Advertisement

Organisms Diversity & Evolution

, Volume 15, Issue 1, pp 65–99 | Cite as

Morphological and molecular study of the genus Nitokra (Crustacea, Copepoda, Harpacticoida) in a small palaeochannel in Western Australia

  • Tomislav Karanovic
  • Stefan Eberhard
  • Steven J. B. Cooper
  • Michelle T. Guzik
Original Article

Abstract

A combined approach was used to study the diversity, distribution and variability of the ameirid genus Nitokra in the uppermost reaches of the Carey palaeochannel, as very little is known about habitat invasions of stygofauna in general and inland dispersal of this predominantly marine genus in particular. A 70-km-long stretch of several disconnected calcrete subterranean habitats, known as Yeelirrie, has previously shown to harbour up to ten sympatric and parapatric congeners of the miraciid genus Schizopera and six allopatric congeners of the parastenocaridid genus Kinnecaris, in addition to 11 other species of copepods. The diversity of the genus Nitokra is much smaller, with only two allopatric species in the entire area. Nitokra esbe sp. nov. is a short-range endemic, recorded in a single bore in the most downstream part of Yeelirrie. In contrast, both molecular and morphological data indicate that Nitokra yeelirrie sp. nov. is widespread here, showing one of the largest distribution ranges of any subterranean copepod in Yeelirrie. Phylogenetic analysis of Nitokra populations based on the COI gene shows N. esbe as a sister clade to other Nitokra sequences, which does not exclude the possibility of an ‘active upstream’ dispersal model, proposed for other copepods of marine origin here. High levels of COI sequence divergence (∼10 %) among specimens of N. yeelirrie collected 8 km apart suggest the potential for considerable population differentiation or restricted gene flow within an apparently single large calcrete body. A table of the most important morphological characters for all 79 valid world species of Nitokra is presented, and replacement names are provided for four junior homonyms. An overview of the conservation status of the entire Yeelirrie stygofauna was also provided.

Keywords

Barcoding Conservation Stygofauna Taxonomy Yeelirrie Zoogeography 

Notes

Acknowledgments

We thank Prof. Supawadee Chullasorn, Ramkhamhaeng University, Bangkok, for sharing with us her still unpublished paper on a new Nitokra from Thailand. The following staff of Subterranean Ecology are acknowledged for their help in the field, as well as for sorting the samples: Giulia Perina, Natalie Krawczyk, Peter Bell and Shae Callan. We are also very grateful to Kathleen Saint (South Australian Museum) for carrying out the PCR and sequencing analyses and for developing the nested primers that were used in combination with universal primers for COI gene amplification. The species described herein were collected as part of the Yeelirrie Subterranean Fauna Survey 2009–2011 commissioned by BHP Billiton Yeelirrie Development Company Pty Ltd.

