Organisms Diversity & Evolution

, Volume 16, Issue 1, pp 167–184 | Cite as

Phylogeography of the harvestman genus Metasiro (Arthropoda, Arachnida, Opiliones) reveals a potential solution to the Pangean paradox

  • Ronald M. Clouse
  • Prashant P. Sharma
  • Jessie C. Stuart
  • Lloyd R. Davis
  • Gonzalo Giribet
  • Sarah L. Boyer
  • Ward C. Wheeler
Original Article


At both global and local scales, mite harvestmen (Opiliones, Cyphophthalmi) have been shown to have achieved their current global distribution strictly through vicariance. However, the implicit low dispersal capability of this group does not explain how they expand their ranges and come to occupy enormous landmasses prior to rifting. To investigate at the population level the limited vagility that characterizes the suborder generally, and how its dispersal capacity determines diversification dynamics, range expansion, and historical biogeography, we examined as a test case the phylogeography of the genus Metasiro. This genus consists of three widely separated, morphologically cryptic species that inhabit the Southeastern United States. Distances between sampling sites spanned a range of geographic scales, from 4 m to over 500 km. Population structure was inferred from fragments of six loci (three mitochondrial, three nuclear) amplified from 221 specimens. We tested for population structure and gene flow, constructed a dated phylogeny of the genus, and developed a program for estimating the effective population size with confidence intervals. Individuals of Metasiro americanus demonstrate remarkable population structure at scales of less than 25 m, but populations vary in their haplotypic diversity, and some exhibit evidence of historical gene flow. The estimated timing of cladogenesis within the genus accords closely with the geological history of the North American coastline, and the three species are at the endpoints of large watersheds. This suggests that mite harvestman lineages expand their ranges by hydrochory, providing for the first time a plausible mechanism whereby these animals dispersed across Pangea despite their low vagility in stable environments.


Apalachicola River Appalachia Cyphophthalmi Hydrochory Pangea Vicariance 

Supplementary material

13127_2015_233_MOESM1_ESM.pdf (78 kb)
Figure S1Complete phylogeny recovered under maximum likelihood using all sequenced markers (12S, 16S, COI, H3, 18S, and 28S). This is the same phylogeny dated using PATHd8 and shown in Fig. 2. (PDF 78 kb)
13127_2015_233_MOESM2_ESM.pdf (102 kb)
Figure S2Summary of dating calibrations in PATHd8, with inputted fixed dates (triangles) or date ranges (rectangle) shown on relevant nodes. With only the root fixed (a, PATHd8 requires one fixed node), dates of all nodes tend to push forward, significantly younger than dates recovered from other Cyphophthalmi. Adding a date range for Sternophthalmi, the infraorder to which Metasiro belongs (b), results in dates that differ little from simply adding a calibration point for the breakup of Pangea (c, 200 Ma). Without the root constrained, the date for it extends back 1 billion years (d), as is common in dating programs. (PDF 102 kb)
13127_2015_233_MOESM3_ESM.docx (30 kb)
ESM 1(DOCX 30 kb)
13127_2015_233_MOESM4_ESM.pdf (93 kb)


