Advertisement

Organisms Diversity & Evolution

, Volume 15, Issue 1, pp 37–64 | Cite as

Comparative 3D microanatomy and histology of the eyes and central nervous systems in coleoid cephalopod hatchlings

  • Elvira Wild
  • Tim Wollesen
  • Gerhard Haszprunar
  • Martin HeßEmail author
Original Article

Abstract

Adaptive radiation of an animal group is the evolutionary variation of morphology, physiology, and behavior opening up new habitats and resources. An impressive example of the reciprocal interdependency of form and function is found in the anatomy of cephalopod visual and central nervous systems. Interspecific differences of sensory organs and signal processing structures reflect the eco-functional context, e.g., the species-specific demands emanating from habitat and foraging behavior. To substantiate this, we investigated the eyes and brain neuropils of early post-hatching stages of six coleoid cephalopod species (Sepia officinalis, Rossia macrosoma, Sepietta obscura, Idiosepius notoides, Loligo vulgaris, and Octopus vulgaris), showing different size and inhabiting different ethoecological niches. Comprehensive 3D structure data sets were produced in light microscopic resolution, i.e., semithin section series of the head region (histology presented for I. notoides, R. macrosoma, and S. obscura for the first time) and 3D surface renderings of the neuropils, enabling the display of all components in arbitrary perspectives and combinations, and comparative volumetic anaylsis of homologous lobe neuropils. Differing in absolute size considerably, the visual and central nervous systems of the six species follow the same bauplan in adult-like configuration. The visual sense obviously is of paramount importance already after hatching, but also, equilibrioception and olfaction are well developed. The species-specific shapes of various components show that some plasticity and distinct differences in volumetric ratios are found, subject to their functional relevance and to different demands of the lifestyle on the brachial and swimming motor function, on camouflage, as well as on sensoric and cognitive abilities.

Keywords

Functional morphology Volumetry Animal vision 3D-rendering Interactive model 

Notes

Acknowledgments

We are very much obligued to Sigurd von Boletzky for providing us with some of his section series and for encouraging us to use them for 3D reconstructions. Furthermore, we want to express our gratitude to Heidemarie Gensler for expert technical assistance and for Anastasia de Motte for improving the English. The study was partially supported by a grant to EW by the Bayerische Eliteförderung.

Supplementary material

13127_2014_184_MOESM1_ESM.pdf (650 kb)
ESM 1 (PDF 649 kb)
13127_2014_184_MOESM2_ESM.pdf (4.9 mb)
ESM 2 (PDF 5016 kb)
13127_2014_184_MOESM3_ESM.pdf (3.2 mb)
ESM 3 (PDF 3254 kb)
13127_2014_184_MOESM4_ESM.pdf (3.4 mb)
ESM 4 (PDF 3454 kb)
13127_2014_184_MOESM5_ESM.pdf (3.4 mb)
ESM 5 (PDF 3510 kb)
13127_2014_184_MOESM6_ESM.pdf (4.4 mb)
ESM 6 (PDF 4472 kb)
13127_2014_184_MOESM7_ESM.pdf (2.1 mb)
ESM 7 (PDF 2103 kb)
13127_2014_184_MOESM8_ESM.tif (8.6 mb)
ESM 8 (TIFF 8796 kb)
13127_2014_184_Fig17_ESM.gif (2 mb)

High resulotion image (GIF 2005 kb)

13127_2014_184_MOESM9_ESM.tif (6.2 mb)
ESM 9 (TIFF 6333 kb)
13127_2014_184_Fig18_ESM.gif (1.5 mb)

High resulotion image (GIF 1569 kb)