References

  1. Adams, M. S., & Stauber, J. L. (2008). Marine whole sediment toxicity tests for use in temperate and tropical Australian enviroments: current status. Australasian Journal of Ecotoxicology, 14, 155–167.Google Scholar
  2. Allford, A., Cooper, S. J. B., Humphreys, W. F., & Austin, A. D. (2008). Diversity and distribution of groundwater fauna in a limestone aquifer: does sampling alter the story? Invertebrate Systematics, 22, 127–138.Google Scholar
  3. Apostolov, A. (1973). Sur diverses Harpacticoides (Copépodes) de la Mer Noire. Zoologischer Anzeiger, 190, 88–110.Google Scholar
  4. Apostolov, A. (1976). New species of Harpacticoida (Copepoda) from Bulgaria. Zoologicheskiĭ Zhurnal, 55, 453–458 [in Russian with English abstract].Google Scholar
  5. Apostolov, A. (1980). Deux forms nouvelles du genre Nitocra Boeck (Copépoda, Harpacticoida) de la mer Noire (côte bulgare). Acta Zoologica Bulgarica, 15, 36–42.Google Scholar
  6. Apostolov, A., & Marinov, T. M. (1988). Copepoda Harpacticoida (morski kharpaktikoidi), S’stav i razprostranenie na mezopsamalnite vidove ot podrazred Harpacticoida (Copepoda, Crustacea) v akvatoriyata na B’lgarskoto Chernomorsko krabrezhie. Fauna Bolgarii Izdanie B’lgarski Akadmii Aedibus Academiae Scientificae Bulgaricae Sofia, 18, 1–384 [in Bulgarian].Google Scholar
  7. Arlt, G. (1983). Taxonomy and ecology of some harpacticoids (Crustacea, Copepoda) in the Baltic Sea and Kattegat. Zoologische Jahrbücher, Abteilung für Systematik, 110, 45–85.Google Scholar
  8. Bayly, I. A. E. (1972). Salinity tolerance and osmotic behaviour of animals in athalassic saline and marine hypersaline waters. Annual Review of Ecology and Systematics, 3, 233–268.Google Scholar
  9. Behning, A. (1936). Miscellanea aralo-caspica. Internationale Revue der Gesamten Hydrobiologie und Hydrographie, 33, 141–149.Google Scholar
  10. Bodin, P. (1970). Copépodes Harpacticoides marins des environs de la Rochelle, 1. Espéces de la vase intertidale de Chatelaillon Tethys, 2, 385–436.Google Scholar
  11. Bowman, T. E. (1988). Nitokra sphaeromata, a new harpacticoid copepod crustacean associated with the wood-boring isopod, Sphaeroma peruvianum, in Costa Rica. Proceedings of the Biological Society of Washington, 101, 171–175.Google Scholar
  12. Boxshall, G. A., & Halsey, S. H. (2004). An introduction to copepod diversity. London: The Ray Society.Google Scholar
  13. Bozic, B. (1964). Copépodes Harpacticoïdes et Cyclopoïdes de la Réunion, II. Plage St. Pierre. Bulletin du Muséum National D’Histoire Naturelle Zoologie 2e série, 36, 481–499.Google Scholar
  14. Bozic, B. (1965). Copépodes de quelques petits estuaires Méditerranéens. Bulletin du Muséum National D’Histoire Naturelle Zoologie, 2e série, 37, 351–356.Google Scholar
  15. Bozic, B. (1969). Copépodes harpacticoïdes de la Réunion. Bulletin du Muséum National D’Histoire Naturelle Zoologie, 2e série, 41, 867–882.Google Scholar
  16. Bradford, T., Adams, M., Humphreys, W. F., Austin, A. D., & Cooper, S. J. B. (2010). DNA barcoding of stygofauna uncovers cryptic amphipod diversity in a calcrete aquifer in Western Australia’s arid zone. Molecular Ecology Resources, 10, 41–50.PubMedGoogle Scholar
  17. Brian, A. (1928). I copepodi bentonici marini. Archivio Zoologico Italiano, 12, 293–343.Google Scholar
  18. Brian, A. (1929). Richerche faunistiche delle isole italiane dell’Egeo. Archivo Zoologico Italiano, 13, 269–281.Google Scholar
  19. Bruno, M. C., Reid, J. W., & Perry, S. A. (2002). New records of harpacticoid copepods from Everglades National Park (Florida, U.S.A.): description of Nitokra evergladensis, new species (Ameiridae), supplementary description of Attheyella americana, and redescription of Bryocamptus newyorkensis (Canthocamptidae). Journal of Crustacean Biology, 22, 834–854.Google Scholar
  20. Chang, C. Y. (2007). Two harpacticoid species of genera Nitokra and Ameira (Harpacticoida: Ameiridae) from brackish waters in Korea. Integrative Biosciences, 11, 247–253.Google Scholar
  21. Chang, C. Y. (2010). Continental harpacticoida. Invertebrate fauna of Korea, 21(4). Seoul: National Institute of Biological Resources, Ministry of Environment.Google Scholar
