Organisms Diversity & Evolution

, Volume 15, Issue 2, pp 351–368 | Cite as

Ecology, acoustics and chromosomes of the East African genus Afroanthracites Hemp & Ingrisch (Orthoptera, Tettigoniidae, Conocephalinae, Agraeciini) with the description of new species

  • Claudia Hemp
  • Klaus-Gerhard Heller
  • Elżbieta Warchałowska-Śliwa
  • Beata Grzywacz
  • Andreas Hemp
Original Article

Abstract

The flightless Agraeciini genus Afroanthracites, a genus restricted to East Africa, is reviewed and two new species are described. Exemplary for the genus Afroanthracites, the ecological niche of Afroanthracites montium from Mt Kilimanjaro is defined. A. montium occupies habitats in humid and perhumid conditions and thus shows a broad altitudinal range (1250–2700 m). Concerning the acoustic communication, it is remarkable that within the micropterous genus a trend to low carrier frequencies is observed combined with the evolution of larger stridulatory organs (mirror; resonating part of tegmen). This trend starts with species using the same ultrasonic frequencies as a brachypterous out-group and ends with species presenting clearly audible songs. Cytogenetic data are given for five Afroanthracites and one Afroagraecia species. Differences in chromosome numbers Afroanthracites 2n = 29 and Afroagraecia 2n = 27 as well as a number of major rDNA clusters (one and two, respectively) are probably useful markers to separate both genera. It is discussed whether the African species evolved from a species with a presumably derived karyotype (e.g. 27 or 29 chromosomes) or if the proposed reduction of chromosome number occurred independently in Africa, Asia and Australia. The data set suggests that the African Agraeciini is of monophyletic origin, with a common ancestor of Afroagraecia and Afroanthracites in Africa. The Afroanthracites species can be divided into three groups on base of their morphology and colour pattern. Species of adjacent areas are morphologically sister groups. The most derived forms as seen in their morphology and acoustics are found in the West Usambara Mountains, part of the geologically old Eastern Arc Mountains.

Keywords

Orthoptera Agraeciini New species Ecology Bioacoustics Chromosomes Tanzania Eastern Arc Mountains 

Notes

Acknowledgments

Part of this research received support from the Synthesys Project (http://www.synthesys.info/) financed by the European Community Research Infrastructure Action under the FP6 “Structuring the European Research Area Programme”, enabling us to visit collections in London, Vienna, Stockholm, Tervuren, Paris, Madrid and Copenhagen. We gratefully acknowledge grants by the Deutsche Forschungsgemeinschaft and the Tanzanian Commission for Science and Technology (COSTECH) as well as the Tanzania Wildlife Research Institute (TAWIRI) for permitting research.

