Advertisement

Organisms Diversity & Evolution

, Volume 16, Issue 1, pp 73–84 | Cite as

Interrelationships of Nemertodermatida

  • Inga Meyer-Wachsmuth
  • Ulf Jondelius
Original Article

Abstract

Nemertodermatida is a small taxon of microscopic marine worms, which were originally classified within Platyhelminthes. Today they are hypothesized to be either an early bilaterian lineage or the sister group to Ambulacraria within Deuterostomia. These two hypotheses indicate widely diverging evolutionary histories in this largely neglected group. Here, we analyse the phylogeny of Nemertodermatida using nucleotide sequences from the ribosomal LSU and SSU genes and the protein coding Histone 3 gene. All currently known species except Ascoparia neglecta and Ascoparia secunda were included in the study in addition to several yet undescribed species. Ascopariidae and Nemertodermatidae are retrieved as separate clades, although not in all analyses as sister groups. Non-monophyly of Nemertodermatida was rejected by the Approximately Unbiased test. Nemertodermatid nucleotide sequences deposited in Genbank before 2013 were validated against our dataset; some of them are shown to be chimeric implying falsification of prior hypotheses about nemertodermatid phylogeny: other sequences should be assigned new names. We also show that the genus Nemertoderma needs revision.

Keywords

Nemertodermatida LSU SSU Molecular phylogeny Cryptic species Approximately Unbiased test 

Notes

Acknowledgments

We would like to thank Ms Keyvan Mirbakhsh for her work in the molecular lab. We are also grateful to the staff at the Sven Lovén Centre for Marine Sciences, Dr Ana Amaral at CCMAR, Faro, Ms Lisa Del Monte, ISZN, Naples, with colleagues and Ms Margret Krüß, BAH, Helgoland, with colleagues for help with our fieldwork. We would also like to express our gratitude to Prof. Mark Martindale then of the University of Hawaii Kewalo Marine Lab. Furthermore, are we indebted to the Professor Philippe Bouchet of the Muséum National d’Histoire Naturelle for organizing sampling in Papua New Guinea. Collections in Papua Guinea took place during the Our Planet Reviewed Papua Niugini Expedition in November–December 2012, organised by the Muséum National d’Histoire Naturelle (MNHN), Pro Natura International, the Institut de Recherche pour le Développement (IRD) and the University of Papua New Guinea. The principal investigators of this expedition were Philippe Bouchet, Sarah Samadi (MNHN) and Claude Payri (IRD), and funding was provided by the Total Foundation, Prince Albert II of Monaco Foundation, Foundation EDF, Stavros Niarchos Foundation and Entrepose Contracting, with support from the Divine Word University and operated under a permit delivered by the Papua New Guinea Department of Environment and Conservation. Financial support from the Swedish Research Council to UJ is gratefully acknowledged (grant numbers 2009–5147 and 2012–3913) as are the stipends by Föreningen Riksmusei Vänner (stipend 2011), Stiftelsen Lars Hiertas Minne grant FO2011-0248 and the Royal Swedish Academy of Sciences grant FOA11H-352 to I. Meyer-Wachsmuth.

Supplementary material

13127_2015_240_MOESM1_ESM.xls (92 kb)
Online Resource 1 Observed nucleotide frequencies and GC-content per specimen for all three genes used in this study and the codon positions of the protein-coding gene Histone 3. Species names highlighted in red have greatly varying sequence lengths, which may have affected the observed nucleotide bias (XLS 92 kb)
13127_2015_240_MOESM2_ESM.xls (89 kb)
Online Resource 2 The estimates of the disparity index for all three genes. The Disparity Indices per-site are shown for each sequence pair above the diagonal. Below, the p values of the Disparity Indices are shown, those smaller than 0.05 are considered significant. Evolutionary analyses were conducted in MEGA5.2.2. (XLS 89 kb)
13127_2015_240_MOESM3_ESM.jpg (1.5 mb)
Online Resource 3 Comparison of the topologies of trees estimated from the original (left) and Aliscore-reduced (right) SSU datasets. The differing nodes are marked (JPEG 1503 kb)
13127_2015_240_MOESM4_ESM.pdf (104 kb)
Online Resource 4 Saturation plots for all three genes used in this study and for the codon positions of H3. Histone 3, and especially its 3rd codon position, show patterns indicating saturation (PDF 103 kb)
13127_2015_240_MOESM5_ESM.pdf (607 kb)
Online Resource 5 Gene trees for LSU, SSU and H3. Maximum Likelihood (ML) trees were estimated with RAxML and Bayesian inferences (MB) were performed with MrBayes. The colours correspond to genera, and in case of Ascopariidae to the family. a) ML LSU. b) MB LSU. c) ML SSU. d) MB SSU. e) ML H3. f) MB H3 (PDF 606 kb)
13127_2015_240_MOESM6_ESM.xlsx (86 kb)
Online Resource 6 Pairwise distances across the a) LSU, b) SSU and c) Histone 3 gene datasets (XLSX 85 kb)