  22. Chappuis, P. A. (1923). Description de deux harpacticides nouveaux de Transylvanie. Buletinul Societatii de Stiinte din Cluj 2e serie, 21, 23–26.Google Scholar
  23. Chappuis, P. A. (1926). Harpacticiden aus der Kiemenhöhle des Flusskrebses. Archiv für Hydrobiologie, 17, 515–520.Google Scholar
  24. Chappuis, P. A. (1930). Copepoda Harpacticoida von der insel Luzon, Philippinen. Philippine Journal of Science, 41, 143–147.Google Scholar
  25. Chappuis, P. A. (1933). Süss- und Brackwasser-Copepoden von Bonaire, Curaçao und Aruba. In: Zoologische Ergebnisse einer Reise nach Bonaire, Curaçao und Aruba im Jahre 1930. Zoologische Jahrbücher, Abteilung für Systematik Ökologie und Geographie der Tiere, 64, 391–404.Google Scholar
  26. Chappuis, P. A. (1934). Süsswasser Harpacticiden aus dem hawaiischen Inselgebiet. Buletinul Societatii de Stiinte din Cluj, 7, 631–635.Google Scholar
  27. Cho, J.-L., Humphreys, W. F., & Lee, S.-D. (2006a). Phylogenetic relationships within the genus Atopobathynella Schminke, 1973 (Bathynellacea, Parabathynellidae): with the description of six new species from Western Australia. Invertebrate Systematics, 20, 9–41.Google Scholar
  28. Cho, J.-L., Park, J.-G., & Ranga Reddy, Y. (2006b). Brevisomabathynella gen. nov. with two new species from Western Australia (Bathynellacea, Syncarida): the first definitive evidence of predation in Parabathynellidae. Zootaxa, 1247, 25–42.Google Scholar
  29. Chullasorn, S., Kangtia, P., & Klangsin, P. (2014). A new species of Nitokra Boeck, 1865 (Copepoda: Harpacticoida: Ameiridae) from a brown alga in Thailand. Proceedings of the Biological Society of Washington, 127, 122–137.Google Scholar
  30. Cooper, S. J. B., Hinze, S., Leys, R., Watts, C. H. S., & Humphreys, W. F. (2002). Islands under the desert: molecular systematics and evolutionary origin of stygobitic water beetles (Coleoptera: Dytiscidae) from central Western Australia. Invertebrate Systematics, 16, 589–598.Google Scholar
  31. Cooper, S. J. B., Bradbury, J. H., Saint, K. M., Leys, R., Austin, A. D., & Humphreys, W. F. (2007). Subterranean archipelago in the Australian arid zone: mitochondrial DNA phylogeography of amphipods from central Western Australia. Molecular Ecology, 16, 1533–1544.PubMedGoogle Scholar
  32. Cooper, S. J. B., Saint, K. M., Taiti, S., Austin, A. D., & Humphreys, W. F. (2008). Subterranean archipelago: mitochondrial DNA phylogeography of stygobitic isopods (Oniscidea: Halniscus) from the Yilgarn region of Western Australia. Invertebrate Systematics, 22, 195–203.Google Scholar
  33. Corgosinho, P. H. C., & Martínez Arbizu, P. (2010). Ameiridae Boeck and Argestidae Por revisited, with establishment of Parameiropsidae, a new family of Harpacticoida (Crustacea, Copepoda) from deep-sea sediments. Helgoland Marine Research, 64, 223–255.Google Scholar
  34. Culver, D., & Pipan, T. (2009). The biology of caves and other subterranean habitats. Oxford: Oxford University Press.Google Scholar
  35. Dubois, A. (2010). Zoological nomenclature in the century of extinctions: priority vs. ‘usage’. Organisms, Diversity and Evolution, 10, 259–274.Google Scholar
  36. Dussart, B. H. (1967). Les Copépodes des eaux continentales d’Europe occidentale (Vol. 1). Paris: Calanoïdes et Harpacticoïdes. N. Boubée et Cie.Google Scholar
  37. Dussart, B., & Defaye, D. (1990). Répertoire mondial des crustacés copépodes des eaux intérieures, III. Harpacticoïdes. Crustaceana Supplement, 16, 1–384.Google Scholar
  38. Eberhard, S. M., Halse, S. A., Williams, M. R., Scanlon, M. D., Cocking, J., & Barron, H. J. (2009). Exploring the relationship between sampling efficiency and short-range endemism for groundwater fauna in the Pilbara region, Western Australia. Freshwater Biology, 54, 885–901.Google Scholar
  39. Fiers, F. (1986). New and interesting copepods (Crustacea, Copepoda) from brackish waters of Laing Island (Northern Papua New Guinea); Léopold III biological station, Laing Island, contribution no. 96. Bulletin de l’Institut Royal des Sciences Naturelles de Belgique Biologie, 56, 99–120.Google Scholar