  1. Boyer, S. L., & Giribet, G. (2007). A new model Gondwanan taxon: systematics and biogeography of the harvestman family Pettalidae (Arachnida, Opiliones, Cyphophthalmi), with a taxonomic revision of genera from Australia and New Zealand. Cladistics, 23(4), 337–361.CrossRefGoogle Scholar
  2. Boyer, S. L., & Giribet, G. (2009). Welcome back New Zealand: regional biogeography and Gondwanan origin of three endemic genera of mite harvestmen (Arachnida, Opiliones, Cyphophthalmi). Journal of Biogeography, 36, 1084–1099.Google Scholar
  3. Boyer, S. L., Baker, J. M., & Giribet, G. (2007a). Deep genetic divergences in Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi): a widespread ‘mite harvestman’ defies DNA taxonomy. Molecular Ecology, 16, 4999–5016.CrossRefPubMedGoogle Scholar
  4. Boyer, S. L., Clouse, R. M., Benavides, L. R., Sharma, P., Schwendinger, P. J., Karunarathna, I., et al. (2007b). Biogeography of the world: a case study from cyphophthalmid Opiliones, a globally distributed group of arachnids. Journal of Biogeography, 34, 2070–2085.CrossRefGoogle Scholar
  5. Bragagnolo, C., Pinto-da-Rocha, R., Manuel Antunes, J., & Clouse, R. M. (2015). Phylogenetics and phylogeography of a long-legged harvestman (Arachnida: Opiliones) in the Brazilian Atlantic Rain Forest reveals poor dispersal, low diversity, and extensive mitochondrial introgression. Invertebrate Systematics, in press.Google Scholar
  6. Britton, T., Anderson, C. L., Jacquet, D., Lundqvist, S., & Bremer, K. (2007). Estimating divergence times in large phylogenetic trees. Systematic Biology, 56(5), 741–752.CrossRefPubMedGoogle Scholar
  7. Brooks, M. (1965). The Appalachians (Vol. 1, The Naturalist’s America). Boston: Houghton Mifflin Company.Google Scholar
  8. Burns, R. M., & Honkala, B. H. (1990). Silvics of North America: 1. Conifers; 2. Hardwoods. Agriculture Handbook 654 (Vol. 2). Washington, DC: U.S. Department of Agriculture, Forest Service.Google Scholar
  9. Calderon, I., Ortega, N., Duran, S., Becerro, M., Pascual, M., & Turon, X. (2007). Finding the relevant scale: clonality and genetic structure in a marine invertebrate (Crambe crambe, Porifera). Molecular Ecology, 16(9), 1799–1810.CrossRefPubMedGoogle Scholar
  10. Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657–1659.CrossRefPubMedGoogle Scholar
  11. Clouse, R. M., & Giribet, G. (2007). Across Lydekker’s Line—first report of mite harvestmen (Opiliones : Cyphophthalmi : Stylocellidae) from New Guinea. Invertebrate Systematics, 21(3), 207–227.CrossRefGoogle Scholar
  12. Clouse, R. M., & Giribet, G. (2010). When Thailand was an island—the phylogeny and biogeography of mite harvestmen (Opiliones, Cyphophthalmi, Stylocellidae) in Southeast Asia. Journal of Biogeography, 37(6), 1114–1130.CrossRefGoogle Scholar
  13. Clouse, R. M., & Wheeler, W. C. (2014). Descriptions of two new, cryptic species of Metasiro (Arachnida: Opiliones: Cyphophthalmi: Neogoveidae) from South Carolina, USA, including a discussion of mitochondrial mutation rates. Zootaxa, 3814(2), 177–201.CrossRefPubMedGoogle Scholar
  14. Clouse, R. M., Janda, M., Blanchard, B., Sharma, P., Hoffmann, B. D., Andersen, A. N., et al. (2015). Molecular phylogeny of Indo-Pacific carpenter ants (Hymenoptera: Formicidae, Camponotus) reveals waves of dispersal and colonization from diverse source areas. Cladistics, 31, 424–437.Google Scholar
  15. Colwell, R. K. (2004–2011). Biota 2: the biodiversity database manager. Sunderland: Sinauer Associates.Google Scholar