References

  1. Boone, M., Bert, W., Claeys, M., Houthoofd, W., & Artois, T. J. (2011). Spermatogenesis and the structure of the testes in Nemertodermatida. Zoomorphology, 130(4), 273–282.CrossRefGoogle Scholar
  2. Carranza, S., Baguñà, J., & Ruitort, M. (1997). Are the Platyhelminthes a monophyletic primitive group? An assessment using 18S rDNA sequences. Molecular Biology and Evolution, 14(5), 485–497.CrossRefPubMedGoogle Scholar
  3. Colgan, D. J., McLauchlan, A., Wilson, G. D. F., Livingston, S. P., Edgecombe, G. D., Macaranas, J., Cassis, G., & Gray, M. R. (1998). Histone H3 and U2 snRNA DNA sequences and arthropod molecular evolution. Australian Journal of Zoology, 46(5), 419–437.Google Scholar
  4. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772–772.CrossRefPubMedPubMedCentralGoogle Scholar
  5. Edgecombe, G. D., Giribet, G., Dunn, C. W., Hejnol, A., Kristensen, R. M., Neves, R. C., et al. (2011). Higher-level metazoan relationships: recent progress and remaining questions. Organisms Diversity and Evolution, 11(2), 151–172.CrossRefGoogle Scholar
  6. Ehlers, U. (1985). Das Phylogenetische System der Platyhelminthes (pp. 1–15). New York: Gustav Fischer.Google Scholar
  7. Faubel, A. (1976). Interstitielle Acoela (Turbellaria) aus dem Litoral der nordfriesischen Inseln Sylt und Amrum (Nordsee). Mitteilungen aus dem Hamburgischen Zoologischen Museum und Institute, 73, 17–56.Google Scholar
  8. Faubel, A., & Dörjes, J. (1978). Flagellophora apelti gen. n. sp. n.: a remarkable representative of the order Nemertodermatida (Turbellaria: Archoophora). Senckenbergiana Maritima, 10(1), 1–13.Google Scholar
  9. Ferrero, E. A. (1973). A fine structural analysis of the statocyst in Turbellaria Acoela. Zoologica Scripta, 2(5), 5–16.CrossRefGoogle Scholar
  10. Ferrero, E. A., & Bedini, C. (1991). Ultrastructural aspects of nervous-system and statocyst morphogenesis during embryonic development of Convoluta psammophila (Turbellaria, Acoela). Hydrobiologia, 227, 131–137.CrossRefGoogle Scholar
  11. Hejnol, A., Obst, M., Stamatakis, A., Ott, M., Rouse, G. W., Edgecombe, G. D., et al. (2009). Assessing the root of bilaterian animals with scalable phylogenomic methods. Proceedings of the Royal Society B: Biological Sciences, 276(1677), 4261–4270.CrossRefPubMedPubMedCentralGoogle Scholar
  12. Hooge, M. D. (2001). Evolution of the body-wall musculature in the Platyhelminthes (Acoelomorpha, Catenulida, Rhabditophora). Journal of Morphology, 249, 171–194.CrossRefPubMedGoogle Scholar
  13. Jimenez-Guri, E., Paps, J., Garcia-Fernandez, J., & Salo, E. (2006). Hox and ParaHox genes in Nemertodermatida, a basal bilaterian clade. The International Journal of Developmental Biology, 50(8), 675–679.CrossRefPubMedGoogle Scholar
  14. Jondelius, U., Ruiz-Trillo, I., Baguñà, J., & Ruitort, M. (2002). The Nemertodermatida are basal bilaterians and not members of the Platyhelminthes. Zoologica Scripta, 31, 201–215.CrossRefGoogle Scholar
  15. Karling, E. (1940). Zur Morphologie und Systematik der Alloeocoela cumulata and Rhabdocoela lecitophora Turbellaria. Acta Societatis pro Fauna et Flora Fennica, 26.Google Scholar
  16. Katoh, K., Misawa, K., Kuma, K.-I., & Miyata, T. (2002). Mafft: a novel method for rapid multiple sequence alignment based on the fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Klopfstein, S., Vilhelmsen, L., Heraty, J. M., Sharkey, M., & Ronquist, F. (2013). The hymenopteran Tree of Life: evidence from protein-coding genes and objectively aligned ribosomal data. PloS One, 8(8), e69344.CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kumar, S., & Gadagkar, S. R. (2001). Disparity Index: a simple statistic to measure and test the homogeneity of substitution patterns between molecular sequences. Genetics, 158, 1321–1327.PubMedPubMedCentralGoogle Scholar
