure of the flagella. Zoologiska Bidrag Uppsala, 38, 1–52.Google Scholar
  124. Hendelberg, J. (1974). Spermiogenesis, sperm morphology, and biology of fertilization in the Turbellaria. In N. W. Riser & M. P. Morse (Eds.), Biology of the Turbellaria (pp. 148–164). New-York: McGraw-Hill.Google Scholar
  125. Hendelberg, J. (1976). Granules of glycogen beta-particle type demonstrated in epidermal ciliary rootlets of acoelous turbellarians. Journal of Ultrastructure Research, 54, 491.Google Scholar
  126. Hendelberg, J. (1977). Comparative morphology of turbellarian spermatozoa studied by electron microscopy. Acta Zoologica Fennica, 154, 149–162.Google Scholar
  127. Hendelberg, J. (1981). The system of epidermal ciliary rootlets in Turbellaria. Hydrobiologia, 84, 240.CrossRefGoogle Scholar
  128. Hendelberg, J., & Hedlund, K.-O. (1974). On the morphology of the epidermal ciliary rootlet system of the acoelous turbellarian Childia groenlandica. Zoon, 2, 13–24.Google Scholar
  129. Henley, C. (1968). Refractile bodies in the developing and mature spermatozoa of Childia groenlandica (Turbellaria: Acoela) and their possible significance. Biological Bulletin, 134, 382–397.PubMedCrossRefGoogle Scholar
  130. Henley, C. (1974). Platyhelminthes (Turbellaria). In A. C. Giese & J. S. Pearse (Eds.), Reproduction of marine invertebrates. Vol. I. Acoelomate and pseudocoelomate metazoans (pp. 267–343). New York: Academic.CrossRefGoogle Scholar
  131. Henley, C., & Costello, D. P. (1969). Microtubules in spermatozoa of some turbellarian flatworms. Biological Bulletin, 137, 403.Google Scholar
  132. Henley, C., Costello, D. P., & Ault, C. R. (1968). Microtubules in the axial filament complexes of acoel turbellarian spermatozoa as revealed by negative staining. Biological Bulletin, 135, 422–423.Google Scholar
  133. Henry, J. Q., Martindale, M. Q., & Boyer, B. C. (2000). The unique developmental program of the acoel flatworm, Neochildia fusca. Developmental Biology, 220, 285–295.PubMedCrossRefGoogle Scholar
  134. Hirose, E., & Hirose, M. (2007). Body colors and algal distribution in the acoel flatworm Convolutriloba longifissura: histology and ultrastructure. Zoological Sciences, 24, 1241–1246.CrossRefGoogle Scholar
  135. Hoffmann, F. G., Opazo, J. C., Hooewijs, D., Hankeln, T., Ebner, B., Vinogradov, S. N., Bailly, X., & Storz, J. F. (2012). Evolution of the globin gene family in deuterostomes: lineage-specific patterns of diversification and attrition. Molecular Biology & Evolution, 29, 1735–1745.CrossRefGoogle Scholar
  136. Holland, L. Z., Carvalho, J. E., Escriva, H., Laudet, V., Schubert, M., Shimeld, S. M., & Yu, J.-K. (2013). Evolution of bilaterian central nervous systems: a single origin? EvoDevo, 4(27). 20 pp.Google Scholar
  137. Hooge, M. D. (2001). Evolution of body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). Journal of Morphology, 249, 171–194.PubMedCrossRefGoogle Scholar
  138. Hooge, M. D. (2003). Two new families, three new genera, and four new species of acoel flatworms (Acoela, Platyhelminthes) from Queensland, Australia. Cahiers de Biologie Marine, 44, 275–298.Google Scholar
  139. Hooge, M. D., & Tyler, S. (2005). New tools for resolving phylogenies: a systematic revision of the Convolutidae (Acoelomorpha, Acoela). Journal of Zoological Systematics and Evolutionary Research, 43, 100–113.CrossRefGoogle Scholar
  140. Hooge, M. D., & Tyler, S. (2006). Concordance of molecular and morphological data: the example of the Acoela. Integrative & Comparative Biology, 46, 118–124.CrossRefGoogle Scholar
  141. Hooge, M. D., & Tyler, S. (2015). Two new acoels (Acoelomorpha) of the genus Haplogonaria from the northwest Atlantic. Zootaxa, 4013, 111–119.PubMedCrossRefGoogle Scholar
  142. Hooge, M. D., Haye, P. A., Tyler, S., Litvaitis, M. K., & Kornfield, I. (2002). Molecular systematics of the Acoela (Acoelomorpha, Platyhelminthes) and its concordance with morphology. Molecular Phylogenetics & Evolution, 24, 333–342.CrossRefGoogle Scholar
  143. Hooge, M. D., Wallberg, A., Todt, C., Maloy, A., Jondelius, U., & Tyler, S. (2007). A revision of the systematics of panther worms (Hofstenia spp., Acoela), with notes on color variation and genetic variation within the genus. Hydrobiologia, 592, 439–454.CrossRefGoogle Scholar
  144. Hori, I., Hikosaka-Katayama, T., & Kishida, Y. (1999). Cytological approach to morphogenesis in the planarian blastema. III. Ultrastructure and regeneration of the acoel turbellarian Convoluta naikaiensis. Journal of Submicroscopical Cytology and Pathology, 31, 247–258.Google Scholar
  145. Hrouda, M. (2007) Molecular analysis of the evolution of bilaterian body axes: Wnt and Bmp—signalling in Isodiametra pulchra and Macrostomum lignano (Acoelomorpha, Macrostomorpha; Platyhelminthes). Dissertation, University of Innsbruck.Google Scholar
  146. Israelsson, O. (1997). … molluscan embryogenesis. [see Noren & Jondelius, 1997]. Nature (London), 390, 32.CrossRefGoogle Scholar
  147. Israelsson, O. (1999a). New light on the enigmatic Xenoturbella (phylum uncertain): ontogeny and phylogeny. Proceedings of the Royal Society of London, B, 266, 835–841.CrossRefGoogle Scholar
  148. Israelsson, O. (1999b). Morphology and metabolism of the enigmatic Xenoturbella (Bivalvia, Protobranchia; formerly phylum uncertain). Abstracts of the 65th Annual Meeting of the AMS, Pittsburgh 1999, 35.Google Scholar
  149. Israelsson, O. (2001). Xenoturbella (phylum uncertain): the appearance and loss of everything during its development. In L. Salvini-Plawen, J. Voltzow, H. Sattmann, & G Steiner (Eds.), Abstracts of the World Congress of Malacology 2001 inVienna, 161.Google Scholar
  150. Israelsson, O. (2006). Observations on some unusual cell types in the enigmatic worm Xenoturbella (phylum uncertain). Tissue & Cell, 38, 233–242.CrossRefGoogle Scholar
  151. Israelsson, O. (2007a). Chlamydial symbionts in the enigmatic Xenoturbella (Deuterostomia). Journal of Invertebrate Pathology, 96, 213–220.PubMedCrossRefGoogle Scholar
  152. Israelsson, O. (2007b). Ultrastructural aspects of the ‘statocyst’ of Xenoturbella (Deuterostomia) cast doubt on its function as a georeceptor. Tissue & Cell, 39, 171–177.CrossRefGoogle Scholar
  153. Israelsson, O. (2008). Xenoturbella (Deuterostomia) probably feeds on dissolved organic matter. Marine Biology Research, 4, 384–391.CrossRefGoogle Scholar
  154. Israelsson, O., & Budd, G. E. (2005). Eggs and embryos in Xenoturbella (phylum uncertain) are not ingested prey. Development, Genes & Evolution, 215, 358–363.CrossRefGoogle Scholar