  16. Crisp, M. D., Trewick, S. A., & Cook, L. G. (2011). Hypothesis testing in biogeography. Trends in Ecology and Evolution, 26, 66–72.CrossRefPubMedGoogle Scholar
  17. Dallmeyer, R. D. (1989). Contrasting accreted terranes in the southern Appalachian Orogen, basement beneath the Atlantic and Gulf Coastal Plains, and West African orogens. Precambrian Research, 42, 387–409.CrossRefGoogle Scholar
  18. Davis, N. W. (1933). A new opilionid from Florida (Arachnida, Cyphophthalmi). Journal of the New York Entomological Society, 41(1/2), 49–53.Google Scholar
  19. Davis, M. B., & Shaw, R. G. (2001). Range shifts and adaptive responses to Quaternary climate change. Science, 292(5517), 673–679.CrossRefPubMedGoogle Scholar
  20. de Bivort, B. L., Clouse, R., & Giribet, G. (2012). A cladistic reconstruction of the ancestral mite harvestman (Arachnida, Opiliones, Cyphophthalmi): portrait of a Paleozoic detritivore. Cladistics, 28(6), 582–597.CrossRefGoogle Scholar
  21. de Rouw, A., Douillet, M., Tjiantahosong, H., Ribolzi, O., & Thiébaux, J.-P. (2007). Dispersal of weed seeds by erosion and flow processes in upland fields. In L. Gebbie, A. Glendinning, R. Lefroy-Braun, & M. Victor (Eds.), International Conference on Sustainable Sloping Lands and Watershed Management: Linking Research to Strengthen Upland Policies and Practices, Luang Prabang, Lao PDR, December 12–15, 2006 (pp. 156–166). Vientiane: National Agriculture and Forestry Research Institute.Google Scholar
  22. Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.CrossRefPubMedPubMedCentralGoogle Scholar
  23. Duckworth, R. A., & Badyaev, A. V. (2007). Coupling of dispersal and aggression facilitates the rapid range expansion of a passerine bird. Proceedings of the National Academy of Sciences, 104(38), 15017–15022.CrossRefGoogle Scholar
  24. Dunlop, J. A. (2010). Geological history and phylogeny of Chelicerata. Arthropod Structure & Development, 39, 124–142.CrossRefGoogle Scholar
  25. Dunlop, J. A., Anderson, L. I., Kerp, H., & Hass, H. (2004). A harvestman (Arachnida : Opiliones) from the Early Devonian Rhynie cherts, Aberdeenshire, Scotland. Transactions of the Royal Society of Edinburgh: Earth Sciences, 94, 341–354.Google Scholar
  26. Economo, E. P., Sarnat, E. M., Janda, M., Clouse, R., Klimov, P., Fischer, G., et al. (2015). Breaking out of biogeographic modules: range expansion and taxon cycles in the hyperdiverse ant genus Pheidole. Journal of Biogeography, in press.Google Scholar
  27. Edgar, R. C. (2004). MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792–1797.CrossRefPubMedPubMedCentralGoogle Scholar
  28. Excoffier, L., & Heckel, G. (2006). Computer programs for population genetics data analysis: a survival guide. Nature Reviews Genetics, 7, 745–758.CrossRefPubMedGoogle Scholar
  29. Fernández, R., & Giribet, G. (2014). Phylogeography and species delimitation in the New Zealand endemic, genetically hypervariable harvestman species, Aoraki denticulata (Arachnida, Opiliones, Cyphophthalmi). Invertebrate Systematics, 28, 401–414.Google Scholar
  30. Garwood, R. J., Sharma, P. P., Dunlop, J. A., & Giribet, G. (2014). A Palaeozoic stem-group to mite harvestmen revealed through integration of phylogenetics and development. Current Biology, 24(9), 1017–1023.CrossRefPubMedGoogle Scholar