References

  1. Bailey, W. J. (1970). The mechanics of stridulation in bush crickets (Tettigonioidea, Orthoptera) 1. The tegminal generator. Journal of Experimental Biology, 52, 495–505.Google Scholar
  2. Bennet-Clark, H. C. (2003). Wing resonances in the Australian field cricket Teleogryllus oceanicus. Journal of Experimental Biology, 206, 1479–1496.PubMedCrossRefGoogle Scholar
  3. Braun-Blanquet, J. (1964) Pflanzensoziologie. Springer Verlag. Berlin, Wien, New York. 865 pp.Google Scholar
  4. Cabrero, J., & Camacho, J. P. M. (2008). Location and expression of ribosomal RNA genes in grasshoppers: abundance of silent and cryptic loci. Chromosome Research, 16, 595–607.Google Scholar
  5. Ferreira, A. (1969). Chromosome survey of some Australian tettigoniids (Orthoptera – Tettigonioidea): two species with neo-XY sex determining mechanism. Cytologia, 34, 511–522.CrossRefGoogle Scholar
  6. Grzywacz, B., Maryańska-Nadachowska, A., Chobanov, D. P., Karamysheva, T., & Warchałowska-Śliwa, E. (2011). Comparative analysis of the location of rDNA in the Palaearctic bushcricket genus Isophya (Orthoptera: Tettigoniidae: Phaneropterinae). European Journal of Entomology, 108, 509–517.CrossRefGoogle Scholar
  7. Grzywacz, B., Chobanov, D. P., Maryańska-Nadachowska, A., Karamysheva, T. V., Heller, K.-G., & Warchałowska-Śliwa, E. (2014). A comparative study of genome organization and inferences for the systematics of two large bushcricket genera of the tribe Barbitistini (Orthoptera: Tettigoniidae: Phaneropterinae). BMC Evolutionary Biology, 14, 48.PubMedCentralPubMedCrossRefGoogle Scholar
  8. Hamilton, A. C. (1989). 11. The climate of the East Usambaras In: Hamilton, A. C., Bensted-Smith, R. (1989). Forest conservation in the East Usambara Mountains Tanzania. The IUCN Tropical Forest Programme, 207–212.Google Scholar
  9. Heller, K.-G. (1988). Bioakustik der europäischen Laubheuschrecken. Weikersheim: Verlag Josef Margraf.Google Scholar
  10. Heller, K.-G., & Hemp, C. (2014). Fiddler on the tree—a bush-cricket species with unusual stridulatory organs and song. PLoS, 9(3), e92366. doi:10.1371/journal.pone.0092366.CrossRefGoogle Scholar
  11. Heller, K.-G., Korsunovskaya, O. S., Sevgili, H., & Zhantiev, R. D. (2006). Bioacoustics and systematics of the Poecilimon heroicus-group (Orthoptera: Phaneropteridae: Barbitistinae). European Journal of Entomology, 103, 853–865.CrossRefGoogle Scholar
  12. Heller, K.-G., Ostrowski, T. D., & Hemp, C. (2010). Singing and hearing in Aerotegmina kilimandjarica (Tettigoniidae: Hexacentrinae), a species with unusual low carrier frequency of the calling song. Bioacoustics, 19(3), 195–210.CrossRefGoogle Scholar
  13. Hemp, A. (2006a). Continuum or zonation? Altitudinal diversity patterns in the forests on Mt. Kilimanjaro. Plant Ecology, 184(1), 27–42.CrossRefGoogle Scholar
  14. Hemp, A. (2006b). Vegetation of Kilimanjaro: hidden endemics and missing bamboo. African Journal of Ecology, 44, 305–328.CrossRefGoogle Scholar
  15. Hemp, C. (2013a). Annotated list of Ensifera (Orthoptera) and further records on Caelifera (Orthoptera) of Mt Kilimanjaro, Tanzania. Zootaxa, 3613(4), 301–342. doi:10.11646/zootaxa.3613.4.1.PubMedCrossRefGoogle Scholar
  16. Hemp, C. (2013b). Annotated list of Tettigoniidae (Orthoptera) from the East Usambara Mountains, Tanzania and new Tettigoniidae species from East Africa. Zootaxa, 3737(4), 301–350. doi:10.11646/zootaxa.3737.4.1.PubMedCrossRefGoogle Scholar