References

  1. Archer, S. N., Djamgoz, M. B. A., Loew, E. R., Partridge, J. C., & Vallerga, S. (1999). Adaptive mechanisms in the ecology of vision (p. 680). Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  2. Boletzky, S. V. (1974). The “larvae” of Cephalopoda: a review. Thalassia Jugoslavica, 10, 45–76.Google Scholar
  3. Boletzky, S. V. (2003). Biology of early life stages in cephalopod molluscs. Advances in Marine Biology, 44, 143–203.CrossRefGoogle Scholar
  4. Boletzky, S. V., & Boletzky, M. V. V. (1973). Observations on the embryonic and early post-embryonic development of Rossia macrosoma (Mollusca, Cephalopoda). Helgolaender Meeresuntersuchungen, 25, 135–161.CrossRefGoogle Scholar
  5. Boletzky, S. V., Boletzky, M. V. V., Froesch, D., & Gätzi, V. (1971). Laboratory rearing of Sepiolinae (Mollusca, Cephalopoda). Marine Biology, 8, 62–87.Google Scholar
  6. Boletzky, S. V., Fioroni, P., & Guerra, A. (1997). Proceedings of the second international symposium on functional morphology of cephalopods. Vie et milieu - Life and environment, 47(2), 187.Google Scholar
  7. Bone, Q., & Marshall, N. B. (1985). Biologie der Fische. Stuttgart: Gustav Fischer Verlag.Google Scholar
  8. Bonichon, A. (1967). Contribution à l´etude de la neurosécretion et de l´endocrinologie chez les Céphalpodes. I. Octopus vulgaris. Vie et milieu - Life and environment, 18, 27–263.Google Scholar
  9. Boycott, B. B. (1961). The functional organization of the brain of the cuttlefish Sepia officinalis. Proceedings of the Royal Society B: Biological Sciences, 153, 503–534.CrossRefGoogle Scholar
  10. Boycott, B. B., & Young, J. Z. (1955). A memory system in Octopus vulgaris Lamarck. Proceedings of the Royal Society B: Biological Sciences, 153, 503–534.CrossRefGoogle Scholar
  11. Bozzano, A., Pankhurst, P. M., Moltschaniwskyj, N. A., & Villanueva, R. (2009). Eye development in southern calamary, Sepioteuthis australis, embryos and hatchlings. Marine Biology, 156, 1359–1373.CrossRefGoogle Scholar
  12. Budelmann, B. U. (1995). The cephalopod nervous system: what evolution has made of the molluscan design. In O. Breidbach & W. Kutsch (Eds.), The nervous system of Invertebrates: an evolutionary and comparative approach (pp. 115–138). Basel: Birkhäuser.CrossRefGoogle Scholar
  13. Budelmann, B. U., Schipp, R., & Boletzky, S. V. (1997). Cephalopoda. In F. W. Harrison & A. J. Kohn (Eds.), Microscopic anatomy of invertebrates (Vol. 6A: Mollusca II, pp. pp. 119–pp. 414). New York: Wiley-Liss.Google Scholar
  14. Claes, M. F. (1996). Functional morphology of the white bodies of the cephalopod mollusc Sepia officinalis. Acta Zoologica (Stockholm), 77, 173–190.CrossRefGoogle Scholar
  15. Collewijn, H. (1970). Oculomotor reactions in the cuttlefish, Sepia officinalis. The Journal of Experimental Biology, 52(2), 369–384.Google Scholar
  16. Collin, S. P., & Partridge, J. C. (1996). Fish vision: retinal specializations in the eyes of deep-sea teleosts. Journal of Fish Biology, 49, 157–174.CrossRefGoogle Scholar
  17. Di Cristo, C., Van Minnen, J., & Di Cosmo, A. (2005). The presence of APGWamide in Octopus vulgaris: a possible role in the reproductive behavior. Peptides, 26(1), 53–62.CrossRefPubMedGoogle Scholar
  18. Di Cristo, C., De Lisa, E., & Di Cosmo, A. (2009). Control of GnRH expression in the olfactory lobe of Octopus vulgaris. Peptides, 30(3), 538–544.CrossRefPubMedGoogle Scholar
  19. Dietl, M. J. (1878). Untersuchungen über die Organisation des Gehirns wirbelloser Thiere (Cephalopoden, Tethys). Sitzungsberichte der Akademie der Wissenschaften in Wien, 77, 481–533.Google Scholar