  155. Ivanov, V. P., & Mamkaev, Y. V. (1977). Über die Struktur des Digestionsparenchyms bei Turbellaria Acoela. Acta Zoologica Fennica, 154, 59–61.Google Scholar
  156. Ivanov, V. P., Mamkaev, Y. V., & Pevzner, R. A. (1972). Electron microscopic study of the statocyst of Convoluta convoluta, a turbellarian of the order Acoela (in Russian, English translation provided by Seth Tyler). Journal of Evolutionary Biochemistry & Physiology, 8, 162–168.Google Scholar
  157. Jiménez-Guri, E., Paps, J., Garcia-Fernandez, J., & Saló, E. (2006). Hox and ParaHox genes in Nemertodermatida, a basal bilaterian clade. International Journal of Developmental Biology, 50, 675–679.PubMedCrossRefGoogle Scholar
  158. Joffe, B. I. (1991). On the number and spatial distribution of the catocholamine-containing (GA-positive) neurons in some higher and lower turbellarians—a comparison. In S. Tyler (Ed.): Turbellarian Biology. Hydrobiologia, 227, 201–208.CrossRefGoogle Scholar
  159. Jondelius, U., Ruiz-Trillo, I., Baguña, J., & Riutort, M. (2002). The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zoologica Scripta, 31, 201–216.CrossRefGoogle Scholar
  160. Jondelius, U., Larsson, K., & Raikova, O. (2004). Cleavage in Nemertoderma westbladi (Nemertodermatida) and its phylogenetic significance. Zoomorphology, 123, 221–225.CrossRefGoogle Scholar
  161. Jondelius, U., Wallberg, A., Hooge, M., & Raikova, O. I. (2011). How the worm got its pharynx: phylogeny, classification and Bayesian assessment of character evolution in Acoela. Systematic Biology, 60, 845–875.PubMedCrossRefGoogle Scholar
  162. Justine, J.-L., Iomini, C., Raikova, O. I., & Mollaret, I. (1998). The homology of cortical microtubules in platyhelminth spermatozoa: a comparative immunocytochemical study of acetylated tubulin. Acta Zoologica (Stockholm), 79, 235–241.CrossRefGoogle Scholar
  163. Katayama, T., Nishioka, M., & Yamamoto, M. (1996). Phylogenetic relationships of turbellarian orders inferred from 18S rDNA sequences. Zoological Science (Tokyo), 13, 747–756.CrossRefGoogle Scholar
  164. Katayama, T., Yamamoto, M., Wada, H., & Satoh, N. (1993). Phylogenetic position of acoel turbellarians inferred from 18S rDNA sequences. Zoological Sciences (Tokyo), 10, 529–536.Google Scholar
  165. Kjeldsen, K. U., Obst, M., Nakano, H., Funch, P., & Schramm, A. (2010). Two types of endosymbiotic bacteria in the enigmatic marine worm Xenoturbella bocki. Applied & Environmental Microbiology, 76(2657), 2662.Google Scholar
  166. Klauser, M. D., Smith, J. P. S. I. I. I., & Tyler, S. (1985). Ultrastructure of the frontal organ in Convolutapulchra” and Macrostomum spp.: significance for models of the turbellarian archetype. Hydrobiologia, 132, 47–52.CrossRefGoogle Scholar
  167. Klima, J. (1967). Zur Feinstruktur des acoelen Süßwasser-Turbellars Oligochoerus limnophilus Ax & Dörjes. Berichte des naturwissenschaftlich-medizinischen Vereins zu Innsbruck, 55, 107–124.Google Scholar
  168. Kotikova, E. A., & Raikova, O. I. (2008). Architectonics of the central nervous system of Acoela, Platyhelminthes, and Rotifera. Journal of Evolutionary Biochemistry & Physiology, 44, 95–108.CrossRefGoogle Scholar
  169. Kozloff, E. N. (2000). Differentiation, dedifferentiation, and redifferentiation of reproductive structures of the acoel flatworm Otocelis luteola, and notes on longevity of this species. Invertebrate Reproduction & Development, 37, 95–106.CrossRefGoogle Scholar
  170. Kuzmina, T. V., & Malakhov, V. V. (2015). The accessory hearts of the articulate brachiopod Hemithyris psittacea. Zoomorphology, 134, 25–32.CrossRefGoogle Scholar
  171. Ladurner, P., & Rieger, R. (2000). Embryonic muscle development of Convoluta pulchra (Turbellaria—Acoelomorpha, Platyhelminthes). Developmental Biology, 222, 359–375.PubMedCrossRefGoogle Scholar
  172. Lagutenko, Y. P., Mamkajev, Y. V., & Popova, N. V. (1989). The ultrastructure of interneuron and neuromuscle synapses in the acoelous Turbellaria. Tsitologiya, 31, 391–397.Google Scholar
  173. Lanfranchi, A. (1990). Ultrastructure of the epidermal eyespot of an acoel platyhelminth. Tissue & Cell, 22, 541–546.CrossRefGoogle Scholar
  174. Lechauve, C., Jager, M., Laguerre, L., Kiger, L., Correc, G., Leroux, C., Vinogradov, S., Czjzek, M., Marden, M. C., & Bailly, X. (2013). Neuroglobins, pivotal proteins associated with emerging neural systems and precursors of metazoan globin diversity. Journal of Biological Chemistry, 288, 6957–6967.PubMedPubMedCentralCrossRefGoogle Scholar
  175. Littlewood, D. T. J., Olson, P. D., Telford, M. J., Herniou, E. A., & Riutort, M. (2001). Elongation factor 1-alpha sequences alone do not assist in resolving the position of the Acoela within the Metazoa. Molecular Biology & Evolution, 18, 437–442.CrossRefGoogle Scholar
  176. Litvaitis, M. K., & Rohde, K. (1999). A molecular test of platyhelminth phylogeny: inferences from partial 28S rDNA sequences. Invertebrate Biology, 118, 42–56.CrossRefGoogle Scholar
  177. Lopes, R. M., & Silveira, M. (1994). Symbiosis between a pelagic flatworm and a dinoflagellate from a tropical area: structural observations. Hydrobiologia, 287, 277–284.CrossRefGoogle Scholar
  178. Lundin, K. (1997). Comparative ultrastructure of the epidermal ciliary rootlets and associated structures in species of the Nemertodermatida and Acoela (Plathelminthes). Zoomorphology, 117, 81–92.CrossRefGoogle Scholar
  179. Lundin, K. (1998a). The epidermal ciliary rootlets of Xenoturbella bocki (Xenoturbellida) revisited: new support for a possible kinship with the Acoelomorpha (Platyhelminthes). Zoologica Scripta, 27, 263–270.CrossRefGoogle Scholar
  180. Lundin, K. (1998b). Symbiotic bacteria on the epidermis of species of the Nemertodermatida (Platyhelminthes, Acoelomorpha). Acta Zoologica (Stockholm), 79, 187–191.CrossRefGoogle Scholar
  181. Lundin, K. (2000a). Phylogeny of the Nemertodermatida (Acoelomorpha, Plathelminthes). A cladistic study. Zoologica Scripta, 29, 65–74.CrossRefGoogle Scholar
  182. Lundin, K. (2000b). Xenoturbella - det motsägelsefulla djuret [in Swedish, English abstract: Xenoturbella—a creature of contradiction]. Fauna och Flora, 95, 44–48.Google Scholar
  183. Lundin, K. (2001). Degenerating epidermal cells in Xenoturbella (phylum uncertain), Nemertodermatida and Acoela (Platyhelminthes). In E. Salo, N.A. Watson, & E. Schockaert (Eds.), Proceedings of the 9th International Symposium: Biology of the Turbellaria. Belgian Journal of Zoology, 131 (Suppl. 1), 153–157.Google Scholar
  184. Lundin, K., & Hendelberg, J. (1995). Ultrastructure of the epidermis of Meara stichopi (Platyhelminthes, Nemertodermatida) and associated extra-epidermal bacteria. In L.R.G. Cannon (Ed.), Biology of Turbellaria and related flatworms. Hydrobiologia, 305, 161–165.CrossRefGoogle Scholar