  19. Kück, P., Meusemann, K., Dambach, J., Thormann, B., Reumont Von, B. M., Wägele, J. W., & Misof, B. (2010). Parametric and non-parametric masking of randomness in sequence alignments can be improved and leads to better resolved trees. Frontiers in Zoology, 7(1), 10.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Lane, E. B. (1982). Monoclonal antibodies provide specific intramolecular markers for the study of epithelial tonofilament organization. The Journal of Cell Biology, 92, 665–673.CrossRefPubMedGoogle Scholar
  21. Littlewood, D. T. J., Rohde, K., Bray, R. A., & Herniou, E. A. (1999). Phylogeny of the Platyhelminthes and the evolution of parasitism. Biological Journal of the Linnean Society, 68, 257–287.CrossRefGoogle Scholar
  22. López-Giráldez, F., & Townsend, J. P. (2011). PhyDesign: an online application for profiling phylogenetic informativeness. BMC Evolutionary Biology, 11(1), 152.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lundin, K. (2000). Phylogeny of the Nemertodermatida (Acoelomorpha, Platyhelminthes). A cladistic analysis. Zoologica Scripta, 29, 65–74.CrossRefGoogle Scholar
  24. Lundin, K. (2001). Degenerating epidermal cells in Xenoturbella bocki (phylum uncertain), Nemertodermatida and Acoela (Platyhelminthes). Belgian Journal of Zoology, 131, 153–157.Google Scholar
  25. Lundin, K., & Hendelberg, J. (1998). Is the sperm type of the Nemertodermatida close to that of the ancestral Platyhelminthes? Hydrobiologia, 383, 197–205.CrossRefGoogle Scholar
  26. Meyer-Wachsmuth, I., Curini-Galletti, M., & Jondelius, U. (2014). Hyper-cryptic marine meiofauna: species complexes in Nemertodermatida. PloS One, 9(9), e107688.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Misof, B., & Misof, K. (2009). A Monte Carlo approach successfully identifies randomness in multiple sequence alignments: a more objective means of data exclusion. Systematic Biology, 58(1), 21–34.CrossRefPubMedGoogle Scholar
  28. Norén, M., & Jondelius, U. (1999). Phylogeny of the Prolecithophora (Platyhelminthes) inferred from 18S rDNA sequences. Cladistics, 15(2), 103–112.Google Scholar
  29. Paps, J., Baguñà, J., & Riutort, M. (2009). Bilaterian phylogeny: a broad sampling of 13 nuclear genes provides a new Lophotrochozoa phylogeny and supports a paraphyletic basal Acoelomorpha. Molecular Biology and Evolution, 26(10), 2397–2406.CrossRefPubMedGoogle Scholar
  30. Philippe, H., Brinkmann, H., Copley, R. R., Moroz, L. L., Nakano, H., Poustka, A. J., et al. (2011). Acoelomorph flatworms are deuterostomes related to Xenoturbella. Nature, 470(7333), 255–258.CrossRefPubMedPubMedCentralGoogle Scholar
  31. Raikova, O. I., Reuter, M., Jondelius, U., & Gustafsson, M. K. S. (2000). An immunocytochemical and ultrastructural study of the nervous and muscular system of Xenoturbella westbladi (Bilateria inc. sed.). Zoomorphology, 120, 107–118.CrossRefGoogle Scholar
  32. Rambaut, A. (2009, July 15). Tree figure drawing tool V 1.3.1. tree.bio.ed.ac.uk. Retrieved July 15, 2014, from http://tree.bio.ed.ac.uk/
  33. Riedl, R. (1983). Fauna und Flora des Mittelmeeres (3rd ed., pp. 210–211). Paul Parey.Google Scholar
  34. Rieger, R. M., & Ladurner, P. (2003). The significance of muscle cells for the origin of mesoderm in Bilateria. Integrative Comparative Biology, 43, 47–54.CrossRefPubMedGoogle Scholar
  35. Rieger, R. M., & Ott, J. (1971). Gezeitenbedingte Wanderungen von Turbellarien und Nematoden eines nordadriatischen Sandstrandes. Troisième Symposium Europeén de Biologie Marine, Supplément, 21, 425–447.Google Scholar
  36. Riser, N. W. (1987). Nemertinoides elongatus gen.n., sp.n. (Turbellaria: Nemertodermatida) from coarse sand beaches of the Western North Atlantic. Proceedings of the Helminthological Society in Washington, 54(1), 60–67.Google Scholar