  20. Fishelson, L., Ayalon, G., Zverdling, A., & Holzman, R. (2004). Comparative morphology of the eye (with particular attention to the retina) in various species of cardinal fish (Apogonidae, Teleostei). The Anatomical Record.Part A. Discoveries in Molecular, Cellular, and Evolutionary Biology, 277(2), 249–261.CrossRefPubMedGoogle Scholar
  21. Frösch, D. (1971). Quantitative Untersuchungen am Zentralnervensystem der Schlüpfstadien von zehn mediterranen Cephalopodenarten. Revue Suisse de Zoologie, 57, 1069–1122.Google Scholar
  22. Frösch, D. (1974). The subpedunculate lobe of the octopus brain: evidence for dual function. Brain Research, 75(2), 277–285.CrossRefGoogle Scholar
  23. Gilbert, D. L., Adelman, W. J., & Arnold, J. M. (1990). Squid as experimental animals (p. 548). New York: Plenum Press.CrossRefGoogle Scholar
  24. Graziadei, P. (1971). The nervous system of the arms. In J. Z. Young (Ed.), The anatomy of the nervous system of Octopus vulgaris (pp. 45–61). Oxford: Claredon Press.Google Scholar
  25. Groeger, G., Cotton, P. A., & Williamson, R. (2005). Ontogenetic changes in the visual acuity of Sepia officinalis measured using the optomotor response. Canadian Journal of Zoology, 83(2), 274–279.CrossRefGoogle Scholar
  26. Groeger, G., Chrachri, A., & Williamson, R. (2006). Changes in cuttlefish retinal sensitivity during growth. Vie et Milieu, 56(2), 167–173.Google Scholar
  27. Hanlon, R. T., & Messenger, J. B. (1988). Adaptive coloration in young cuttlefish (Sepia officinalis L.): the morphology and development of body patterns and their relation to behaviour. Philosophical Transactions of the Royal Society, B: Biological Sciences, 320, 437–487.CrossRefGoogle Scholar
  28. Hanlon, R. T., & Messenger, J. B. (1996). Cephalopod behaviour (p. 232). Cambridge: Cambridge University Press.Google Scholar
  29. Hao, Z.-L., Zhang, X.-M., Kudo, H., & Kaeriyama, M. (2010). Development of the retina in the cuttlefish Sepia esculenta. Journal of Shellfish Research, 29(2), 463–470.CrossRefGoogle Scholar
  30. Heß, M. (2007). Semi-automated mapping of cell nuclei in 3D-stacks from optical-sectioning microscopy. In P. Perner & O. Salvetti (Eds.), Advances in mass data analysis of signals and images in medicine, biotechnology and chemistry (Lecture Notes in Computer Science (Vol. 4826, pp. pp. 156–pp. 164). Berlin: Springer.CrossRefGoogle Scholar
  31. Hillig, R. (1912). Das Nervensystem von Sepia officinalis L. Zeitschrift für Wissenschaftliche Zoologie, 101, 736–800.Google Scholar
  32. Jereb, P., & Roper, C. F. E. (2005). Cephalopods of the world: an annotated and illustrated catalogue of cephalopod species known to date. Volume 1. Chambered nautiluses and sepioids (Nautilidae, Sepiidae, Sepiolidae, Sepiadariidae, Idiosepiidae and Spirulidae) (Vol. 4(1), FAO species catalogue for fishery purposes). Rome: FAO. 262 p.Google Scholar
  33. Jereb, P., & Roper, C. F. E. (2010). Cephalopods of the world: an annotated and illustrated catalogue of cephalopod species known to date. Volume 2. Myopsid and oegopsid squids (FAO Species catalogue for fishery purposes, Vol. 4(2)). Rome: FAO. 605 p.Google Scholar
  34. Kerbl, A., Handschuh, S., Nödl, M.-T., Metscher, B., Walzl, M., & Wanninger, A. (2013). Micro-CT in cephalopod research: Investigating the internal anatomy of a sepiolid squid using a non-destructive technique with special focus on the ganglionic system. Journal of Experimental Marine Biology and Ecology, 447, 140–148.CrossRefGoogle Scholar