  185. Lundin, K., & Hendelberg, J. (1996). Degenerating epidermal bodies (“pulsatile bodies”) in Meara stichopi (Plathelminthes, Nemertodermatida). Zoomorphology, 116, 1–5.CrossRefGoogle Scholar
  186. Lundin, K., & Hendelberg, J. (1998). Is the sperm type of the Nemertodermatida close to that of the ancestral Platyhelminthes? Hydrobiologia, 383, 197–205.CrossRefGoogle Scholar
  187. Lundin, K., & Sterrer, W. (2001). The Nemertodermatida. In D.T.J. Littlewood & R.A. Bray (Eds.), Interrelationships of the Platyhelminthes. Systematic Association Special Volume Series, 60, 24–27, London, Francis & Taylor.Google Scholar
  188. Mamkaev, Y. V. (1986). Initial morphological diversity as a criterion in deciphering turbellarian phylogeny. Hydrobiologia, 132, 31–32.CrossRefGoogle Scholar
  189. Mamkaev, Y. V., & Ivanov, V. P. (1970). Electron microscopy investigation of spermatozoa of Convoluta convoluta (Turbellaria, Acoela). Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 1970, 12–13.Google Scholar
  190. Mamkaev, Y. V., & Drobysheva, I. M. (1971). Multiple formation of seminal sacs and their papillae in the acoelous turbellarian Convoluta convoluta (Abildgaard). Doklady of the Academy of Sciences of the U.S.S.R. (Biological Sciences), 196, 144–146.Google Scholar
  191. Mamkaev, Y. V., & Kotikova, E. A. (1972). On the morphological characters of nervous system in Acoela (in Russian, English abstract). Zoologicheskii Zhurnal, 51, 477–489.Google Scholar
  192. Mamkaev, Y. V., & Markosova, T. G. (1979). Electron microscopic studies of the parenchyma in some representatives of the Acoela (in Russian). Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 84, 7–12.Google Scholar
  193. Mamkaev, Y. V., & Markosova, T. G. (1981). Peculiarities of feeding and digestion of Oxyposthia praedator (Turbellaria, Acoela). Proceedings of the XIV. Pacific Science Congress, issue, 4, 97–102.Google Scholar
  194. Mamkaev, Y. V., & Markosova, T. G. (1986). Features of the feeding of Acoela (Turbellaria). In V. G. Gagarin (Ed.), Behaviour of aquatic invertebrates. 4th All-Union Symposium Borok 1983 (pp. 47–53). Andropov: Academii Nauk SSSR.Google Scholar
  195. Mamkaev, Y. V., & Kostenko, A. G. (1991). On the phylogenetic significance of sagittocysts and copulatory organs in acoel turbellarians. In S. Tyler (Ed.): Turbellarian biology. Hydrobiologia, 227, 307–314.CrossRefGoogle Scholar
  196. Markosova, T.G. (1987). Pathways of intracellular digestion and transport in the turbellarian Oxyposthia preadator Ivanov (in Russian, English abstract). In Yu.V. Mamkaev (Ed.), Morphology of Turbellarians, Pogonophores, and Ascidians. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 167, 79–84, pls. 8–13.Google Scholar
  197. Markosova, T.G. (1989). [A TEM-cytochemical study on endocytosis and intracellular digestion in the epidermal cells of Convoluta convoluta (Turbellaria, Acoela)] (in Russian, English abstract). In Yu.V. Mamkaev & B.I. Joffe (Eds.), Morphology of Turbellaria. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 195, 26–35, pls.5–8.Google Scholar
  198. Markosova, T. G., & Mamkaev, Y. V. (2000). Morphofunctional study of the organization of the peripheral parenchyma of Acoela Oxyposthia praedator (in Russian, English abstract). Tsitologiya, 42, 740–749.Google Scholar
  199. Martin, G. G. (1978). Ciliary gliding in lower invertebrates. Zoomorphologie, 91, 249–261.CrossRefGoogle Scholar
  200. Matus, D. Q., Pang, K., Marlow, H., Dunn, C. W., Thomsen, G. H., & Martindale, M. Q. (2006). Molecular evidence for deep evolutionary roots of bilaterality in animal development. Proceedings of the National Academy of Sciences of the USA, 102, 11195–11200.CrossRefGoogle Scholar
  201. Meyer-Rochow, V. B. (2000). The eye: monophyletic, polyphyletic or perhaps biphyletic? Trends in Genetics, 16, 244–245.PubMedCrossRefGoogle Scholar
  202. Meyer-Wachsmuth, I., Raikova, O. I., & Jondelius, U. (2013). The muscular system of Nemertoderma westbladi and Meara stichopi (Nemertodermatida, Acoelomorpha). Zoomorphology, 132, 239–252.CrossRefGoogle Scholar
  203. Meyer-Wachsmuth, I., Curini-Galletti, M., & Jondelius, U. (2014). Hyper-cryptic marine meiofauna: species complexes in Nemertodermatida. PLoS ONE, 9(9), e107688. 25 pp plus Supplement.PubMedPubMedCentralCrossRefGoogle Scholar
  204. Moreno, E., & Martinéz, P. (2010). Origin of the bilaterian Hox patterning system. In: Encyclopedia of life sciences (ELS). Wiley. doi:  10.1002/9780470015902.a0022852.
  205. Moreno, E., Nadal, M., Baguña, J., & Martínez, P. (2009). Tracking the origins of the bilaterian Hox patterning system: insights from the acoel flatworm Symsagittifera roscoffensis. Evolution & Development, 11, 574–581.CrossRefGoogle Scholar
  206. Moreno, E., DeMulder, K., Salvenmoser, W., Ladurner, P., & Martinéz, P. (2010). Inferring the ancestral function of the posterior Hox gene within the Bilateria: controlling the maintenance of reproductive structures, the musculature and the nervous system in the acoel flatworm Isodiametra pulchra. Evolution & Development, 12, 258–266.CrossRefGoogle Scholar
  207. Moreno, E., Permanyer, J., & Martinéz, P. (2011). The origin of patterning systems in Bilateria—insights from the Hox and ParaHox genes in Acoelomorpha. Genomics, Proteomics & Bioinformatics, 9, 65–76.CrossRefGoogle Scholar
  208. Mwinyi, A., Vailly, X., Bourlat, S. J., Jondelius, U., Littlewood, D. T. J., & Podsiadlowski, L. (2010). The phylogenetic position of Acoela as revealed by the complete mitochondrial genome of Symsagittifera roscoffensis. BMC Evolutionary Biology, 10(309). 14 pp.Google Scholar
  209. Nakano, H. (2015). What is Xenoturbella? Zoological Letters, 1(22). 8 pp.Google Scholar
  210. Nakano, H., Lundin, K., Bourlat, S. J., Telford, M. J., Funch, P., Nyengaard, J. R., Obst, M., & Thorndyke, M. (2013). Xenoturbella bocki exhibits direct development with similarities to Acoelomorpha. Nature Communications, 4(1537). 6 pp.Google Scholar
  211. Nielsen, C. (1985). Animal phylogeny in the light of the trochaea theory. Biological Journal of the Linnean Society, 25, 243–299.CrossRefGoogle Scholar
  212. Nielsen, C. (2010). After all: Xenoturbella is an acoelomorph! Evolution & Development, 12(3), 241–243.CrossRefGoogle Scholar
  213. Nielsen, C. (2012). Animal evolution. Interrelationships of the living phyla (3rd ed.). Oxford: Oxford University Press. 402 pp.Google Scholar