  31. Giribet, G. (2000). Catalogue of the Cyphophthalmi of the world (Arachnida, Opiliones). Revista Iberica de Aracnologia, 2, 49–76.Google Scholar
  32. Giribet, G., & Kury, A. B. (2007). Phylogeny and biogeography. In R. Pinto-da-Rocha, G. Machado, & G. Giribet (Eds.), Harvestmen: the biology of Opiliones (pp. 62–87). Cambridge: Harvard University Press.Google Scholar
  33. Giribet, G., Sharma, P. P., Benavides, L., Boyer, S., Clouse, R., de Bivort, B. L., et al. (2012). Evolutionary and biogeographic history of the harvestman suborder Cyphophthalmi (Arachnida, Opiliones)—an ancient and global group of arachnids. Biological Journal of the Linnean Society, 105(1), 92–130.CrossRefGoogle Scholar
  34. Goloboff, P. A., Farris, J. S., & Nixon, K. C. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.CrossRefGoogle Scholar
  35. Gotelli, N. J., & Arnett, A. E. (2000). Biogeographic effects of red fire ant invasion. Ecology Letters, 3(4), 257–261.CrossRefGoogle Scholar
  36. Gouy, M., Guindon, S., & Gascuel, O. (2010). SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Molecular Biology and Evolution, 27(2), 221–224.CrossRefPubMedGoogle Scholar
  37. Graur, D., & Martin, W. (2004). Reading the entrails of chickens: molecular timescales of evolution and the illusion of precision. Trends in Genetics, 20(2), 80–86.CrossRefPubMedGoogle Scholar
  38. Guillot, G., Mortier, F., & Estoup, A. (2005). Geneland: a computer package for landscape genetics. Molecular Ecology Notes, 5(3), 712–715.CrossRefGoogle Scholar
  39. Hedin, M., Starrett, J., Akhter, S., Schönhofer, A. L., & Shultz, J. W. (2012). Phylogenomic resolution of Paleozoic divergences in harvestmen (Arachnida, Opiliones) via analysis of next-generation transcriptome data. PLoS ONE, 7(8), e42888.CrossRefPubMedPubMedCentralGoogle Scholar
  40. Hudson, R. R., Slatkin, M., & Maddison, W. P. (1992). Estimation of levels of gene flow from DNA sequence data. Genetics, 132, 583–589.PubMedPubMedCentralGoogle Scholar
  41. Hyslop, J., & Trowsdale, S. (2012). A review of hydrochory (seed dispersal by water) with implications for riparian rehabilitation. Journal of Hydrology. New Zealand, 51(2), 137–152.Google Scholar
  42. Juberthie, C. (1964). Recherches sur la biologie des Opilions. Toulouse: Université de Toulouse.Google Scholar
  43. Juberthie, C. (1988). Les Opilions Cyphophthalmes: biogéographie, vitesse d’évolution, périodes de colonisation du milieu souterrain. TUB-Dokumentation Kongresse und Tagungen, Berlin, 38, 303–308.Google Scholar
  44. Katoh, K., Misawa, K., Kuma, K., & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30(14), 3059–3066.CrossRefPubMedPubMedCentralGoogle Scholar
  45. Kuhner, M. K. (2006). LAMARC 2.0: maximum likelihood and Bayesian estimation of population parameters. Bioinformatics, 22(6), 768–770.CrossRefPubMedGoogle Scholar
  46. Kumekawa, Y., Ito, K., Tsurusaki, N., Hayakawa, H., Ohga, K., Yokoyama, J., et al. (2014). Phylogeography of the laniatorid harvestman Pseudobiantes japonicus and its allied species (Arachnida: Opiliones: Laniatores: Epedanidae). Annals of the Entomological Society of America, 107(4), 756–772.CrossRefGoogle Scholar
  47. La Sorte, F. A. (2006). Geographical expansion and increased prevalence of common species in avian assemblages: implications for large-scale patterns of species richness. Journal of Biogeography, 33, 1183–1191.CrossRefGoogle Scholar