  35. Kunze, P. (1972). Comparative studies of arthropod superposition eyes. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 76(4), 347–357.Google Scholar
  36. Lauder, G. V. (1981). Form and function: structural analysis in evolutionary morphology. Paleobiology, 7(4), 430–442.Google Scholar
  37. Le Gall, S., Feral, C., Van Minnen, J., & Marchand, C. R. (1988). Evidence for peptidergic innervation of the endocrine optic gland in Sepia by neurons showing FMRFamide-like immunoreactivity. Brain Research, 462(1), 83–88.CrossRefPubMedGoogle Scholar
  38. Lythgoe, J. N. (1979). The ecology of vision (p. 270). Oxford: Clarendon Press.Google Scholar
  39. Maddock, L., & Young, J. Z. (1987). Quantitative differences among the brains of cephalopods. Journal of Zoology, 212(4), 739–767.CrossRefGoogle Scholar
  40. Makino, A., & Miyazaki, T. (2010). Topographical distribution of visual cell nuclei in the retina in relation to the habitat of five species of Decapodiformes (Cephalopoda). Journal of Molluscan Studies, 76(2), 180–185.CrossRefGoogle Scholar
  41. Mangold, K., & Boletzky, S. (1973). New data on reproductive biology and growth of Octopus vulgaris. Marine Biology, 19(1), 7–12.CrossRefGoogle Scholar
  42. Marquis, F. (1989). Die Embryonalentwicklung des Nervensystems von Octopus vulgaris Lam. (Cephalopoda. Octopoda), eine histologische Analyse. Verhandlungen der naturforschenden Gesellschaft Basel, 99, 23–76.Google Scholar
  43. Martin, R. (1965). On the structure and embryonic development of the giant fibre system of the squid Loligo vulgaris. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 67, 77–85.CrossRefPubMedGoogle Scholar
  44. Martin, R., & Rungger, D. (1966). Zur Struktur und Entwicklung des Riesenfasersystems erster Ornung von Sepia officinalis L. (Cephalopoda). Zeitschrift für Zellforschung und Mikroskopische Anatomie, 74, 454–463.CrossRefPubMedGoogle Scholar
  45. Martin, G. R., Wilson, K.-J., Wild, J. M., Parsons, S., Kubke, M. F., & Corfield, J. (2007). Kiwi forego vision in the guidance of their nocturnal activities. PLoS ONE, 2(2), e198.CrossRefPubMedCentralPubMedGoogle Scholar
  46. Meister, G. (1972). Organogenese von Loligo vulgaris Lam. (Mollusca, Cephalopoda, Teuthoidea, Myopsida, Loliginidae). Zoologische Jahrbücher. Abteilung für Anatomie und Ontogenie der Tiere, 59, 247–300.Google Scholar
  47. Messenger, J. B. (1967a). The effects on locomotion of lesions to the viso-motor system in Octopus. Proceedings of the Royal Society B: Biological Sciences, 167, 252–281.CrossRefGoogle Scholar
  48. Messenger, J. B. (1967b). The peduncle lobe: a viso-motor centre in Octopus. Proceedings of the Royal Society B: Biological Sciences, 167, 225–251.CrossRefGoogle Scholar
  49. Messenger, J. B. (1968). The visual attack of the cuttlefish, Sepia officinalis. Animal Behaviour, 16(2), 342–357.CrossRefPubMedGoogle Scholar
  50. Messenger, J. B. (1979). The nervous system of Loligo: IV. The peduncle and olfactory lobes. Philosophical Transactions of the Royal Society, B: Biological Sciences, 285(1008), 275–309.CrossRefGoogle Scholar
  51. Nixon, M., & Mangold, K. (1996). The early life of Octopus vulgaris (Cephalopoda: Octopodidae) in the plankton and at settlement: a change in lifestyle. Journal of Zoology, 239(2), 301–327.CrossRefGoogle Scholar
  52. Nixon, M., & Mangold, K. (1998). The early life of Sepia officinalis, and the contrast with that of Octopus vulgaris (Cephalopoda). Journal of Zoology, 245(04), 407–421.CrossRefGoogle Scholar
