Advertisement

Organisms Diversity & Evolution

, Volume 15, Issue 3, pp 543–553 | Cite as

Biogeography, cryptic diversity, and queen dimorphism evolution of the Neotropical ant genus Ectatomma Smith, 1958 (Formicidae, Ectatomminae)

  • Alejandro Nettel-Hernanz
  • Jean-Paul Lachaud
  • Dominique Fresneau
  • Román A. López-Muñoz
  • Chantal Poteaux
Original Article

Abstract

Due to its high biodiversity and its complex climatic and geological history, the Neotropical region has caught the attention of evolutionary and conservation biologists. The Neotropics have an understudied and probably extensive cryptic diversity, stemming from old lineages that have persisted through time with highly similar morphology or from new morphologically undifferentiated sibling species. The wide-ranging Neotropical ant genus Ectatomma currently has only 15 described species, some of which present limited distribution. These ants provide an excellent system for the study of diversification and cryptic diversity in the Neotropics. Ectatomma also displays queen-size dimorphism in some northern populations of its two most common species: a case of true microgyny and a recently described parasitic species. We performed a phylogenetic and biogeographic analysis of Ectatomma species using two mitochondrial genes and one nuclear gene. We also explored the relationship between the history of the genus and the appearance of miniaturized queens. Our analysis recovered a monophyletic Ectatomma that originated in the Parana region of South America. We recorded three likely events of colonization of the Caribbean–Mesoamerican region. We also detected ample evidence of cryptic divergence that deserves a full taxonomic revision of the genus. Miniature queens—microgynes and parasites—represent two independent evolutionary events that appeared in the recent history of the genus.

Keywords

Cryptic species Neotropical biogeography Speciation events Ant queens Miniaturized queens Social parasitism 

Notes

Acknowledgments

We thank J. Delabie, T. Delsinne, D. Donoso, R. Rodrigues, S. Lacau, J. Longino, A. López, C. Moreau, C. Schmidt, and C. Villemant for sending samples for analyses. We are grateful to L.R. Pérez-Marcelín for help with manuscript preparation, J. Flawell for correcting the English and two anonymous reviewers for their comments. The Fyssen Foundation granted postdoctoral funds to support A. Nettel-Hernanz in conducting this study.

Supplementary material

13127_2015_215_MOESM1_ESM.docx (3.4 mb)
Figure S1 Distributional maps for Ectatomma species considered in this study. Countries of the Neotropical Region are shaded in yellow and countries where each species is reported are shaded in blue, correspondingly (light blue corresponding to assumed presence). (DOCX 3491 kb)
13127_2015_215_MOESM2_ESM.docx (29 kb)
Table S1 Species sampled, localities, coordinates, coded biogeographic region according to Morrone (2006), GenBank accession numbers and voucher specimens deposited in collections. South American E. confine, E. planidens, and E. goninion were omitted because of the difficulty of procuring specimens. Lat, Latitude; Long, Longitude. Collection voucher codes correspond to the following: MNHN, Muséum National d´Histoire Naturelle – Paris, France; DD, local collection at Ecuador (managed by David Donoso); MZUSP, Museu de Zoologia da Universidade de São Paulo, São Paulo, Brazil; and CS, Corrie Moreau´s collection. (DOCX 29 kb)