  48. Labandeira, C. C. (2005). Invasion of the continents: cyanobacterial crusts to tree-inhabiting arthropods. Trends in Ecology & Evolution, 20(5), 253–262.CrossRefGoogle Scholar
  49. Landis, C. A., Campbell, H. J., Begg, J. G., Mildenhall, D. C., Paterson, A. M., & Trewick, S. A. (2008). The Waipounamu Erosion Surface: questioning the antiquity of the New Zealand land surface and terrestrial fauna and flora. Geological Magazine, 145, 173–197.CrossRefGoogle Scholar
  50. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., et al. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23(21), 2947–2948.CrossRefPubMedGoogle Scholar
  51. Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.CrossRefPubMedGoogle Scholar
  52. Machado, G., & Macías-Ordóñez, R. (2007). Reproduction. In R. Pinto-da-Rocha, G. Machado, & G. Giribet (Eds.), Harvestmen: the biology of Opiliones (pp. 414–454). Cambridge: Harvard University Press.Google Scholar
  53. Mao, K., Milne, R. I., Zhang, L., Peng, Y., Liu, J., Thomas, P., et al. (2012). Distribution of living Cupressaceae reflects the breakup of Pangea. Proceedings of the National Academy of Sciences, 109(20), 7793–7798.CrossRefGoogle Scholar
  54. Matos-Maraví, P., Clouse, R. M., Sarnat, E. M., Economo, E. P., LaPolla, J. S., Borovanska, M., et al. (2015). An ant genus-group (Prenolepis) illuminates the drivers of insect diversification in the Indo-Pacific. Journal of Biogeography, in press.Google Scholar
  55. McCallum, B. E., & Gotvald, A. J. (2010). Historic flooding in Northern Georgia, September 16–22, 2009. In Interior (Ed.), USGS fact sheet (July 2010 ed.). U.S. Department of the Interior, U.S. Geological Survey.Google Scholar
  56. Medlock, J., Hansford, K., Schaffner, F., Versteirt, V., Hendrickx, G., Zeller, H., et al. (2012). A review of the invasive mosquitoes in Europe: ecology, public health risks, and control options. Vector-Borne and Zoonotic Diseases, 12(6), 435–447.CrossRefPubMedPubMedCentralGoogle Scholar
  57. Merritt, D. M., & Wohl, E. E. (2002). Processes governing hydrochory along rivers: hydraulics, hydrology, and dispersal phenology. Ecological Applications, 12(4), 1071–1087.CrossRefGoogle Scholar
  58. Mildenhall, D. C., Mortimer, N., Bassett, K. N., & Kennedy, E. M. (2014). Oligocene paleogeography of New Zealand: maximum marine transgression. New Zealand Journal of Geology and Geophysics, 57(8), 107–109.CrossRefGoogle Scholar
  59. Miller, M. A., Pfeiffer, W., & Schwartz, T. Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In Gateway Computing Environments Workshop (GCE), 14 Nov. 2010, New Orleans, Louisiana, November 14, 2010 (pp. 1–8)Google Scholar
  60. Murienne, J., & Giribet, G. (2009). The Iberian Peninsula: ancient history of a hot spot of mite harvestmen (Arachnida: Opiliones: Cyphophthalmi: Sironidae) diversity. Zoological Journal of the Linnean Society, 156(4), 785–800.CrossRefGoogle Scholar
  61. Murienne, J., Benavides, L. R., Prendini, L., Hormiga, G., & Giribet, G. (2013). Forest refugia in Western and Central Africa as ‘museums’ of Mesozoic biodiversity. Biology Letters, 9, 20120932.CrossRefPubMedPubMedCentralGoogle Scholar
  62. Murienne, J., Daniels, S. R., Buckley, T. R., Mayer, G., & Giribet, G. (2015). A living fossil tale of Pangaean biogeography. Proceedings of the Royal Society of London B: Biological Sciences, 281(1775), 20132648.CrossRefGoogle Scholar