  53. Nixon, M., & Young, J. Z. (2003). The brains and lives of cephalopods (p. 408). Oxford: Oxford University Press.Google Scholar
  54. Norman, M. (2003). Cephalopods - A world guide (2nd ed., p. 320). Hackenheim: Conch books.Google Scholar
  55. Novicki, A., Budelmann, B. U., & Hanlon, R. T. (1990). Brain pathways of the chromatophore system in the squid Lolliguncula brevis. Brain Research, 519(1–2), 315–323.CrossRefPubMedGoogle Scholar
  56. Packard, A. (1972). Cephalopods and fish: the limits of convergence. Biological Reviews, 47(2), 241–307.CrossRefGoogle Scholar
  57. Pfefferkorn, A. (1915). Das Nervensystem der Octopoden. Zeitschrift für Wissenschaftliche Zoologie, 114, 425–531.Google Scholar
  58. Poirier, R., Chichery, R., & Dickel, L. (2004). Effects of rearing conditions on sand digging efficiency in juvenile cuttlefish. Behavioural Processes, 67(2), 273–279.CrossRefPubMedGoogle Scholar
  59. Richardson, K. C., Jarett, L., & Finke, E. H. (1960). Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technology, 35, 313–323.PubMedGoogle Scholar
  60. Richter, K. (1913). Das Nervensystem der Oegopsiden. Zeitschrift für Wissenschaftliche Zoologie, 106, 289–408.Google Scholar
  61. Roper, C. F. E., Sweeney, M. J., & Nauen, C. E. (1984). Cephalopods of the world. An annotated and illustrated catalogue of species of interest to fisheries (Vol. 3, FAO Fisheries Synopsis). Rome: FAO. 277 p.Google Scholar
  62. Ruthensteiner, B. (2008). Soft Part 3D visualization by serial sectioning and computer reconstruction. Zoosymposia, 1, 63–100.CrossRefGoogle Scholar
  63. Ruthensteiner, B., & Heß, M. (2008). Embedding 3D models of biological specimens in PDF publications. Microscopy Research and Technique, 71(11), 778–786.CrossRefPubMedGoogle Scholar
  64. Scharpf, E., Haszprunar, G., & Heß, M. Coleoid cephalopod retinae - a comparative morphological approach. In 3rd International Symposium Coleoid Cephalopods through Time, Luxemburg, 2008 (pp. 25–27).Google Scholar
  65. Schkaff, B. (1914). Zur Kenntnis des Nervensystems der Myopsiden. Zeitschrift für Wissenschaftliche Zoologie, 109, 591–630.Google Scholar
  66. Shigeno, S., & Yamamoto, M. (2002). Organization of the nervous system in the pygmy cuttlefish, Idiosepius paradoxus Ortmann (Idiosepiidae, Cephalopoda). Journal of Morphology, 254(1), 65–80.CrossRefPubMedGoogle Scholar
  67. Shigeno, S., Kidokoro, H., Tsuchiya, K., Segawa, S., & Yamamoto, M. (2001a). Development of the brain in the oegopsid squid, Todarodes pacificus: an atlas from hatchling to juvenile. Zoological Science, 18(8), 1081–1096.CrossRefGoogle Scholar
  68. Shigeno, S., Kidokoro, H., Tsuchiya, K., Segawa, S., & Yamamoto, M. (2001b). Development of the brain in the oegopsid squid, Todarodes pacificus: an atlas up to the hatching stage. Zoological Science, 18(4), 527–541.CrossRefGoogle Scholar
  69. Shigeno, S., Tsuchiya, K., & Segawa, S. (2001c). Conserved topological patterns and heterochronies in loliginid cephalopods: comparative developmental morphology of the oval squid Sepioteuthis lessoniana. Invertebrate Reproduction & Development, 39(3), 161–174.CrossRefGoogle Scholar
  70. Shigeno, S., Tsuchiya, K., & Segawa, S. (2001d). Embryonic and paralarval development of the central nervous system of the loliginid squid Sepioteuthis lessoniana. The Journal of Comparative Neurology, 437(4), 449–475.CrossRefPubMedGoogle Scholar
  71. Tompsett, D. H. (1939). Sepia (L.M.B.C. memoirs on typical British marine plants and animals, Vol. 32): University Press. 184 p.Google Scholar