References

  1. Abouheif, E., & Wray, G. A. (2002). Evolution of the gene network underlying wing polyphenism in ants. Science, 297, 249–252.CrossRefPubMedGoogle Scholar
  2. Almeida, A. J. (1986). Descrição de quatro machos do gênero Ectatomma Smith, 1858 (Hymenoptera, Formicidae, Ponerinae). Quid, 6, 24–38.Google Scholar
  3. Almeida, A. J. (1987). Descrição de seis fêmeas do gênero Ectatomma Smith, 1858 (Hymenoptera, Formicidae, Ponerinae). Anais Sociedade Nordestina Zoologia, 1, 175–183.Google Scholar
  4. Arias-Penna, T. M. (2006). Redescription of the ant Ectatomma confine Mayr, 1870 (Hymenoptera: Formicidae) and first record for Colombia. Entomological News, 117, 445–450.CrossRefGoogle Scholar
  5. Arias-Penna, T.M. (2008). Chap. 3: Subfamilia Ectatomminae. In: E. Jimenez, F. Fernandez, T M. Arias, Lozano-Zambrano FH, (eds.), Sistemática, biogeografía y conservación de las hormigas cazadoras de Colombia. Instituto de Investigación de Recursos Biológicos Alexander von Humboldt 53–107.Google Scholar
  6. Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22, 148–155.CrossRefPubMedGoogle Scholar
  7. Blaimer, B. B. (2012). Acrobat ants go global – origin, evolution and systematics of the genus Crematogaster (Hymenoptera: Formicidae). Molecular and Phylogenetic Evolution. doi: 10.1016/j.ympev.2012.06.028.Google Scholar
  8. Bolnick, D. I., & Fitzpatrick, B. M. (2007). Sympatric speciation: models and empirical evidence. Annual Review of Ecology, Evolution, and Systematics, 38, 459–487.CrossRefGoogle Scholar
  9. Bolton, B. (2003). Synopsis and classification of Formicidae. Memoirs of the American Entomological Institute, 71, 1–370.Google Scholar
  10. Bourke, A. F. G., & Franks, N. R. (1991). Alternative adaptations, sympatric speciation and the evolution of parasitic, inquiline ants. Biological Journal of the Linnean Society, 43, 157–178.CrossRefGoogle Scholar
  11. Breed, M. D., Abel, P., Bleuze, T. J., & Denton, S. E. (1990). Thievery, home ranges, and nestmate recognition in Ectatomma ruidum. Oecologia, 84, 117–121.CrossRefGoogle Scholar
  12. Breed, M. D., McGlynn, T. P., Stocker, E. M., & Klein, A. N. (1999). Thief workers and variation in nestmate recognition behavior in a ponerine ant, Ectatomma ruidum. Insectes Sociaux, 46, 327–331.CrossRefGoogle Scholar
  13. Brower, A. W. Z. (1994). Rapid morphological radiation and convergence among races of the butterfly Heliconius erato inferred from patterns of mitochondrial DNA evolution. Proceedings of the National Academy of Sciences of the United States of America, 91, 6491–6495.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Brown, W. L., Jr. (1958). Contributions toward a reclassification of the Formicidae. II. Tribe Ectatommini (Hymenoptera). Bulletin of the Museum of Comparative Zoology, 118, 175–362.Google Scholar
  15. Buschinger, A. (1990). Sympatric speciation and radiative evolution of socially parasitic ants - heretic hypotheses and their factual background. Zeitschrift fuer Zoologische Systematik und Evolutionsforschung, 28, 241–260.CrossRefGoogle Scholar
  16. Buschinger, A. (2009). Social parasitism among ants: a review (Hymenoptera: Formicidae). Myrmecological News, 12, 219–235.Google Scholar
  17. Cupul-Magaña, F. G. (2009). Primera observación del comportamiento defensivo por muerte simulada de la hormiga Ectatomma ruidum (Roger, 1861) (Formicidae, Ponerinae). Acta Zoologica Mexicana, 25, 199–201.Google Scholar
  18. Darriba, D., Taboada, G. L., Doallo, R., & Posada, D. (2012). jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9, 772.CrossRefPubMedPubMedCentralGoogle Scholar