  214. Nielsen, C. (2013). Life cycle evolution: was the eumetazoan ancestor a holopelagic, planktotrophic gastraea? BMC Evolutionary Biology, 13(171). 18 pp.Google Scholar
  215. Nielsen, C., & Martinez, P. (2003). Patterns of gene expression: homology or homocrazy? Development, Genes & Evolution, 213, 149–154.Google Scholar
  216. Norén, M., & Jondelius, U. (1997). Xenoturbella’s molluscan relatives ….. [see Israelsson 1997]. Nature (London), 390, 31–32.CrossRefGoogle Scholar
  217. Northcutt, R. G. (2012). Evolution of centralized nervous systems: two schools of evolutionary thought. Proceedings of the National Academy of Sciences of the USA, 109(S1), 10626–10633.PubMedPubMedCentralCrossRefGoogle Scholar
  218. Obst, M., Nakano, H., Bourlat, S.J., Thorndyke, M.C., Telford, M.J., Nyengaard, J.R., & Funch, P. (2008). The spermatozoon ultrastructure of Xenoturbella suggests a close relationship to enteropneust hemichordates. Abstracts of the 1st ISIM-Congress, Copenhagen. Journal of Morphology, 269, 1478.Google Scholar
  219. Obst, M., Lundin, K., & Nakano, H. (2011a). Larval morphology of Xenoturbella. Abstracts of the ICIM2011, 114.Google Scholar
  220. Obst, M., Nakano, H., Bourlat, S. J., Thorndyke, M. C., Telford, M. J., Nyengaard, J. R., & Funch, P. (2011b). Spermatozoon ultrastructure of Xenoturbella bocki (Westblad 1949). Acta Zoologica (Stockholm), 92, 109–115.CrossRefGoogle Scholar
  221. Ogishima, S., & Tanaka, H. (2006). Missing link in the evolution of Hox clusters. Gene, 387, 21–30.PubMedCrossRefGoogle Scholar
  222. Oschman, J. L. (1967). Microtubules in the subepidermal glands of Convoluta roscoffensis (Acoela, Turbellaria). Transactions of the American Microscopical Society, 86, 159–162.CrossRefGoogle Scholar
  223. Oschman, J. L., & Gray, P. (1965). A study on the fine structure of Convoluta roscoffensis and its endosymbiotic algae. Transactions of the American Microscopical Society, 84, 368–375.CrossRefGoogle Scholar
  224. Paps, J., Baguña, J., & Riutort, M. (2009). Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Molecular Biology & Evolution, 26, 2397–2406.CrossRefGoogle Scholar
  225. Pardos, F. (1988). Fine structure and function of pharynx cilia in Glossobalanus minutus Kowalevsky (Enteropneusta). Acta Zoologica (Stockholm), 69, 1–12.CrossRefGoogle Scholar
  226. Pasquinelli, A. E., McCoy, A., Jiménez, E., Saló, E., Ruvkun, G., Martindale, M. Q., & Baguña, J. (2003). Expression of the 22 nucleotide let-7 heterochronic RNA throughout the Metazoa: a role in life history evolution? Evolution & Development, 5, 372–378.CrossRefGoogle Scholar
  227. Pedersen, K. J. (1964). The cellular organization of Convoluta convoluta, an acoel turbellarian: a cytological, histochemical and fine structural study. Zeitschrift für Zellforschung, 64, 655–687.CrossRefGoogle Scholar
  228. Pedersen, K. J. (1965). Cytological and cytochemical observations on the mucous gland cells of an acoel Turbellarian, Convoluta convoluta. Annals of the NewYork Academy of Sciences, 118, 930–965.CrossRefGoogle Scholar
  229. Pedersen, K. J., & Pedersen, L. R. (1986). Fine structural observations on the extracellular matrix (ECM) of Xenoturbella bocki Westblad, 1949. Acta Zoologica (Stockholm), 67, 103–114.CrossRefGoogle Scholar
  230. Pedersen, K. J., & Pedersen, L. R. (1988). Ultrastructural observations on the epidermis of Xenoturbella bocki Westblad, 1949; with a discussion of epidermal cytoplasmic filament systems of invertebrates. Acta Zoologica (Stockholm), 69, 231–246.CrossRefGoogle Scholar
  231. Perea-Atienza, E., Botta, M., Salvenmoser, W., Gschwentner, R., Egger, B., Krisof, B., Martinez, P., & Achatz, J. G. (2013). Posterior regeneration in Isodiametra pulchra (Acoela, Acoelomorpha). Frontiers in Zoology, 10(64). 20 pp.Google Scholar
  232. Perea-Atienza, E., Gavilán, B., Chiodin, M., Abril, J. F., Hoff, K. J., Poustka, A. J., & Martinez, P. (2015). The nervous system of Xenacoelomorpha: a genomic perspective. Journal of Experimental Biology, 218, 618–628.PubMedCrossRefGoogle Scholar
  233. Perseke, M., Hankeln, T., Weich, B., Fritzsch, G., Stadler, P. F., Israelsson, O., Bernhard, D., & Schlegel, M. (2007). The mitochondrial DNA of Xenoturbella bocki: genomic architecture and phylogenetic analysis. Theory in Biosciences, 126, 35–42.PubMedCrossRefGoogle Scholar
  234. Petrov, A.A. (2007a). Ultrastructural and histochemical features of the reproductive system in acoel turbellarians (Acoela) and their phylogenetic significance. Extended abstracts of candidates of science (biology) dissertation, St. Petersburg, 2007, 212 pp. Online at:
  235. Petrov, A. A. (2007b). Morphological diversity and pathways of formation of sclerotized structures in acoelomorph turbellarians (Acoela, Acoelomorpha). Uchenye Zapiski Kazanskogo Universiteta, Seriya Estestvennye Nauki, 149, 138–142.Google Scholar
  236. Petrov, A. A., Hooge, M., & Tyler, S. (2004). Ultrastructure of sperms in Acoela (Acoelomorpha) and its concordance with molecular systematics. Invertebrate Biology, 123, 183–197.CrossRefGoogle Scholar
  237. Petrov, A. A., Hooge, M., & Tyler, S. (2006). Comparative morphology of the bursal nozzles in acoels (Acoela, Acoelomorpha). Journal of Morphology, 267, 634–648.PubMedCrossRefGoogle Scholar
  238. Pfistermüller, R., & Tyler, S. (2002). Correlation of fluorescence and electron microscopy of F-actin-containing sensory cells in the epidermis of Convoluta pulchra (Platyhelminthes: Acoela). Acta Zoologica (Stockholm), 83, 15–24.CrossRefGoogle Scholar
  239. Philippe, H., Brinkmann, H., Martinez, P., Riutort, M., & Baguña, J. (2007). Acoel flatworms are not platyhelminthes: evidence from phylogenomics. PLoS ONE, 2(8), e717. 5 pp.PubMedPubMedCentralCrossRefGoogle Scholar
  240. Philippe, H., Brinkmann, H., Copley, R. R., Moroz, L. L., Nakano, H., Poustka, A. J., Wallberg, A., Peterson, K. J., & Telford, M. J. (2011). Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature (London), 470, 198–203.CrossRefGoogle Scholar
  241. Popova, N. V., & Mamkaev, Y. V. (1986). Ultrastructure and primitive features of the eyes of Convoluta convoluta (Turbellaria, Acoela). Doklady of the Academy of Sciences of the U.S.S.R., 283, 557–560.Google Scholar
  242. Popova, N.V., & Mamkaev, Yu.V. (1987). On types of sensillae in the acoel turbellarians (in Russian, English Abstracts). In Yu.V. Mamkaev (Ed.), Morphology of Turbellarians, Pogonophores, and Ascidians. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 167, 85–89, pls.14–15.Google Scholar