  63. Nathan, R. (2008). Long-distance dispersal of plants. Science, 313(5788), 787–788.Google Scholar
  64. Neigel, J. E. (2002). Is FST obsolete? Conservation Genetics, 3(2), 167–173.CrossRefGoogle Scholar
  65. NIWA. (2010). New Zealand Historic Weather Events Catalog. Accessed 11 Oct 2012.
  66. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.CrossRefPubMedGoogle Scholar
  67. Peakall, R., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295.CrossRefGoogle Scholar
  68. Pearse, D. E., & Crandall, K. A. (2004). Beyond FST: analysis of population genetic data for conservation. Conservation Genetics, 5(5), 585–602.CrossRefGoogle Scholar
  69. Popenoe, P., Henry, V. J., & Idris, F. M. (1987). Gulf trough—the Atlantic connection. Geology, 15, 327–332.CrossRefGoogle Scholar
  70. R Development Core Team. (2012). R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.Google Scholar
  71. Randazzo, A. F. (1997). The sedimentary platform of Florida: Mesozoic to Cenozoic. In A. F. Randazzo & D. S. Jones (Eds.), The geology of Florida (pp. 39–56). Gainesville: University Press of Florida.Google Scholar
  72. Ricciardi, A., Neves, R. J., & Rasmussen, J. B. (1998). Impending extinctions of North American freshwater mussels (Unionoida) following the zebra mussel (Dreissena polymorpha) invasion. Journal of Animal Ecology, 67(4), 613–619.CrossRefGoogle Scholar
  73. Rowley, D. B., & Pindell, J. L. (1989). End Paleozoic–Early Mesozoic Western Pangean reconstruction and its implications for the distribution of Precambrian and Paleozoic rocks around Meso-America. Precambrian Research, 42, 411–444.CrossRefGoogle Scholar
  74. Schönhofer, A. L., McCormack, M., Tsurusaki, N., Martens, J., & Hedin, M. (2013). Molecular phylogeny of the harvestmen genus Sabacon (Arachnida: Opiliones: Dyspnoi) reveals multiple Eocene–Oligocene intercontinental dispersal events in the Holarctic. Molecular Phylogenetics and Evolution, 66, 303–315.CrossRefPubMedGoogle Scholar
  75. Sector, D. T., Snoke, A. W., & Dallmeyer, R. D. (1986). Character of the Alleghanian orogeny in the southern Appalachians: part III. Regional tectonic relations. Geological Society of America Bulletin, 97(11), 1345–1353.CrossRefGoogle Scholar
  76. Sharma, P., & Giribet, G. (2009). A relict in New Caledonia: phylogenetic relationships of the family Troglosironidae (Opiliones: Cyphophthalmi). Cladistics, 25(3), 279–294.CrossRefGoogle Scholar
  77. Sharma, P. P., & Giribet, G. (2011). The evolutionary and biogeographic history of the armoured harvestmen—Laniatores phylogeny based on ten molecular markers, with the description of two new families of Opiliones (Arachnida). Invertebrate Systematics, 25, 106–142.CrossRefGoogle Scholar
  78. Sharma, P. P., & Giribet, G. (2012). Out of the Neotropics: Late Cretaceous colonization of Australasia by American arthropods. Proceedings of the Royal Society B: Biological Sciences, 279, 3501–3509.CrossRefPubMedPubMedCentralGoogle Scholar
  79. Sharma, P. P., & Wheeler, W. C. (2013). Revenant clades in historical biogeography: the geology of New Zealand predisposes endemic clades to root age shifts. Journal of Biogeography, 40, 1609–1618.CrossRefGoogle Scholar
  80. Sharma, P. P. & Giribet, G. (2014). A revised, dated phylogeny of the arachnid order Opiliones. Frontiers in Genetics, 5, 255.Google Scholar
  81. Shaul, S., & Graur, D. (2002). Playing chicken (Gallus gallus): methodological inconsistencies of molecular divergence date estimates due to secondary calibration points. Gene, 300, 59–61.CrossRefPubMedGoogle Scholar
  82. Smart, G. M., & McKerchar, A. I. (2010). More flood disasters in New Zealand. Journal of Hydrology (NZ), 49(2), 69–78.Google Scholar