  17. Hemp, C., Heller, K.-G., Kehl, S., Warchałowska-Śliwa, E., Wägele, J. W., & Hemp, A. (2010a). The Phlesirtes complex (Orthoptera, Tettigoniidae, Conocephalinae, Conocephalini) reviewed: integrating morphological, molecular, chromosomal, and bioacoustic data. Systematic Entomology, 35, 554–580.CrossRefGoogle Scholar
  18. Hemp, C., Heller, K.-G., Warchałowska-Śliwa, E., & Hemp, A. (2010b). A new genus and species of African Phaneropterinae (Orthoptera: Tettigoniidae), with data on its ecology, bioacoustics and chromosomes. Organisms, Diversity and Evolution, 10, 215–226.CrossRefGoogle Scholar
  19. Hemp, C., Heller, K.-G., Warchałowska-Śliwa, E., Grzywacz, B., & Hemp, A. (2013a). Biogeography, ecology, acoustics and chromosomes of East African Eurycorypha Stål species (Orthoptera, Phaneropterinae) with the description of new species. Organisms, Diversity and Evolution, 13, 373–395.CrossRefGoogle Scholar
  20. Hemp, C., Heller, K.-G., Warchalowska-Sliwa, E., & Hemp, A. (2013b). The genus Aerotegmina (Orthoptera, Tettigoniidae, Hexacentrinae): morphological relations, phylogeographical patterns and the description of a new species. Organisms, Diversity and Evolution, 13(4), 521–530. doi:10.1007/s1317-013-0133-7.CrossRefGoogle Scholar
  21. Hemp, C., Kehl, S., Schultz, O., Wägele, W., Hemp, A. (2014). Climatic fluctuations and topography as motor for speciation: case study on Parepistaurus Karsch, 1896 (Orthoptera: Acrididae, Coptacridinae). Systematic Entomology). doi:10.1111/syen.12092.
  22. Hennig, M., Heller, K.-G., Clemens, J. (2014). Time and timing in the acoustic recognition system of crickets. Frontiers in Physiology. 5, 286.Google Scholar
  23. Holdridge, L. R. (1967). Life zone ecology. San José: Tropical Science Center.Google Scholar
  24. Ingrisch, S. (1998). Monograph of the Oriental Agraeciini (Insecta, Ensifera, Tettigoniidae): taxonomic revision, phylogeny, biogeography, stridulation and development. Courier Forschungsinstitut Senckenberg, 206, 1–391.Google Scholar
  25. Iversen, S. T. (1991). The Usambara Mountains, NE Tanzania: phytogeography of the vascular plant flora. Acta Universitatis Upsaliensis, Symbolae Botanicae Upsaliensis, XXIX(3), 1–234.Google Scholar
  26. Korsunovskaya, O. S. (2008). Sound signalling in katydids and bushcrickets (Orthoptera, Tettigonioidea). Report I. Zoologicheskiĭ Zhurnal, 87(12), 1453–1471. in Russian: translated. Entomological review, 88 (9), 1032–1050.Google Scholar
  27. Lauer, W., Rafiqpoor, M. D., & Frankenberg, P. (1996). Die Klimate der Erde. Eine Klassifikation auf ökophysiologischer Grundlage der realen Vegetation. Erdkunde, 50, 275–300.CrossRefGoogle Scholar
  28. Lemonnier-Darcemont, M., Darcemont, C., Heller, K.-G., Dutrilaux, A.-M., & Dutrillaux, B. (2015). Saginae of Europa. Callian, France: Edition GEEM. In prep.Google Scholar
  29. Montealegre-Z, F. (2009). Scale effects and constraints for sound production in katydids (Orthoptera: Tettigoniidae): correlated evolution between morphology and signal parameters. Journal of Evolutionary Biology, 22, 355–366.CrossRefGoogle Scholar
  30. Montealegre-Z, F., Windmill, J. C. F., Morris, G. K., & Robert, D. (2009). Mechanical phase shifters for coherent acoustic radiation in the stridulating wings of crickets: the plectrum mechanism. Journal of Experimental Biology, 212, 257–269. doi:10.1242/jeb.022731.PubMedCrossRefGoogle Scholar
  31. Ragge, D. R. (1969). A revision of the African species of Pseudorhynchus Serville. Bulletin of the British Museum of Natural History, 23, 167–190. Entomology Series.Google Scholar