  19. Dornburg, A., Townsend, J. P., Friedman, P., & Near, T. J. (2014). Phylogenetic informativeness reconciles ray-finned fish molecular divergence times. BMC Evolutionary Biology, 14, 169.CrossRefPubMedPubMedCentralGoogle Scholar
  20. Drummond, A. J., Suchard, M. A., Xie, D., & Rambaut, A. (2012). Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution, 29, 1969–1973.CrossRefPubMedPubMedCentralGoogle Scholar
  21. Elmes, G. W. (1991). Mating strategy and isolation between the two forms, macrogyna and microgyna, of Myrmica ruginodis (Hym. Formicidae). Ecological Entomology, 16, 411–423.CrossRefGoogle Scholar
  22. Emery, C. (1901). Notes sur les sous-familles des Dorylines et Ponérines (Famille des Formicides). Annales de la Société Entomologique de Belgique, 45, 32–54.Google Scholar
  23. Emery, C. (1909). Über den Ursprungder dulotischen, parasitischen und myrmekophilen Ameisen. Biologische Centralblatt, 29, 352–362.Google Scholar
  24. Feitosa, R. M., Hora, R. R., Delabie, J. H. C., Valenzuela, J., & Fresneau, D. (2008). A new social parasite in the ant genus Ectatomma F. Smith (Hymenoptera, Formicidae, Ectatomminae). Zootaxa, 1713, 47–52.Google Scholar
  25. Fénéron, R., Poteaux, C., Boilève, M., Valenzuela, J., & Savarit, F. (2013). Discrimination of the social parasite Ectatomma parasiticum by its host sibling species (E. tuberculatum). Psyche, 2013, 1–11.CrossRefGoogle Scholar
  26. Ferreira, R. S., Poteaux, C., Delabie, J. H. C., Fresneau, D., & Rybak, F. (2010). Stridulations reveal cryptic speciation in Neotropical sympatric ants. PLoS ONE, 5(12), e15363. doi: 10.1371/journal.pone.0015363.CrossRefPubMedPubMedCentralGoogle Scholar
  27. Guénard, B., & McGlynn, T. P. (2013). Intraspecific thievery in the ant Ectatomma ruidum is mediated by food availability. Biotropica, 45, 1–6.CrossRefGoogle Scholar
  28. Hamaguchi, K., & Kinomura, K. (1996). Queen-size dimorphism in the facultatively polygynous ant Leptothorax spinosior (Hymenoptera: Formicidae). Sociobiology, 27, 241–251.Google Scholar
  29. Heinze, J., & Hölldobler, B. (1993). Queen polymorphism in an Australian weaver ant. Polyrhachis cf. doddi. Psyche, 100, 83–92.Google Scholar
  30. Hölldobler, B., & Wilson, E. O. (1990). The ants. Cambridge: Harvard Press.CrossRefGoogle Scholar
  31. Hora, R. R., Blatrix, R., Fresneau, D., & Fénéron, R. (2009). Social interactions between an inquiline ant, Ectatomma parasiticum, and its host, Ectatomma tuberculatum (Formicidae, Ectatomminae). Journal of Ethology, 27, 285–288.CrossRefGoogle Scholar
  32. Hora, R. R., Poteaux, C., Doums, C., Fresneau, D., & Fénéron, R. (2007). Egg cannibalism in a facultative polygynous ant: conflict for reproduction or strategy to survive? Ethology, 113, 909–916.CrossRefGoogle Scholar
  33. Hora, R. R., Vilela, E., Fénéron, R., Pezon, A., Fresneau, D., & Delabie, J. (2005). Facultative polygyny in Ectatomma tuberculatum (Formicidae: Ectatomminae). Insectes Sociaux, 52, 194–200.CrossRefGoogle Scholar
  34. Hubert, N., & Renno, F. (2006). Historical biogeography of South American freshwater fishes. Journal of Biogeography, 33, 1414–1436.CrossRefGoogle Scholar
  35. Ibarra-Núñez, G., García, J. A., López, J. A., & Lachaud, J. P. (2001). Prey analysis in the diet of some ponerine ants (Hymenoptera: Formicidae) and web-building spiders (Araneae) in coffee plantations in Chiapas, Mexico. Sociobiology, 37, 723–755.Google Scholar
  36. Jansen, G., Savolainen, R., & Vepsäläinen, K. (2010). Phylogeny, divergence-time estimation, biogeography and social parasite–host relationships of the Holarctic ant genus Myrmica (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 56, 294–304.CrossRefPubMedGoogle Scholar
  37. Janzen, D. H. (1973). Evolution of polygynous obligate acacia-ants in western Mexico. Journal of Animal Ecology, 42, 727–750.CrossRefGoogle Scholar