  83. Smith, D. L., & Lord, K. M. (1997). Tectonic evolution and geophysics of the Florida basement. In A. F. Randazzo & D. S. Jones (Eds.), The geology of Florida (pp. 13–26). Gainesville: University Press of Florida.Google Scholar
  84. Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web servers. Systematic Biology, 57(5), 758–771.CrossRefPubMedGoogle Scholar
  85. Thomas, S. M., & Hedin, M. (2008). Multigenic phylogeographic divergence in the paleoendemic southern Appalachian opilionid Fumontana deprehendor Shear (Opiliones, Laniatores, Triaenonychidae). Molecular Phylogenetics and Evolution, 46(2), 645–658.CrossRefPubMedGoogle Scholar
  86. Varón, A., Sy Vinh, L., & Wheeler, W. C. (2009). POY version 4: phylogenetic analysis using dynamic homologies. Cladistics, 26(1), 72–85.CrossRefGoogle Scholar
  87. Vaschetto, L. M., González-Ittig, R. E., Vergara, J., & Acosta, L. E. (2015). High genetic diversity in the harvestman Geraeocormobius sylvarum (Arachnida, Opiliones, Gonyleptidae) from subtropical forests in north-eastern Argentina revealed by mitochondrial DNA sequences. Journal of Zoological Systematics and Evolutionary Research, 53(3), 211–218.Google Scholar
  88. Wang, R., Wang, J.-F., Qiu, Z.-J., Meng, B., Wan, F.-H., & Wang, Y.-Z. (2011). Multiple mechanisms underlie rapid expansion of an invasive alien plant. New Phytologist, 191, 828–839.CrossRefPubMedGoogle Scholar
  89. Watterson, G. A. (1975). On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7(2), 256–276.CrossRefPubMedGoogle Scholar
  90. Wheeler, W. (1996). Optimization alignment: the end of multiple sequence alignment in phylogenetics? Cladistics, 12(1), 1–9.CrossRefGoogle Scholar
  91. White, T. A., Lundy, M. G., Montgomery, W. I., Montgomery, S., Perkins, S. E., Lawton, C., et al. (2012). Range expansion in an invasive small mammal: influence of life-history and habitat quality. Biological Invasions, 14, 2203–2215.CrossRefGoogle Scholar
  92. Wilson, T. B., Webb, R. H., & Thompson, T. L. (2001). Mechanisms of range expansion and removal of mesquite (Prosopis spp.) in desert grasslands in the southwestern United States, RMRS-GTR-81. U.S. Forest Service General Technical Report, United States Department of Agriculture, 23 pp.Google Scholar
  93. Xiong, S., & Nilsson, C. (1997). Dynamics of leaf litter accumulation and its effects on riparian vegetation: a review. The Botanical Review, 63(3), 240–264.CrossRefGoogle Scholar
  94. Zatz, C., Werneck, R. M., Macías-Ordóñez, R., & Machado, G. (2011). Alternative mating tactics in dimorphic males of the harvestman Longiperna concolor (Arachnida: Opiliones). Behavioral Ecology and Sociobiology, 65(5), 995–1005.CrossRefGoogle Scholar
  95. Zhang, P., & Wake, M. H. (2009). A mitogenomic perspective on the phylogeny and biogeography of living caecilians (Amphibia: Gymnophiona). Molecular Phylogenetics and Evolution, 53, 479–491.CrossRefPubMedGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2015

Authors and Affiliations

  • Ronald M. Clouse
    • 1
    • 2
  • Prashant P. Sharma
    • 1
    • 3
  • Jessie C. Stuart
    • 4
  • Lloyd R. Davis
    • 5
  • Gonzalo Giribet
    • 6
  • Sarah L. Boyer
    • 7
  • Ward C. Wheeler
    • 1
  1. 1.Division of Invertebrate ZoologyAmerican Museum of Natural HistoryNew YorkUSA
  2. 2.Department of Bioinformatics and GenomicsUniversity of North Carolina at CharlotteCharlotteUSA
  3. 3.Department of ZoologyUniversity of Wisconsin–MadisonMadisonUSA
  4. 4.Harvard Medical SchoolBostonUSA
  5. 5.GainesvilleUSA
  6. 6.Museum of Comparative Zoology, Department of Organismic and Evolutionary BiologyHarvard UniversityCambridgeUSA
  7. 7.Biology DepartmentMacalester CollegeSaint PaulUSA

Personalised recommendations