  243. Raikova, O.I. (1987a). Ultrastructural organisation of the digestive system of the acoel turbellarian Actinoposthia beklemischevi Mamkaev (in Russian, English Abstract). In Yu.V. Mamkaev (Ed.), Morphology of Turbellarians, Pogonophorans, and Ascidians. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 167, 72–78, pls. 1–5.Google Scholar
  244. Raikova, O. I. (1987b). Ultrastructure of the digestive parenchyma of Actinoposthia beklemischevi (Turbellaria, Acoela). Doklady of the Academy of Sciences of the U.S.S.R., 293, 250–253.Google Scholar
  245. Raikova, O.I. (1989a). Ultrastructure of the nervous system and sensory receptors of acoel turbellarians (in Russian, English Abstract). In Yu.V. Mamkaev & B.I. Joffe (Eds.), Morphology of Turbellaria. Trudy Zoologicheskogo Instituta Akademii Nauk SSSR, 195, 36–46, pls. 9–12.Google Scholar
  246. Raikova, O. I. (1989b). Homology between root filaments of the ciliary apparatus of Acoela and other Turbellaria. Doklady of the Academy of Sciences of the U.S.S.R. Biological Sciences, 308, 682–685.Google Scholar
  247. Raikova, O. I. (1991). Fine structural organisation in the nervous system and ciliary receptors in acoelous turbellarians. In D. A. Sakharov & W. Winlow (Eds.), Simpler nervous systems (pp. 37–51). Manchester: Manchester University Press.Google Scholar
  248. Raikova, O. I. (1992). Comparative investigations of the epidermis of Turbellaria Acoela: I. General features of the epidermis (in Russian, English abstract). Tsitologiya, 34, 43–49. pls. 1-4.Google Scholar
  249. Raikova, O. I. (2002). Immunocytochemical analysis of Acoela sperms as an approach to understanding the phylogenetic position of this group. Doklady of the Academy of Sciences of the U.S.S.R. Biological Sciences, 382, 48–50.Google Scholar
  250. Raikova, O. I. (2008). Neurophylogeny of early bilaterians: Acoela, Nemertodermatida, Xenoturbella. Abstracts of the ICIM-1. Journal of Morphology, 269, 1459–1460.Google Scholar
  251. Raikova, O. I., & Justine, J.-L. (1994). Ultrastructure of spermiogenesis and spermatozoa in 3 acoels (Platyhelminthes). Annals des Sciences Naturelles, Zoologie et Biologie Animale, 15, 63–72.Google Scholar
  252. Raikova, O. I., & Justine, J.-L. (1999). Microtubular system during spermiogenesis and in the spermatozoon of Convoluta saliens (Platyhelminthes, Acoela): tubulin immunocytochemistry and electron microscopy. Molecular Reproduction & Development, 52, 74–85.CrossRefGoogle Scholar
  253. Raikova, O. I., Falleni, A., & Gremigni, V. (1995). Oogenesis in Actinoposthia beklemischevi (Platyhelminthes, Acoela): an ultrastructural and cytochemical study. Tissue & Cell, 27, 621–633.CrossRefGoogle Scholar
  254. Raikova, O. I., Falleni, A., & Justine, J.-L. (1997). Spermiogenesis in Paratomella rubra (Platyhelminthes, Acoela): ultrastructural, immunocytochemical, cytochemical studies and phylogenetic implications. Acta Zoologica (Stockholm), 78, 295–307.CrossRefGoogle Scholar
  255. Raikova, O. I., Flyatchinskaya, L. P., & Justine, J.-L. (1998a). Acoel spermatozoa: ultrastructure and immunocytochemistry of tubulin. Hydrobiologia, 383, 207–214.CrossRefGoogle Scholar
  256. Raikova, O. I., Reuter, M., Kotikova, E. A., & Gustafsson, M. K. S. (1998b). A commissural brain! The pattern of 5-HT immunoreactivity in Acoela (Plathelminthes). Zoomorphology, 118, 69–77.CrossRefGoogle Scholar
  257. Raikova, O. I., Reuter, M., Jondelius, U., & Gustafsson, M. K. S. (2000a). An immunocytochemical and ultrastructural study of the nervous and muscular systems of Xenoturbella westbladi (Bilateria inc. sed.). Zoomorphology, 120, 107–118.CrossRefGoogle Scholar
  258. Raikova, O. I., Reuter, M., Jondelius, U., & Gustafsson, M. K. S. (2000b). The brain of the Nemertodermatida (Platyhelminthes) as revealed by anti-5HT and anti-FMRFamide immunostainings. Tissue & Cell, 32, 358–365.CrossRefGoogle Scholar
  259. Raikova, O.I., Reuter, M., & Justine, J.-L. (2001). Contributions to the phylogeny and systematics of the Acoelomorpha. In D.T.J. Littlewood & R.A. Bray (Eds.), Interrelationships of the Platyhelminthes. Systematic Association Special Volume Series, 60, 13–23. London, Francis & Taylor.Google Scholar
  260. Raikova, O. I., Reuter, M., Gustafsson, M. K. S., Maule, A. G., Halton, D. W., & Jondelius, U. (2004a). Evolution of the nervous system in Paraphanostoma (Acoela). Zoologica Scripta, 33, 71–88.CrossRefGoogle Scholar
  261. Raikova, O. I., Reuter, M., Gustafsson, M. K. S., Maule, A. G., Halton, D. W., & Jondelius, U. (2004b). Basiepithelial nervous system in Nemertoderma westbladi (Nemertodermatida): GYIRFamide immunoreactivity. Zoology, 107, 75–86.PubMedCrossRefGoogle Scholar
  262. Raikova, O. I., Tekle, Y. I., Reuter, M., Gustafsson, M. K. S., & Jondelius, U. (2006). Copulatory organ musculature in Childia (Acoela) as revealed by phalloidin fluorescence and confocal microscopy. Tissue & Cell, 38, 219–232.CrossRefGoogle Scholar
  263. Ramachandra, N. B., Gates, R. D., Ladurner, P., Jacobs, D. K., & Hartenstein, V. (2002). Embryonic development in the primitive bilaterian Neochildia fusca: normal morphogenesis and isolation of POU genes Brn-1 and Brn-3. Development, Genes & Evolution, 212, 55–60.CrossRefGoogle Scholar
  264. Reisinger, E. (1960). Was it Xenoturbella? Zeitschrift für wissenschaftliche Zoologie, 164, 188–198.Google Scholar
  265. Reuter, M., & Kreshchenko, N. (2004). Flatworm asexual multiplication implicates stem cells and regeneration. Canadian Journal of Zoology, 82, 334–356.CrossRefGoogle Scholar
  266. Reuter, M., Raikova, O. I., & Gustafsson, M. K. S. (1998). An endocrine brain? The pattern of FMRF-amide immunoreactivity in Acoela (Platyhelminthes). Tissue & Cell, 30, 57–63.CrossRefGoogle Scholar
  267. Reuter, M., Raikova, O. I., & Gustafsson, M. K. S. (2001a). Patterns in the nervous and muscle systems in lower flatworms. In E. Saló, N.A. Watson & E. Schockaert (Eds.). Biology of the Turbellaria, Belgian Journal of Zoology, 131(Suppl 1), 47–53.Google Scholar
  268. Reuter, M., Raikova, O. I., Jondelius, U., Gustafsson, M. K. S., Maule, A. G., & Halton, D. W. (2001b). Organisation of the nervous system in the Acoela: an immunocytochemical study. Tissue & Cell, 33, 119–128.CrossRefGoogle Scholar
  269. Rieger, R. M. (1976). Monociliated epidermal cells in Gastrotricha: significance for concepts of early metazoan evolution. Zeitschrift für zoologische Systematik und Evolutionsforschung, 14, 198–226.CrossRefGoogle Scholar
  270. Rieger, R. M. (1981). Morphology of the Turbellaria at the ultrastructural level. Hydrobiologia, 84, 213–229.CrossRefGoogle Scholar