  37. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Hohna, S., et al. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61(3), 539–542.CrossRefPubMedPubMedCentralGoogle Scholar
  38. Ruiz-Trillo, I., Paps, J., Loukota, M., Ribera, C., Jondelius, U., Baguñà, J., & Riutort, M. (2002). A phylogenetic analysis of myosin heavy chain type II sequences corroborates that Acoela and Nemertodermatida are basal bilaterians. Proceedings of the National Academy of Sciences of the USA, 99(17), 11246–11251.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Shimodaira, H. (2002). An Approximately Unbiased test of phylogenetic tree selection. Systematic Biology, 51(3), 492–508.CrossRefPubMedGoogle Scholar
  40. Shimodaira, H., & Hasegawa, M. (2001). Consel: for assessing the confidence of phylogenetic tree selection. Bioinformatics, 17, 1246–1247.CrossRefPubMedGoogle Scholar
  41. Silvestro, D., & Michalak, I. (2011). raxmlGUI: a graphical front-end for RAxML. Organisms Diversity and Evolution, 12(4), 335–337.CrossRefGoogle Scholar
  42. Stamatakis, A. (2006). Phylogenetic models of rate heterogeneity: a high performance computing perspective, 1–8.Google Scholar
  43. Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57(5), 758–771.CrossRefPubMedGoogle Scholar
  44. Steinböck, O. (1930). Ergebnisse einer von E. Reisinger & O. Steinböck mit Hilfe des Rask-Örsted Fonds durchgeführten Reise in Grönland 1926. 2. Nemertoderma bathycola nov. gen. nov. spec. Videnskabelige Meddelelser Dansk Naturhistorisk Forening, 90, 1–42.Google Scholar
  45. Sterrer, W. (1968). Beiträge zur Kenntnis der Gnathostomulida. Arkiv för Zoologie, 1–1.Google Scholar
  46. Sterrer, W. (1998). New and known Nemertodermatida—a revision. Belgian Journal of Zoology, 128, 55–92.Google Scholar
  47. Tajima, F. (1989). Statistical methods for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.PubMedPubMedCentralGoogle Scholar
  48. Tajima, F. (1993). Unbiased estimation of evolutionary distance between nucleotide sequences. Molecular Biology and Evolution, 10(3), 677–688.PubMedGoogle Scholar
  49. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28(10), 2731–2739.CrossRefPubMedPubMedCentralGoogle Scholar
  50. Tang, C. Q., Leasi, F., Obertegger, U., Kieneke, A., Barraclough, T. G., & Fontaneto, D. (2012). The widely used small subunit 18S rDNA molecule greatly underestimates true diversity in biodiversity surveys of the meiofauna. Proceedings of the National Academy of Sciences of the USA, 1–11.Google Scholar
  51. Telford, M. J., Lockyer, A. E., Cartwright-Finch, C., & Littlewood, D. T. J. (2003). Combined large and small subunit ribosomal RNA phylogenies support a basal position of the acoelomorph flatworms. Proceedings of the Royal Society B: Biological Sciences, 270(1519), 1077–1083.CrossRefPubMedPubMedCentralGoogle Scholar
  52. Todt, C. (2009). Structure and evolution of the pharynx simplex in acoel flatworms (Acoela). Journal of Morphology, 270(3), 271–290.CrossRefPubMedGoogle Scholar
  53. Wallberg, A., Curini-Galletti, M., Ahmadzadeh, A., & Jondelius, U. (2007). Dismissal of Acoelomorpha: Acoela and Nemertodermatida are separate early bilaterian clades. Zoologica Scripta, 36, 509–523.CrossRefGoogle Scholar
  54. Westblad, E. (1937). Die Turbellariengattung Nemertoderma Steinböck. Acta Societatis pro Fauna et Flora Fennica, 60, 45–89.Google Scholar
  55. Westblad, E. (1949). On Meara stichopi (Bock) Westblad, a new representative of Turbellaria Archoophora. Arkiv för Zoologie, 1(5), 1–19.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2015

Authors and Affiliations

  1. 1.Department of ZoologySwedish Museum of Natural HistoryStockholmSweden
  2. 2.Department of ZoologyStockholm UniversityStockholmSweden
  3. 3.Institute of ParasitologyBiology Centre of the Czech Academy of SciencesČeské BudĕjoviceCzech Republic

Personalised recommendations