  40. Finston, T. L., Johnson, M. S., Humphreys, W. F., Eberhard, S., & Halse, S. (2007). Cryptic speciation in two widespread subterranean amphipod genera reflects historical drainage patterns in an ancient landscape. Molecular Ecology, 16, 355–365.PubMedGoogle Scholar
  41. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit 1 from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.PubMedGoogle Scholar
  42. Fourment, M., & Gibbs, M. J. (2006). PATRISTIC: a program for calculating patristic distances and graphically comparing the components of genetic change. BMC Evolutionary Biology, 6, 1.PubMedCentralPubMedGoogle Scholar
  43. Galhano, M. H. (1968). Two new interstitial Ameiridae (Copepoda Harpacticoidea) from Portugal. Publicações do Instituto de ZoologiaDr. Augusto Nobre, 104, 9–21.Google Scholar
  44. Gibert, J., Danielopol, D. L., & Stanford, J. A. (1994). Groundwater ecology. London: Academic.Google Scholar
  45. Gómez, S., Carrasco, N. K., & Morales-Serna, F. N. (2012). A new species of Nitocra Boeck, 1865 (Harpacticoida, Ameiridae, Ameirinae) from South Africa, with notes on its ecology and remarks on the status of Nitocra sewelli husmanni Kunz, 1976. ZooKeys, 244, 33–58.PubMedGoogle Scholar
  46. Grishanin, A. K., Rasch, E. M., Dodson, S. L., & Wyngaard, G. A. (2005). Variability in genetic architecture of the cryptic species complex of Acanthocyclops vernalis (Copepoda). I. Evidence from karyotypes, genome size, and ribosomal DNA sequences. Journal of Crustacean Biology, 25, 375–383.Google Scholar
  47. Guzik, M. T., Abrams, K. M., Cooper, S. J. B., Humphreys, W. F., Cho, J.-L., & Austin, A. D. (2008). Phylogeography of the ancient Parabathynellidae (Crustacea: Bathynellacea) from the Yilgarn region of Western Australia. Invertebrate Systematics, 22, 205–216.Google Scholar
  48. Hamrova, E., Krajicek, M., Karanovic, T., Cerny, M., & Petrusek, A. (2012). Congruent patterns of lineage diversity in two species complexes of planktonic crustaceans, Daphnia longispina (Cladocera) and Eucyclops serrulatus (Copepoda), in East European mountain lakes. Zoological Journal of the Linnean Society, 166, 754–767.Google Scholar
  49. Horvath, T. G., Whitman, R. L., & Last, L. L. (2001). Establishment of two invasive crustaceans (Copepoda: Harpacticoida) in the nearshore sands of Lake Michigan. Canadian Journal of Fisheries and Aquaculture Science, 58, 1261–1264.Google Scholar
  50. Humes, A. G. (1953). Two new semiparasitic harpacticoid copepods from the coast of New Hampshire. Journal of the Washington Academy of Sciences, 43, 360–373.Google Scholar
  51. Humphreys, W. F. (2000). Background and glossary. In H. Wilkens, D. C. Culver, & W. F. Humphreys (Eds.), Ecosystems of the world, 30: subterranean ecosystems (pp. 3–14). Amsterdam: Elsevier.Google Scholar
  52. Humphreys, W. F. (2001). Groundwater calcrete aquifers in the Australian arid zone: the context to an unfolding plethora of stygal biodiversity. Records of the Western Australian Museum Supplement, 64, 63–83.Google Scholar
  53. Humphreys, W. F. (2006). Aquifers: the ultimate groundwater-dependent ecosystems. Australian Journal of Botany, 54, 115–132.Google Scholar
  54. Huys, R. (2009). Unresolved cases of type fixation, synonymy and homonymy in harpacticoid copepod nomenclature (Crustacea: Copepoda). Zootaxa, 2183, 1–99.Google Scholar
  55. Huys, R., & Boxshall, G. A. (1991). Copepod evolution. London: The Ray Society.Google Scholar
  56. International Commission on Zoological Nomenclature (ICZN). (1999). International code of zoological nomenclature (4th ed.). London: The International Trust for Zoological Nomenclature.Google Scholar
  57. Jakobi, H. (1956). Novas espécies de Harpacticoidea (Copepoda-Crustacea) provenientes de regioes de água salobra da costa São Paulo-Paraná. (Neue Harpacticoiden-Arten (Copepoda-Crustacea) aus den Brackwassergebieten der Küste Sao Paulo-Paraná). Dusenia Curitiba, 7, 159–171.Google Scholar
  58. Karanovic, T. (2000). Nitocrella longa n. sp. (Crustacea, Copepoda, Harpacticoida) from subterranean waters of Montenegro (SE Europe). Mitteilungen aus dem Museum für Naturkunde in Berlin. Zoologische Reihe, 76, 75–83.Google Scholar