  271. Rieger, R. M. (1984). Evolution of the cuticle in the lower Eumetazoa. In J. Bereiter-Hahn, A. G. Matoltsy, & K. S. Richards (Eds.), Biology of the integument, vol I. Invertebrates (pp. 389–399). Berlin: Springer Verlag.CrossRefGoogle Scholar
  272. Rieger, R. M. (1985). The phylogenetic status of the acoelomate organization within the Bilateria: a histological perspective. In S. Conway Morris, J. D. George, R. Gibson, & H. M. Platt (Eds.), The origins and relationships of lower invertebrates (pp. 101–122). Oxford: Oxford University Press.Google Scholar
  273. Rieger, R. M. (1986a). Über dem Ursprung der Bilateria: Die Bedeutung der Ultrastrukturforschung für ein neues Verstehen der Metazoenevolution. Verhandlungen der Deutschen Zoologischen Gesellschaft, 79, 31–50.Google Scholar
  274. Rieger, R. M. (1986b). Asexual reproduction and the turbellarian archetype. Hydrobiologia, 132, 35–45.CrossRefGoogle Scholar
  275. Rieger, R.M. (1994a). Evolution of the “lower” Metazoa. In S. Bengtson (Ed.): Early Life on Earth, Nobel Symposium No. 84, 475–488. New York, Columbia University Press.Google Scholar
  276. Rieger, R. M. (1994b). The biphasic life cycle—a central theme of metazoan evolution. American Zoologist, 34, 484–491.CrossRefGoogle Scholar
  277. Rieger, R. M., & Lombardi, J. (1987). Ultrastructure of coelomic lining in echinoderm podia: significance for concepts in the evolution of muscle and peritoneal cells. Zoomorphology, 107, 191–208.CrossRefGoogle Scholar
  278. Rieger, R. M., & Ladurner, P. (2001). Searching for the stem species of the Bilateria. In E. Saló, N.A. Watson / E. Schockaert (Eds.), Biology of the Turbellaria, Barcelona 2000. Belgian Journal of Zoology, 131(Suppl 1), 27–34.Google Scholar
  279. Rieger, R. M., & Ladurner, P. (2003). The significance of muscle cells for the origin of mesoderm in Bilateria. Integrative and Comparative Biology, 43, 47–54.PubMedCrossRefGoogle Scholar
  280. Rieger, R. M., Powell, E. N., Tyler, S., & Rieger, G. E. (1990). Mitochondrial ultrastructure of thiobiotic meiofauna. Cyclobios Newsletter (Innsbruck), 4, 29–32.Google Scholar
  281. Rieger, R.M., Tyler, S., Smith, J.P.S. III., & Rieger, G.E. (1991). Platyhelminthes: Turbellaria. In F.W. Harrsion, & B.J. Bogitsch (Eds,), Microscopic anatomy of invertebrates. Vol. 3: Platyhelminthes and Nemertinea. New York, John Wiley & Sons, pp. 7–140.Google Scholar
  282. Rieger, R. M., Ladurner, P., & Hobmayer, B. (2004). A clue to the origin of the Bilateria. Science, 307, 353–354.CrossRefGoogle Scholar
  283. Rohde, K., Watson, N. A., & Cannon, L. R. G. (1988a). Ultrastructure of spermiogenesis in Amphiscolops (Acoela, Convolutidae) and of sperm in Pseudoactinoposthia (Acoela, Childiidae). Journal of Submicroscopical Cytology & Pathology, 20, 595–604.Google Scholar
  284. Rohde, K., Watson, N. A., & Cannon, L. R. G. (1988b). Ultrastructure of epidermal cilia of Pseudactinoposthia sp. (Platyhelminthes, Acoela); implications for the phylogenetic status of the Xenoturbellida and Acoelomorpha. Journal of Submicroscopical Cytology & Pathology, 20, 759–767.Google Scholar
  285. Rouse, G. W., Wilson, N. G., & Vrijenhoek, R. C. (2013). First Xenoturbella spp. (Xenoturbellida) from the Pacific. SICB Annual Meeting Abstracts, e185, 136.5.Google Scholar
  286. Ruiz-Trillo, I., Riutort, M., Littlewood, D. T. J., Herniou, E. A., & Baguña, J. (1999). Acoel flatworms: earliest extant bilaterian metazoans, not members of Platyhelminthes. Science, 283, 1919–1923.PubMedCrossRefGoogle Scholar
  287. Ruiz-Trillo, I., Paps, J., Loukota, M., Ribera, C., Jondelius, U., Baguña, J., & Riutort, M. (2002). A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proceedings of the National Academy of Sciences of the USA, 99, 11246–11251.PubMedPubMedCentralCrossRefGoogle Scholar
  288. Ruiz-Trillo, I., Riutort, M., Fourcade, M., Baguña, J., & Boore, J. L. (2004). Mitochondrial genome data support the basal position of Acoelomorpha and the polyphyly of the Platyhelminthes. Molecular Phylogenetics & Evolution, 33, 321–332.CrossRefGoogle Scholar
  289. Ryan, J. F., Borve, A., & Hejnol, A. (2013). Are acoelomorphs deuterostomes? Evidence from the genome of the nemertodermatid Meara stichopi (Acoelomorpha). SICB Annual Meeting Abstracts, 2013(e364), P1.172.Google Scholar
  290. Sarfatti, G., & Bedini, C. (1965). The symbiont alga of the flatworm Convoluta psammophila Bekl. observed with the electron microscope. Caryologia, 18, 207–223.CrossRefGoogle Scholar
  291. Schierwater, B., & DeSalle, R. (2007). Can we ever identify the Urmetazoan? Integrative & Comparative Biology, 47, 670–676.CrossRefGoogle Scholar
  292. Schierwater, B., Kolokotronis, S. O., Eitel, M., & DeSalle, R. (2009). The diploblast-Bilateria sister hypothesis: parallel evolution of a nervous systems may have been a simple step. Communicative & Integrative Biology, 2, 403–405.CrossRefGoogle Scholar
  293. Schrödinger, E. (1944). What is Life? The physical aspect of the living cell. Based on lectures delivered under the auspices of the Dublin Institute for Advanced Studies at Trinity College, Dublin, in February 1943. Cambridge, Cambridge University Press.Google Scholar
  294. Seaver, E. C. (2003). Segmentation: mono- or polyphyletic? International Journal of Developmental Biology, 47, 583–596.PubMedGoogle Scholar
  295. Semmler, H. (2009). Comparative neuromuscular development in the flatworm-like phyla Acoela and Platyhelminthes. PhD-thesis University of Copenhagen, 143 pp.Google Scholar
  296. Semmler, H., Bailly, X., & Wanninger, A. (2008). Myogenesis in the basal bilaterian Symsagittifera roscoffensis (Acoela). Frontiers in Zoology, 5(14). 15 pp.Google Scholar
  297. Semmler, H., Chiodin, M., Bailly, X., Martinez, P., & Wanninger, A. (2010). Steps towards a centralized nervous system in basal bilaterians: Insights from neurogenesis of the acoel Symsagittifera roscoffensis. Development, Growth & Differentiation, 52, 701–713.CrossRefGoogle Scholar
  298. Sempere, L. F., Cole, C. N., McPeek, M. A., & Peterson, K. J. (2006). The phylogenetic distribution of metazoan microRNAs: insights into evolutionary complexity and constraint. Journal of Experimental Zoology, Series B: Molecules, Development & Evolution, 306, 575–588.CrossRefGoogle Scholar
  299. Sempere, L. F., Martinez, P., Cole, C., Baguña, J., & Peterson, K. J. (2007). Phylogenetic distribution of microRNAs supports the basal position of acoel flatworms and the polyphyly of Platyhelminthes. Evolution & Development, 9, 409–415.CrossRefGoogle Scholar
  300. Sikes, J.M. (2009). Breaking the A-P axis: evolution of diverse asexual reproduction strategies in Convolutriloba acoels. Dissertation, University of Maryland, College Park. 122 pp. <>.