  38. Jermiin, L. S., & Crozier, R. H. (1994). The cytochrome b region in the mitochondrial DNA of the ant Tetraponera rufoniger: sequence divergence in Hymenoptera may be associated with nucleotide content. Journal of Molecular Evolution, 38, 282–294.CrossRefPubMedGoogle Scholar
  39. Kugler, C. & Brown Jr., W.L. (1982). Revisionary and other studies on the ant genus Ectatomma, including the descriptions of two new species. Search: Agriculture 24: 8 pp.Google Scholar
  40. Lachaud, J. P., Cadena, A., Pérez-Lachaud, G., & Schatz, B. (1999a). Polygynie et stratégies reproductrices chez une ponérine néotropicale, Ectatomma ruidum. Actes des Colloques Insectes Sociaux, 2, 53–59.Google Scholar
  41. Lachaud, J. P., Cadena, A., Schatz, B., Pérez-Lachaud, G., & Ibarra-Núñez, G. (1999b). Queen dimorphism and reproductive capacity in the ponerine ant, Ectatomma ruidum Roger. Oecologia, 120, 515–523.CrossRefGoogle Scholar
  42. LeMasne, G. (1956). Recherches sur les fourmis parasites Plagiolepis grassei et l’évolution des Plagiolepis parasites. Comptes Rendus de l’Académie des Sciences, 243, 673–675.Google Scholar
  43. Lenoir, J. C., Lachaud, J. P., Nettel, A., Fresneau, D., & Poteaux, C. (2011). The role of microgynes in the reproductive strategy of the Neotropical ant Ectatomma ruidum. Naturwissenschaften, 98, 347–356.CrossRefPubMedGoogle Scholar
  44. Lenoir, A., Devers, S., Marchand, P., Bressac, C., & Savolainen, R. (2010). Microgynous queens in the Palearctic ant, Manica rubida: dispersal morphs or social parasites? Journal of Insect Science, 10, 17.PubMedPubMedCentralGoogle Scholar
  45. Lucas, C., Fresneau, D., Kolmer, K., Heinze, J., Delabie, J. H. C., & Pho, D. B. (2002). A multidisciplinary approach to discriminating different taxa in the species complex Pachycondyla villosa (Formicidae). Biological Journal of the Linnean Society, 75(2), 249–259.CrossRefGoogle Scholar
  46. Lucky, A., & Sarnat, E. M. (2010). Biogeography and diversification of the Pacific ant genus Lordomyrma Emery. Journal of Biogeography, 37, 624–634.CrossRefGoogle Scholar
  47. Lucky, A. (2011). Molecular phylogeny and biogeography of the spider ants, genus Leptomyrmex Mayr (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 59, 281–292.CrossRefPubMedGoogle Scholar
  48. Majer, J. D., Delabie, J. H. C., & Smith, M. R. B. (1994). Arboreal ant community patterns in Brazilian cocoa farms. Biotropica, 26, 73–83.CrossRefGoogle Scholar
  49. McInnes, D. A., & Tschinkel, W. R. (1995). Queen dimorphism and reproductive strategies in the fire ant Solenopsis geminata (Hymenoptera: Formicidae). Behavioral Ecology and Sociobiology, 36, 367–375.CrossRefGoogle Scholar
  50. Miller, M. A., Pfeiffer, W., & Schwartz, T. (2010). Creating the CIPRES Science Gateway for inference of large phylogenetic trees (pp. 1–8). New Orleans: Proceedings of the Gateway Computing Environments Workshop (GCE).Google Scholar
  51. Molet, M., Peeters, C., & Fisher, B. L. (2007). Winged queens replaced by reproductives smaller than workers in Mystrium ants. Naturwissenschaften, 94, 280–287.CrossRefPubMedGoogle Scholar
  52. Moreau, C. S., & Bell, C. D. (2013). Testing the museum versus cradle tropical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution, 67, 2240–2257.CrossRefPubMedGoogle Scholar
  53. Moreau, C. S., Bell, C. D., Vila, R., Archibald, S. B., & Pierce, N. E. (2006). Phylogeny of the ants: diversification in the age of angiosperms. Science, 312, 101–104.CrossRefPubMedGoogle Scholar
  54. Morrone, J. J. (2006). Biogeographic areas and transition zones of Latin America and the Caribbean Islands based on panbiogeographic and cladistic analyses of the entomofauna. Annual Review of Entomology, 51, 467–494.CrossRefPubMedGoogle Scholar