  59. Karanovic, T. (2004). Subterranean copepoda from Arid Western Australia. Crustaceana Monographs, 3, 1–366.Google Scholar
  60. Karanovic, T. (2006). Subterranean copepods (Crustacea, Copepoda) from the Pilbara region in Western Australia. Records of the Western Australian Museum Supplement, 70, 1–239.Google Scholar
  61. Karanovic, I. (2007). Candoninae ostracods from the Pilbara region in Western Australia. Crustaceana Monographs, 7, 1–432.Google Scholar
  62. Karanovic, T. (2010). First record of the harpacticoid genus Nitocrellopsis (Copepoda, Ameiridae) in Australia, with descriptions of three new species. International Journal of Limnology, 46, 249–280.Google Scholar
  63. Karanovic, T., & Cho, J.-L. (2012). Three new ameirid harpacticoids from Korea and first record of Proameira simplex (Crustacea: Copepoda: Ameiridae). Zootaxa, 3368, 91–127.Google Scholar
  64. Karanovic, T., & Cooper, S. J. B. (2011a). Molecular and morphological evidence for short-range endemism in the Kinnecaris solitaria complex (Copepoda: Parastenocarididae), with descriptions of seven new species. Zootaxa, 3026, 1–64.Google Scholar
  65. Karanovic, T., & Cooper, S. J. B. (2011b). Third genus of paratenocaridid copepods from Australia supported by molecular evidence (Copepoda, Harpacticoida). In D. Defaye, E. Suárez-Morales, & J. C. von Vaupel Klein (Eds.), Crustaceana monographs, studies on freshwater copepoda: a volume in honour of Bernard Dussart (pp. 293–337). Leiden: Brill.Google Scholar
  66. Karanovic, T., & Cooper, S. J. B. (2012). Explosive radiation of the genus Schizopera on a small subterranean island in Western Australia (Copepoda : Harpacticoida): unravelling the cases of cryptic speciation, size differentiation and multiple invasions. Invertebrate Systematics, 26, 115–192.Google Scholar
  67. Karanovic, T., & Hancock, P. (2009). On the diagnostic characters of the genus Stygonitocrella (Copepoda, Harpacticoida), with descriptions of seven new species from Australian subterranean waters. Zootaxa, 2324, 1–85.Google Scholar
  68. Karanovic, T., & Krajicek, M. (2012). When anthropogenic translocation meets cryptic speciation globalised bouillon originates; molecular variability of the cosmopolitan freshwater cyclopoid Macrocyclops albidus (Crustacea: Copepoda). International Journal of Limnology, 48, 63–80.Google Scholar
  69. Karanovic, T., & Pesce, G. L. (2002). Copepods from ground waters of Western Australia, VII. Nitokra humphreysi sp. nov. (Crustacea: Copepoda: Harpacticoida). Hydrobiologia, 470, 5–12.Google Scholar
  70. Karanovic, T., Eberhard, S. M., Perina, G., & Callan, S. (2013). Two new subterranean ameirids (Crustacea : Copepoda : Harpacticoida) expose weaknesses in the conservation of short-range endemics threatened by mining developments in Western Australia. Invertebrate Systematics, 27, 540–566.Google Scholar
  71. Kiefer, F. (1949). Freilebende Ruderfusskrebse (Crustacea Copepoda). In: The Amstrong College Zoological Expedition to Siwa Oasis (Libyan Desert) 1935. Proceedings of the Egyptian Academy of Sciences, 4, 62–112.Google Scholar
  72. Kiefer, F. (1955). Freilebende Ruderfusskrebse (Crustacea Copepoda) aus türkischen Binnengewässern, II. Cyclopoida und Harpacticoida. Istanbul Üniversitesi Fen Fakültesi Hidrobiologi seri B, 2, 108–132.Google Scholar
  73. Kiefer, F. (1960). Psammobionte Ruderfusskrebse (Crust. Cop.) aus dem Gebiet der Unterweser und von der Insel Helgoland. Zoologischer Anzeiger, 165, 29–37.Google Scholar
  74. King, R. A., Bradford, T., Austin, A. D., Humphreys, W. F., & Cooper, S. J. B. (2012). Divergent molecular lineages and not-so-cryptic species: the first descriptions of stygobitic chiltoniid amphipods (Talitroidea: Chiltoniidae) from Western Australia. Journal of Crustacean Biology, 32, 465–488.Google Scholar
  75. Korber, B., Muldoon, M., Theiler, J., Gao, F., Gupta, R., Lapedes, A., Hahn, B. H., Wolinsky, S., & Bhattacharya, T. (2000). Timing the ancestor of the HIV-1 pandemic strains. Science, 288, 1789–1796.PubMedGoogle Scholar