  301. Sikes, J. M., & Bely, A. E. (2008). Radical modification of the A–P axis and the evolution of asexual reproduction in Convolutriloba acoels. Evolution & Development, 10, 619–631.CrossRefGoogle Scholar
  302. Sikes, J. M., & Bely, A. E. (2010). Making heads from tails: development of a reversed anterior-posterior axis during budding in an acoel. Developmental Biology, 338, 86–97.PubMedCrossRefGoogle Scholar
  303. Silveira, M. (1967). Formation of structured secretory granules within the Golgi complex in an acoel turbellarian. Journal de Microscopie (Paris), 6, 95–100.Google Scholar
  304. Smith, J. P. S., III. (1981). Fine structural observations on the central parenchyma in Convoluta sp. [Isodiametra pulchra] Hydrobiologia. 84, 259–265.Google Scholar
  305. Smith, J.P.S. III. (1990). Ultrastructure of the ciliary rootlet system in Acoelomorpha: phylogenetic significance. American Zoologist, 30(4), 46A (257) (Abstract).Google Scholar
  306. Smith, J. P. S. III., & Tyler, S. (1985a). Fine-structure and evolutionary implications of the frontal organ in Turbellaria Acoela: 1. Diopisthoporus gymnopharyngeus sp.n. Zoologica Scripta, 14, 91–102.Google Scholar
  307. Smith, J.P.S. III., & Tyler, S. (1985b). The acoel turbellarians: kingpins of metazoan evolution or a specialized offshoot? In S. Conway Morris, J.D. George, R. Gibson, H.M. Platt (Eds.), The Origins and relationships of lower invertebrates. Systematic Association Special Volumes Series, 28, 123–142. Oxford, Oxford Univ Press.Google Scholar
  308. Smith, J. P. S. III., & Tyler, S. (1986). Frontal organs in the Acoelomorpha (Turbellaria): ultrastructure and phylogenetic significance. Hydrobiologia, 132, 71–78.Google Scholar
  309. Smith, J.P.S. III., & Tyler, S. (1988). Frontal organs in the Nemertodermatida (Turbellaria). American Zoologist, 28(4), 140A, #747.Google Scholar
  310. Smith, J. P. S. III., Tyler, S., Thomas, M. B., & Rieger, R. M. (1982). The morphology of turbellarian rhabdites: phylogenetic implications. Transactions of the American Microscopical Society, 101, 209–228.Google Scholar
  311. Smith, J. P. S. III., Tyler, S., & Rieger, R. M. (1986). Is the Turbellaria polyphyletic? Hydrobiologia, 132, 13–21.Google Scholar
  312. Smith, J.P.S. III., Thomas, M.B., Chandler, R., Zane, S.F. (1988). Granular inclusions in the oocytes of Convoluta sp., Nemertoderma sp., and Nemertinoides elongatus (Turbellaria, Acoelomorpha). In P. Ax (Ed.), Free-living and symbiotic Plathelminthes. Proceedings of the 5th International Symposium: Biology of “Turbellarians”. Fortschritte der Zoologie, 36, 263–269.Google Scholar
  313. Smith, J. P. S. III., Egger, B., Tyler, S., Ladurner, P., Achatz, J., & Merlie, S. (2009). Neoblasts in Nemertodermatida. Abstracts of SICB Annual Meeting, Boston, 61, 5.Google Scholar
  314. Sorimachi, K., Okayasu, T., Ebara, Y., Furuta, E., & Ohhira, S. (2014). Phylogenetic position of Xenoturbella bocki and hemichordates Balanoglossus carnosus and Saccoglossus kowalevskii based on amino acid composition or nucleotide content of complete mitochondrial genomes. International Journal of Biology, 6, 82–94.Google Scholar
  315. Sprecher, S., & Reichert, H. (2003). The urbilaterian brain: developmental insights into the evolutionary origin of the brain in insects and vertebrates. Arthropod Structure & Development, 32, 141–156.CrossRefGoogle Scholar
  316. Squires, L. N., Rubakhin, S. S., Wadhams, A. A., Talbot, K. N., Nakano, H., Moroz, L. L., & Sweedler, J. V. (2010). Serotonin and its metabolism in basal deuterostomes: insights from Strongylocentrotus purpuratus and Xenoturbella bocki. Journal of Experimental Biology, 213, 2647–2654.PubMedPubMedCentralCrossRefGoogle Scholar
  317. Srivastava, M., Mazza-Curil, K. L., van Wolfswinkel, J. C., & Reddien, P. W. (2014). Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling. Current Biology, 24, 1107–1113. plus Supplements (40 pp.).PubMedCrossRefGoogle Scholar
  318. Stach, T., Dupont, S., Israelsson, O., Fauville, G., Nakano, H., Kanneby, T., & Thorndyke, M. (2005). Nerve cells of Xenoturbella bocki (phylum uncertain) and Harrimania kupfferi (Enteropneusta) are positively immunoreactive to antibodies raised against echinoderm neuropeptides. Journal of the Marine Biological Association of the UK, 85, 1519–1524.CrossRefGoogle Scholar
  319. Sterrer, W. (1998). New and known Nemertodermatida (Platyhelminthes-Acoelomorpha)—a revision. Belgian Journal of Zoology, 128, 55–92.Google Scholar
  320. Stoecker, D. K., Swanberg, N., & Tyler, S. (1989). Oceanic mixotrophic flatworms. Marine Ecology Progress Series, 58, 41–51.CrossRefGoogle Scholar
  321. Stricker, S. A., Welford, A. M., & Morris, C. A. (1992). Somatic cell-oocyte interactions during oogenesis in the acoel flatworm Childia groenlandica. Invertebrate Reproduction & Development, 21, 57–77.CrossRefGoogle Scholar
  322. Svensson, M. E. (2004). Homology and homocracy revisited: gene expression patterns and hypotheses of homology. Development, Genes & Evolution, 214, 418–421.CrossRefGoogle Scholar
  323. Taylor, D. L. (1971). On the symbiosis between Amphididinum klebsii (Dinophyceae) and Amphiscolops langerhansi (Turbellaria: Acoela). Journal of the Marine Biological Association of the UK, 51, 301–313. 5 pls.CrossRefGoogle Scholar
  324. Tekle, Y. I., Raikova, O. I., Ahmadzadeh, A., & Jondelius, U. (2004). Revision of the Childiidae (Acoela), a total evidence approach in reconstructing the phylogeny of acoels with reversed muscle layers. Journal of Zoological Systematics and Evolutionary Research, 43, 72–90.CrossRefGoogle Scholar
  325. Tekle, Y. I., Raikova, O. I., & Jondelius, U. (2006). A new viviparous acoel Childia vivipara sp. nov. with observations on the developing embryos, sperm ultrastructure, body wall and stylet musculatures. Acta Zoologica (Stockholm), 87, 121–130.CrossRefGoogle Scholar
  326. Tekle, Y. I., Raikova, O. I., Justine, J.-L., Hendelberg, J., & Jondelius, U. (2007a). Ultrastructural and immunocytochemical investigation of acoel sperms with 9+1 axoneme structure: new sperm characters for unraveling phylogeny in Acoela. Zoomorphology, 126, 1–16.CrossRefGoogle Scholar
  327. Tekle, Y. I., Raikova, O. I., Justine, J.-L., & Jondelius, U. (2007b). Ultrastructure and tubulin immunocytochemistry of the copulatory stylet-like structure in Childia species (Acoela). Journal of Morphology, 268, 166–180.PubMedCrossRefGoogle Scholar
  328. Telford, M. J. (2008). Xenoturbellida: the fourth deuterostome phylum and the diet of worms. In: B.J. Swalla, & J. Xavier-Neto J (Eds.), Chordate origins and evolution. Genesis, 46, 580–586.PubMedCrossRefGoogle Scholar