  32. Rentz, D. C. F., Su, Y. N., & Ueshima, N. (2012). Studies in Australian Tettigoniidae: new genera and species from North Queensland (Tettigoniidae; Conocephalinae; Armadillagraeciini trib. nov. and Agraecini; Listroscelidinae; Requenini). Zootaxa, 3173, 1–36.Google Scholar
  33. Sarria-S, F. A., Morris, G. K., Windmill, J. F. C., Jackson, J., & Montealegre-Z, F. (2014). Shrinking wings for ultrasonic pitch production: hyperintense ultra-short-wavelength calls in a new genus of neotropical katydids (Orthoptera: Tettigoniidae). PLoS ONE, 9(6), e98708. doi:10.1371/journal.pone.0098708.PubMedCentralPubMedCrossRefGoogle Scholar
  34. Schweizer, D. (1976). Reverse fluorescent chromosome banding with chromomycin and DAPI. Chromosoma, 58, 307–324.PubMedCrossRefGoogle Scholar
  35. Sumner, A. T. (1972). A simple technique for demonstrating centromere heterochromatin. Experimental Cell Research, 75, 304–306.PubMedCrossRefGoogle Scholar
  36. Trauth, M. H., Maslin, M. A., Deino, A., & Strecker, M. R. (2005). Late cenozoic moisture history of East Africa. Science, 309, 2051–2053.PubMedCrossRefGoogle Scholar
  37. Walter, H., & Lieth, H. (1967). Klimadigramm-Weltatlas. Jena: Gustav Fischer.Google Scholar
  38. Warchałowska-Śliwa, E. (1998). Karyotype characteristics of katydid orthopterans (Ensifera, Tettigoniidae) and remarks on their evolution at different taxonomic levels. Folia Biologica (Kraków), 46, 143–176.Google Scholar
  39. Warchałowska-Śliwa, E., & Gorochov, A. V. (2000). Some aspects of karyotype of Liarina (Orthoptera, Tettigoniidae, Agraecini) from Vietnam. Folia Biologica (Kraków), 48, 119–125.Google Scholar
  40. Warchałowska-Śliwa, E., & Maryańska-Nadachowska, A. (1992). Karyotypes, C-bands, NORs location in spermatogenesis of Isophya brevipennis Brunner (Orthoptera: Phaneropteridae). Caryologia, 45, 83–89.Google Scholar
  41. Warchałowska-Śliwa, E., Grzywacz, B., Maryańska-Nadachowska, A., Karamysheva, T. V., Rubtsov, N. B., & Chobanov, D. P. (2009). Chromosomal differentiation among bisexual European species of Saga Charp. (Orthoptera, Tettigoniidae, Saginae) detected by both classical and molecular methods. European Journal of Entomology, 106, 1–9.Google Scholar
  42. Warchałowska-Śliwa, E., Maryańska-Nadachowska, A., Grzywacz, B., Karamysheva, T., Lehmann, A. W., Lehmann, G. U. C., & Heller, K.-G. (2011). Changes in the numbers of chromosomes and sex determination system in bushcrickets of the genus Odontura (Orthoptera, Tettigoniidae, Phaneropterinae). European Journal of Entomology, 108, 183–195.Google Scholar
  43. Warchałowska-Śliwa, E., Grzywacz, B., Maryańska-Nadachowska, A., Karamysheva, T., Heller, K.-G., Lehmann, A. W., Lehmann, G. U. C., & Chobanov, D. P. (2013). Molecular and classical chromosomal techniques reveal diversity in bushcricket genera of Barbitistini (Orthoptera). Genome, 56, 667–676.PubMedCrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2014

Authors and Affiliations

  • Claudia Hemp
    • 1
  • Klaus-Gerhard Heller
    • 2
  • Elżbieta Warchałowska-Śliwa
    • 3
  • Beata Grzywacz
    • 3
  • Andreas Hemp
    • 4
  1. 1.Department of Animal Ecology and Tropical Biology (Zoology III)University of WürzburgWürzburgGermany
  2. 2.MagdeburgGermany
  3. 3.Institute of Systematics and Evolution of AnimalsPolish Academy of SciencesKrakówPoland
  4. 4.Department of Plant SystematicsUniversity of BayreuthBayreuthGermany

Personalised recommendations