  76. Kornev, P. N., & Chertoprud, E. C. (2008). Copepod crustaceans of the order Harpacticoida of the White Sea: morphology, systematics, ecology. Moscow: Biology Faculty, Moscow State University, Tovarishchestvo Nauchnikh Izdanii KMK [In Russian].Google Scholar
  77. Kunz, H. (1975). Copepoda Harpacticoidea aus dem Litoral des südlichen Africa. Kieler Meeresforschunhen, 31, 179–212.Google Scholar
  78. Kunz, H. (1976). Eine neue Unterart der Gattung Nitocra (Copepoda, Harpacticoidea) aus Norddeutschland. Gewässer und Abwässer, 60(61), 27–34.Google Scholar
  79. Kunz, H. (1983). Harpacticoiden (Crustacea: Copepoda) aus dem Litoral der Azoren. Arquipelago, Serie Ciencias Naturales, 4, 117–208.Google Scholar
  80. Lang, K. (1948). Monographie der Harpacticiden (Vol. 1, 2). Lund: Hakan Ohlsson’s Boktryckeri.Google Scholar
  81. Lang, K. (1965a). Copepoda Harpacticoidea from the Californian Pacific coast. Kungliga Svenska Vetensk-Akademiens Handlingar, Fjarde Serien, Stockholm, 10, 1–560.Google Scholar
  82. Lang, K. (1965b). Copepoda Harpacticoidea aus dem Küstengrundwasser dicht bei idem Askölaboratorium. Arkiv för Zoologi, 18, 73–83.Google Scholar
  83. Lee, C. E. (1999). Rapid and repeated invasions of fresh water by the copepod Eurytemora affinis. Evolution, 53, 1423–1434.Google Scholar
  84. Lee, C. E. (2000). Global phylogeography of a cryptic species complex and reproductive isolation between genetically proximate ‘populations’. Evolution, 54, 2014–2027.PubMedGoogle Scholar
  85. Lee, W., & Huys, R. (2002). A new genus of groundwater Ameiridae (Copepoda, Harpacticoida) from boreholes in Western Australia and the artificial status of Stygonitocrella Petkovski, 1976. Bulletin of the Natural History Museum London (Zoology), 68, 39–50.Google Scholar
  86. Lefébure, T., Douady, C. J., Gouy, M., & Gibert, J. (2006). Relationship between morphological taxonomy and molecular divergence within Crustacea: proposal of a molecular threshold to help species delimitation. Molecular Phylogenetics and Evolution, 40, 435–447.PubMedGoogle Scholar
  87. Leys, R., & Watts, C. H. (2008). Systematics and evolution of the Australian subterranean hydroporine diving beetles (Dytiscidae), with notes on Carabhydrus. Invertebrate Systematics, 22, 217–225.Google Scholar
  88. Leys, R., Watts, C. H. S., Cooper, S. J. B., & Humphreys, W. F. (2003). Evolution of subterranean diving beetles (Coleoptera: Dytiscidae: Hydroporini, Bidessini) in the arid zone of Australia. Evolution, 57, 2819–2834.PubMedGoogle Scholar
  89. Liddell, J. A. (1912). Nitocrameira bdellurae, nov. gen. et sp., a copepod of the family Canthocamptidae, parasitic in the egg-cases of Bdellura. Journal of the Linnean Society Zoology, 32, 87–94.Google Scholar
  90. Marcus, A. (1968). Copepoda from the midlittoral zone of the Black Sea, Rumanian shore, I. Nitocra elongate n. sp. Travaux du Museum National d’Histoire Naturelle “Grigore Antipa”, 9, 15–24.Google Scholar
  91. Marcus, A., & Por, F. D. (1961). Die Copepoden der polyhalinen Lagunen Sinoe (Schwarzes Meer – Rumänische Küsten). Acta Museui Macedonici Scientiarum Naturalium, 7, 105–126.Google Scholar
  92. Mielke, W. (1993). Species of the taxa Orthopsyllus and Nitocra (Copepoda) from Costa Rica. Microfauna Marina, 8, 247–266.Google Scholar
  93. Mielke, W. (1997). Interstitial fauna of Galapagos, XXXIX. Copepoda, part 7. Microfauna Marina, 11, 115–152.Google Scholar
  94. Miura, Y. (1962). Subterranean harpacticoid copepods of the Amami Group of the Ryukyu Islands. Annotationes Zoologicae Japonenses, 35, 95–105.Google Scholar
  95. Monard, A. (1935). Étude sur la faune des harpacticoïdes marins de Roscoff. Travaux de la Station Biologique de Roscoff, 13, 5–88.Google Scholar
  96. Monchenko, V. I., & von Vaupel Klein, J. C. (1999). Oligomerization in Copepoda Cyclopoida as a kind of orthogenetic evolution in the animal kingdom. Crustaceana, 72, 241–264.Google Scholar
  97. Needham, S. (2009). Yeelirrie uranium deposit in Western Australia. Canberra: Parliament of Australia, Department of Parliamentary Service, Background Note.Google Scholar
  98. Noodt, W. (1952). Subterrane Copepoden aus Norddeutschland. Zoologischer Anzeiger, 148, 331–343.Google Scholar