  329. Telford, M. J., Lockyer, A. E., Cartwright-Finch, C., & Littlewood, D. T. J. (2003). Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proceedings of the Royal Society of London, B, 270, 1077–1083.CrossRefGoogle Scholar
  330. Thomas, M. B., Smith, J. P. S., Chandler, R., & Barker, A. (1985). Egg-shell granules in some primitive Turbellaria: More evidence for polyphyly? American Zoology, 25, 91A (472).Google Scholar
  331. Todt, C. (2009). Structure and evolution of the pharynx simplex in acoel flatworms (Acoela). Journal of Morphology, 270, 271–290.PubMedCrossRefGoogle Scholar
  332. Todt, C., & Tyler, S. (2006). Morphology and ultrastructure of the pharynx in Solenofilomorphidae (Acoela). Journal of Morphology, 267, 776–792.PubMedCrossRefGoogle Scholar
  333. Todt, C., & Tyler, S. (2007). Ciliary receptors associated with the mouth and pharynx of Acoela (Acoelomorpha): a comparative ultrastructural study. Acta Zoologica (Stockholm), 88, 41–58.CrossRefGoogle Scholar
  334. Tyler, S. (1973). An adhesive function for modified cilia in an interstitial turbellarian. Acta Zoologica (Stockholm), 54, 139–151.CrossRefGoogle Scholar
  335. Tyler, S. (1976). Comparative ultrastructure of adhesive systems in the Turbellaria. Zoomorphologie, 84, 1–76.CrossRefGoogle Scholar
  336. Tyler, S. (1979). Distinctive features of cilia in metazoans and their significance for systematics. Tissue & Cell, 11, 385–400.CrossRefGoogle Scholar
  337. Tyler, S. (1984a). Ciliogenesis in embryos of the acoel turbellarian Archaphanostoma. Transactions of the American Microscopical Society, 103, 1–15.CrossRefGoogle Scholar
  338. Tyler, S. (1984b). Turbellarian platyhelminths. In J. Bereiter-Hahn, A. G. Matoltsy, & K. S. Richards (Eds.), Biology of the integument, vol I. Invertebrates (pp. 112–131). Berlin: Springer Verlag.CrossRefGoogle Scholar
  339. Tyler, S. (1986). Ultrastructure of a remarkable food-gathering organ in Flagellophora sp. (Turbellaria, Nemertodermatida). Transactions of the American Microscopical Society, 105, 90.Google Scholar
  340. Tyler, S. (2001). The early worm—origins and relationships of the lower flatworms. In: D.T.J. Littlewood & R.A. Bray (Eds.), Interrelationships of the Platyhelminthes. Systematic Association Special Volumes Series, 60, 3–12. London, Taylor & Francis.Google Scholar
  341. Tyler, S., & Rieger, R. M. (1975). Uniflagellate spermatozoa in Nemertoderma (Turbellaria) and their phylogenetic significance. Science, 188, 730–732.PubMedCrossRefGoogle Scholar
  342. Tyler, S., & Rieger, R. M. (1977). Ultrastructural evidence for the systematic position of the Nemertodermatida (Turbellaria). In T.G. Karling, & M. Meinander (Eds.), The Alexander Luther Centennial Symposium on Turbellaria. Acta Zoologica Fennica, 154, 193–207.Google Scholar
  343. Tyler, S., & Hyra, G. S. (1994). Fluorescence and electron microscopy of body-wall locomotory elements in acoelomate worms. Transactions of the American Microscopical Society, 113, 420.Google Scholar
  344. Tyler, S., & Hyra, G. S. (1998). Patterns of musculature as taxonomic characters for the Turbellaria Acoela. Hydrobiologia, 383, 51–59.CrossRefGoogle Scholar
  345. Tyler, S., & Rieger, R. M. (1999). Functional morphology of musculature in the acoelomate worm, Convoluta pulchra (Plathelminthes). Zoomorphology, 119, 127–141.CrossRefGoogle Scholar
  346. Tyler, S., & Hooge, M. D. (2004). Comparative morphology of the body wall in flatworms (Platyhelminthes). Canadian Journal of Zoology, 82, 194–210.CrossRefGoogle Scholar
  347. Tyler, S., & Schilling, S. (2011). Phylum Xenacoelomorpha Philippe, et al., 2011. In: Z.-Q. Zhang (Ed.), Animal biodiversity: an outline of higher-level classification and survey of taxonomic richness. Zootaxa, 3148, 24–25.Google Scholar
  348. Tyler, S., Grimm, J. K., & Smith, J. P. S., III. (1989). Dynamics of epidermal wound repair in acoel turbellarians—the role of pulsatile bodies. American Zoologist, 29(4), 115A.Google Scholar
  349. von Salvini-Plawen, L. (1978). On the origin and evolution of the lower Metazoa. Zeitschrift für zoologische Systematik und Evolutionsforschung, 16, 40–88.CrossRefGoogle Scholar
  350. von Salvini-Plawen, L. (2008). Photoreception and the polyphyletic evolution of photoreceptors (with special reference to Mollusca). American Malacological Bulletin, 26, 83–100.CrossRefGoogle Scholar
  351. von Salvini-Plawen, L., & Mayr, E. (1977). On the evolution of photoreceptors and eyes. Evolutionar Biology, 10, 207–263.Google Scholar
  352. Wallberg, A. (2009). The dawn of a new age. Interrelationships of Acoela and Nemertodermatida and the early evolution of Bilateria. Acta Universitatis Uppsalensis, Digital Comprehensive Summaries of Uppsala Dissertation from the Faculy of Science and Technology, 667, 44 pp.Google Scholar
  353. Wallberg, A., Curini-Galletti, M., Ahmadzadeh, A., & Jondelius, U. (2007). Dismissal of Acoelomorpha: acoela and Nemertodermatida are separate early bilaterian clades. Zoologica Scripta, 36, 509–523.CrossRefGoogle Scholar
  354. Westblad, E. (1949). Xenoturbella bocki n.g., n.sp., a peculiar, primitive turbellarian type. Arkiv för Zoologi (serie 2), 1, 11–29. pls. 1–4.Google Scholar
  355. Westheide, W. (1987). Progenesis as a principle in meiofauna evolution. Journal of Natural History, 21, 843–854.CrossRefGoogle Scholar
  356. Witek, A. (2009). Phylogenomische Analysen bei Metazoen - Zur Stellung der Xenoturbellida und Syndermata. PhD Thesis University of Mainz, 121 pp.Google Scholar
  357. Yamasu, T. (1991). Fine structure and function of ocelli and sagittocysts of acoel flatworms. In S. Tyler (Ed.), Turbellarian biology. Hydrobiologia, 227, 273–282.CrossRefGoogle Scholar
  358. Zabotin, Y. I., & Golubev, A. I. (2009). Ultrastructure of spermatozoa in the acoel turbellarian Archaphanostoma agile (Acoela). Uchenye Zapiski Kazanskogo Universiteta, Seriya Estestvennye Nauki, 151, 84–94.Google Scholar
  359. Zabotin, Y. I., & Golubev, A. I. (2011). Ultrastructure of spermatozoa in four species of acoel turbellarians (Acoela) and its significance for systematics. Zoologicheskii Zhurnal, 90, 3–12.Google Scholar
  360. Zabotin, Y. I., & Golubev, A. I. (2014). Ultrastructure of oocytes and female copulatory organs of Acoela. Biology Bulletin Nauk, 41, 722–735.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2015

Authors and Affiliations

  1. 1.Zoologische Staatssammlung MünchenMunichGermany

Personalised recommendations