  55. Near, T. J., & Keck, B. P. (2013). Free from mitochondrial DNA: nuclear genes and the inference of species trees among closely related darter lineages (Teleostei: Percidae: Etheostomatinae). Molecular Phylogenetics and Evolution, 66, 868–876.CrossRefPubMedGoogle Scholar
  56. Nicholas, K. B., Nicholas, H. B., Jr., & Deerfield, D. W. (1997). GeneDoc: analysis and visualization of genetic variation. Embnew News, 4, 14.Google Scholar
  57. Ouellette, G. D., Fisher, B. L., & Girman, D. J. (2006). Molecular systematics of basal subfamilies of ants using 28S rRNA (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 40, 359–369.CrossRefPubMedGoogle Scholar
  58. Pérez-Lachaud, G., Valenzuela, J., & Lachaud, J. P. (2011). Is increased resistance to parasitism at the origin of polygyny in a Mexican population of the ant Ectatomma tuberculatum (Hymenoptera: Formicidae)? The Florida Entomologist, 94, 677–684.CrossRefGoogle Scholar
  59. Perfecto, I. (1990). Indirect and direct effects in a tropical agroecosystem: the maize-pest-ant system in Nicaragua. Ecology, 71, 2125–2134.CrossRefGoogle Scholar
  60. Rambaut, A. & Drummond, A.J. 2007. Tracer v1.4. Available at: http://beast.bio.ed.ac.uk/Tracer. Accessed 15 Aug 2014
  61. Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D. L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M. A., & Huelsenbeck, J. P. (2012). MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology, 61, 539–542.Google Scholar
  62. Rull, V. (2011). Neotropical biodiversity: timing and potential drivers. Trends in Ecology and Evolution, 26, 508–513.CrossRefPubMedGoogle Scholar
  63. Rüppell, O., & Heinze, J. (1999). Alternative reproductive tactics in females: the case of size polymorphism in winged ant queens. Insectes Sociaux, 46, 6–17.CrossRefGoogle Scholar
  64. Savarit, F., & Fénéron, R. (2014). Imperfect chemical mimicry explains the imperfect social integration of the inquiline ant, Ectatomma parasiticum (Hymenoptera: Formicidae: Ectatomminae). Myrmecological News, 20, 7–14.Google Scholar
  65. Savolainen, R., & Vepsäläinen, K. (2003). Sympatric speciation through intraspecific social parasitism. Proceedings of the National Academy of Sciences of the United States of America, 100, 7169–7174.CrossRefPubMedPubMedCentralGoogle Scholar
  66. Schatz, B., & Lachaud, J. P. (2008). Effect of high nest density on spatial relationships in two dominant Ectatommine ants. Sociobiology, 51, 623–643.Google Scholar
  67. Scheffers, B. R., Joppa, L. N., Pimm, S. L., & Laurance, W. F. (2012). What we know and don’t know about Earth’s missing biodiversity. Trends in Ecology and Evolution, 27, 501–510.CrossRefPubMedGoogle Scholar
  68. Schlick-Steiner, B. C., Steiner, F. M., Moder, K., Seifert, B., Sanetra, M., Dyreson, E., Stauver, C., & Christian, E. (2006). A multidisciplinary approach reveals cryptic diversity in Western Palearctic Tetramorium ants (Hymenoptera: Formicidae). Molecular Phylogenetics and Evolution, 40, 259–273.CrossRefPubMedGoogle Scholar
  69. Schlick-Steiner, B. C., Steiner, F. M., Sanetra, M., Heller, G., Stauffer, C., Christian, E., & Seifert, B. (2005). Queen size dimorphism in the ant Tetramorium moravicum (Hymenoptera, Formicidae): morphometric, molecular genetic and experimental evidence. Insectes Sociaux, 52, 186–193.CrossRefGoogle Scholar
  70. Simon, C., Frati, F., Beckenbach, A., Crespi, B., Liu, H., & Flook, P. (1994). Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Annals of the Entomological Society of America, 87, 651–701.CrossRefGoogle Scholar