  99. Noodt, W. (1953). Bemerkenswerte Copepoda Harpacticoidea aus dem Eulitoral der deutschen Meeresküste. Zoologischer Anzeiger, 151, 5–20.Google Scholar
  100. Noodt, W. (1954). Copepoda Harpacticoidea aus dem limnishcen Mesopsammal der Türkei. Istanbul Üniversitesi Fen Fakültesi Hidrobiologi seri B, 2, 27–40.Google Scholar
  101. Noodt, W. (1957). Zur Kenntnis von Nitocra reducta Schäfer (Copepoda Harpacticoida). Zoologischer Anzeiger, 159, 179–184.Google Scholar
  102. Pesce, G. L. (1983). Contributo alla conoscenza degli Arpacticoidi delle acque soterranee della regione Pugliese (Crustacea: Copepoda). Thalassia Salentina, 13, 62–81.Google Scholar
  103. Petkovski, T. K. (1954). Harpacticiden des Grundwassers unserer Meeresküste. Acta Musei Macedonici Scientiarum Naturalium, 2, 93–123.Google Scholar
  104. Petkovski, T. K. (1956). Über zwei Harpacticoide Copepoden, Pseudameira kunzi n. sp. und Bryocamptus pygmeus (Sars) f. balcanica n. f. aus Jugoslavien. Folia Balcanica, 1, 9–14.Google Scholar
  105. Petkovski, T. (1976). Nitocra lacustris sinoi Marcus et Por (Copepoda, Harpacticoida) vom Strande des Karibischen Meeres. Musei Macedonici Scientiarum Naturalium, 7, 89–95.Google Scholar
  106. Petrusek, A., Tollrian, R., Schwenk, K., Haas, A., & Laforsch, C. (2009). A “crown of thorns” is an inducible defense that protects Daphnia against an ancient predator. Proceedings of the National Academy of Sciences of the United States of America, 106, 2248–2252.PubMedCentralPubMedGoogle Scholar
  107. Por, F. D. (1964). The genus Nitocra Boeck (Copepoda Harpacticoida) in the Jordan Rift Valley. Israel Journal of Zoology, 13, 78–88.Google Scholar
  108. Por, F. D. (1968). Copepods of some land-locked basins on the islands of Entedebir and Nocra (Dahlak Archipelago, Red Sea); Israel South Red Sea expedition, 1962, reports No. 31. Bulletin of the Sea Fisheries Research Station Israel, 49, 32–50.Google Scholar
  109. Reid, J. W. (1988). Cyclopoid and harpacticoid copepods (Crustacea) from Mexico, Guatemala, and Colombia. Transaction of the American Microscopical Society, 107, 190–202.Google Scholar
  110. Reid, J. W. (1998). How “cosmopolitan” are the continental cyclopoid copepods? Comparison of the North American and Eurasian faunas, with description of Acanthocyclops parasensitivus sp. n. (Copepoda: Cyclopoida) from the U.S.A. Zoologischer Anzeiger, 236, 109–118.Google Scholar
  111. Reid, J. W., & Pinto-Coelho, R. M. (1994). An Afro-Asian continental copepod, Mesocyclops ogunnus, found in Brazil; with a new key to the species of Mesocyclops in South America and a review of intercontinental introduction of copepods. Limnologica, 24, 359–368.Google Scholar
  112. Rodríguez, F., Oliver, J. F., Marín, A., & Medina, J. R. (1990). The general stochastic model of nucleotide substitutions. Journal of Theoretical Biology, 142, 485–501.PubMedGoogle Scholar
  113. Roe, K. M. (1958). The littoral harpacticids of the Dalkey (Co. Dublin) area with descriptions of six new species. Proceedings of the Royal Irish Academy section B, 59, 221–255.Google Scholar
  114. Rouch, R. (1972). Deux harpacticides nouveaux de l’ile de Long-Island (Territoire de Papouasie et de Nouvelle-Guinée). Archives de Zoologie Expérimentale et Générale, 113, 147–164.Google Scholar
  115. Rowe, C. L., Adamowicz, S. J., & Hebert, P. D. N. (2007). Three new cryptic species of the freshwater zooplankton genus Holopedium (Crustacea: Branchiopoda: Ctenopoda), revealed by genetic methods. Zootaxa, 1656, 1–49.Google Scholar
  116. Shen, C.-J., Tai, A.-Y., Zhang, C.-Z., Li, Z.-Y., Song, D.-X., Song, Y.-Z., & Chen, G.-X. (1979). Fauna sinica, crustacea, freshwater copepoda. Peking: Science Press [in Chinese].Google Scholar
  117. Soyer, J. (1975). Harpacticoïdes (Crusacés Copépodes) de l’archipel de Kerguelen, 1. quelques forms mésopsammiques. Bulletin du Muséum National D’Histoire Naturelle, Zoologie 3e série, 168, 1169–1223.Google Scholar
  118. Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML web-servers. Systematic Biology, 75, 758–771.Google Scholar
  119. Stock, J. K., & von Vaupel Klein, J. C. (1996). Mounting media revisited: the suitability of Reyne’s fluid for small crustaceans. Crustaceana, 69, 749–798.Google Scholar
  120. Swofford, D. L. (2002). PAUP*, phylogenetic analysis using parsimony (* and other methods), version 4.0b10. Sunderland: Sinauer.Google Scholar
  121. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedCentralPubMedGoogle Scholar
  122. Timms, B. V. (1992). Lake geomorphology. Glen Osmond: Gleneegles.Google Scholar
  123. Tran, D. L., & Chang, C. Y. (2012). Two new species of harpacticoid copepods from anchialine caves in karst area of North Vietnam. Animal Cells and Systems, 16, 57–68.Google Scholar
  124. Vervoort, W. (1964). Free-living Copepoda from Ifaluk Atoll in the Caroline Islands with notes on related species. Bulletin of the United States National Museum, 236, 1–431.Google Scholar
  125. Walter, T. C., & Boxshall, G. (2013). World of Copepods database. http://www.marinespecies.org/copepoda. Accessed 15 Nov 2013.
  126. Watts, C. H. S., & Humphreys, W. F. (2006). Twenty-six new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot and Nirripirti Watts and Humphreys from underground waters in Australia. Transaction of the Royal Society of South Australia, 130, 123–185.Google Scholar
  127. Watts, C. H. S., & Humphreys, W. F. (2009). Fourteen new Dytiscidae (Coleoptera) of the genera Limbodessus Guignot, Paroster Sharp and Exocelina Broun, from underground waters in Australia. Transactions of the Royal Society of South Australia, 133, 62–107.Google Scholar
  128. Wells, J. B. J. (1967). The littoral Copepoda (Crustacea) of Inhaca Island, Mozambique. Transactions of the Royal Society of Edinburgh, 67, 189–358.Google Scholar
  129. Wells, J. B. J., & Chandrasekhara Rao, G. (1987). Littoral Harpacticoida (Crustacea: Copepoda) from Andaman and Nicobar Islands. Memoirs of the Zoological Survey of India, 16, 1–385.Google Scholar
  130. Willey, A. (1930). Harpacticoid Copepoda from Bermuda, Part I. Annals and Magazine of Natural History, 10, 81–114.Google Scholar
  131. Wilson, C. B. (1932). The copepods of the Woods Hole region, Massachusetts. Bulletin of the United States National Museum, 158, 1–635.Google Scholar
  132. Wilson, G. D. F. (2008). Gondwanan groundwater: subterranean connections of Australian phreatoicidean isopods to India and New Zealand. Invertebrate Systematics, 22, 301–310.Google Scholar
  133. Xiang, X., Xi, Y., Wen, X., Zhang, G., Wang, J., & Hu, K. (2011). Genetic differentiation and phylogeographical structure of the Brachionus calyciflorus complex in eastern China. Molecular Ecology, 20, 3027–3044.PubMedGoogle Scholar
  134. Xu, S., Hebert, P. D. N., Kotov, A. A., & Cristescu, M. E. (2009). The noncosmopolitanism paradigm of freshwater zooplankton: insights from the global phylogeography of the predatory cladoceran Polyphemus pediculus (Linnaeus, 1761) (Crustacea, Onychopoda). Molecular Ecology, 18, 5161–5179.PubMedGoogle Scholar
  135. Xu, L., Han, B. P., Van Damme, K., Vierstraete, A., Vanfleteren, J. R., & Dumont, H. J. (2011). Biogeography and evolution of the Holarctic zooplankton genus Leptodora (Crustacea: Branchiopoda: Haplopoda). Journal of Biogeography, 38, 359–370.Google Scholar
  136. Yang, Z. (1996). Among-site rate variation and its impact on phylogenetic analyses. Trends in Ecology and Evolution, 11, 367–372.PubMedGoogle Scholar
  137. Yeatman, H. C. (1983). Copepods from microhabitats in Fiji, Western Samoa, and Tonga. Micronesica, 19, 57–90.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2014

Authors and Affiliations

  • Tomislav Karanovic
    • 1
    • 2
  • Stefan Eberhard
    • 3
  • Steven J. B. Cooper
    • 4
    • 5
  • Michelle T. Guzik
    • 4
    • 5
  1. 1.Department of Life SciencesHanyang UniversitySeoulSouth Korea
  2. 2.Institute for Marine and Antarctic StudiesUniversity of TasmaniaHobartAustralia
  3. 3.Subterranean Ecology, Scientific Environmental ServicesStirlingAustralia
  4. 4.Evolutionary Biology UnitSouth Australian MuseumAdelaideAustralia
  5. 5.Australian Centre for Evolutionary Biology and BiodiversityThe University of AdelaideAdelaideAustralia

Personalised recommendations