  71. Smith, J. A., Tierney, S. M., Park, Y. C., Fuller, S., & Schwarz, M. P. (2007). Origins of social parasitism: the importance of divergence ages in phylogenetic studies. Molecular Phylogenetics and Evolution, 43, 1131–1137.CrossRefPubMedGoogle Scholar
  72. Steiner, F. M., Schlick-Steiner, B. C., Konrad, H., Moder, K., Christian, E., Seifert, B., Crozier, R. H., Stauffer, C., & Buschinger, A. (2006). No sympatric speciation here: multiple data sources show that the ant Myrmica microrubra is not a separate species but an alternate reproductive morph of Myrmica rubra. Journal of Evolutionary Biology, 19, 777–787.CrossRefPubMedGoogle Scholar
  73. Steiner, F. M., Seifert, B., Moderc, K., & Schlick-Steinera, B. C. (2010). A multisource solution for a complex problem in biodiversity research: description of the cryptic ant species Tetramorium alpestre sp.n. (Hymenoptera: Formicidae). Zoologischer Anzeiger, 249, 223–254.CrossRefGoogle Scholar
  74. Swallow, J. G., Wallace, F. E., Christianson, S. J., Johns, P. M., & Wilkinson, J. S. (2005). Genetic divergence does not predict change in ornament expression among populations of stalk-eyed flies. Molecular Ecology, 14, 3787–3800.CrossRefPubMedGoogle Scholar
  75. Swofford, D.L. (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sinauer Associates, Sunderland, Massachusetts.Google Scholar
  76. Vepsäläinen, K., Ebsen, J. R., Savolainen, R., & Boomsma, J. J. (2009). Genetic differentiation between the ant Myrmica rubra and its microgynous social parasite. Insectes Sociaux, 56, 425–437.CrossRefGoogle Scholar
  77. Vieira, A. S., Antoniali-Junior, W. F., & Fernandes, W. D. (2007). Modelo arquitetônico de ninhos da formiga Ectatomma vizottoi Almeida (Hymenoptera, Formicidae). Revista Brasileira de Entomologia, 51, 489–493.CrossRefGoogle Scholar
  78. Ward, P. S., & Downie, D. A. (2005). The ant subfamily Pseudomyrmecinae (Hymenoptera: Formicidae): phylogeny and evolution of big-eyed arboreal ants. Systematic Entomology, 30, 310–335.CrossRefGoogle Scholar
  79. Wilson, J. S., Clark, S. L., Willims, K. A., & Pitts, J. P. (2012). Historical biogeography of the arid-adapted velvet ant Sphaeropthalma arota (Hymenoptera: Mutillidae) reveals cryptic species. Journal of Biogeography, 39, 336–352.CrossRefGoogle Scholar
  80. Yu, Y., Harris, A.J. & He, X.J. (2011). RASP (reconstruct ancestral state in phylogenies) 2.0 beta. Available at: http://mnh.scu.edu.cn/soft/blog/RASP. Accessed 30 Aug 2014
  81. Zheng, Y., Peng, R., Kuro-o, M., & Zeng, X. (2011). Exploring patterns and extent of bias in estimating divergence time from mitochondrial DNA sequence data in a particular lineage: a case study of salamanders (Order Caudata). Molecular Biology and Evolution, 28, 2521–2535.CrossRefPubMedGoogle Scholar
  82. Zinck, L., Jaisson, P., Hora, R. R., Denis, D., Poteaux, C., & Doums, C. (2007). The role of breeding system on ant ecological dominance: genetic analysis of Ectatomma tuberculatum. Behavioural Ecology, 18, 701–708.CrossRefGoogle Scholar
  83. Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation, The University of Texas at Austin.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2015

Authors and Affiliations

  • Alejandro Nettel-Hernanz
    • 1
    • 2
  • Jean-Paul Lachaud
    • 3
    • 4
  • Dominique Fresneau
    • 2
  • Román A. López-Muñoz
    • 1
  • Chantal Poteaux
    • 2
  1. 1.Instituto de Ciencias BiológicasUniversidad de Ciencias y Artes de ChiapasTuxtla GutiérrezMexico
  2. 2.Laboratoire d’Ethologie Expérimentale et Comparée, EA 4443Université Paris-Nord, UFR L.S.H.S.VilletaneuseFrance
  3. 3.Centre de Recherches sur la Cognition Animale, CNRS-UMR 5169Université de Toulouse UPSToulouse cedex 09France
  4. 4.Departamento de Conservación de la BiodiversidadEl Colegio de la Frontera SurChetumalMexico

Personalised recommendations