  72. Villanueva, R., Nozais, C., & Boletzky, S. V. (1995). The planktic life of octopuses. Nature, 377(6545), 107–107.CrossRefGoogle Scholar
  73. Villanueva, R., Nozais, C., & Boletzky, S. V. (1996). Swimming behaviour and food searching in planktic Octopus vulgaris Cuvier from hatching to settlement. Journal of Experimental Marine Biology and Ecology, 208(1–2), 169–184.Google Scholar
  74. Warrant, E. J., & Locket, N. A. (2004). Vision in the deep sea. Biological Reviews, 79(3), 671–712.CrossRefPubMedGoogle Scholar
  75. Warrant, E. J., & McIntyre, P. (1991). Strategies for retinal design in arthropod eyes of low F-number. Journal of Comparative Physiology. A, Neuroethology, Sensory, Neural, and Behavioral Physiology, 168(4), 499–512.CrossRefGoogle Scholar
  76. Wells, M. J. (1958). Factors affecting reactions to Mysis by newly hatched Sepia. Behaviour, 13(1–2), 96–111.CrossRefGoogle Scholar
  77. Wells, M. J., & Wells, J. (1959). Hormonal control of sexual maturity in Octopus. The Journal of Experimental Biology, 36(1), 1–33.Google Scholar
  78. Wells, M. J., & Young, J. Z. (1972). The median inferior frontal lobe and touch learning in the octopus. The Journal of Experimental Biology, 56(2), 381–402.PubMedGoogle Scholar
  79. West, J. A., Sivak, J. G., & Doughty, M. J. (1995). Microscopical evaluation of the crystalline lens of the squid (Loligo opalescens) during embryonic development. Experimental Eye Research, 60(1), 19–35.CrossRefPubMedGoogle Scholar
  80. Willekens, B., Vrensen, G., Jacob, T., & Duncan, G. (1984). The ultrastructure of the lens of the cephalopod Sepiola: a scanning electron microscopic study. Tissue & Cell, 16(6), 941–950.CrossRefGoogle Scholar
  81. Wirz, K. (1954). Etudes quantitatives sur le systeme nerveux des Cephalopodes. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 238(12), 1353–1355.PubMedGoogle Scholar
  82. Wirz, K. (1959). Étude biométrique du système nerveux des céphalopodes: Presses universitaires de France. 40 p.Google Scholar
  83. Wollesen, T., Loesel, R., & Wanninger, A. (2008). FMRFamide-like immunoreactivity in the central nervous system of the cephalopod mollusc, Idiosepius notoides. Acta Biologica Hungarica, 59, 111–116.CrossRefPubMedGoogle Scholar
  84. Wollesen, T., Loesel, R., & Wanninger, A. (2009). Pygmy squids and giant brains: mapping the complex cephalopod CNS by phalloidin staining of vibratome sections and whole-mount preparations. Journal of Neuroscience Methods, 179(1), 63–67.CrossRefPubMedGoogle Scholar
  85. Wollesen, T., Cummins, S. F., Degnan, B. M., & Wanninger, A. (2010a). FMRFamide gene and peptide expression during central nervous system development of the cephalopod mollusk, Idiosepius notoides. Evolution & Development, 12(2), 113–130.CrossRefGoogle Scholar
  86. Wollesen, T., Degnan, B. M., & Wanninger, A. (2010b). Expression of serotonin (5-HT) during CNS development of the cephalopod mollusk, Idiosepius notoides. Cell and Tissue Research, 342(2), 161–178.CrossRefPubMedGoogle Scholar
  87. Wollesen, T., Nishiguchi, M. K., Seixas, P., Degnan, B. M., & Wanninger, A. (2012a). The VD1/RPD2 alpha 1-neuropeptide is highly expressed in the brain of cephalopod mollusks. Cell and Tissue Research, 348(3), 439–452.CrossRefPubMedGoogle Scholar
  88. Wollesen, T., Sukhsangchan, C., Seixas, P., Nabhitabhata, J., & Wanninger, A. (2012b). Analysis of neurotransmitter distribution in brain development of benthic and pelagic octopod cephalopods. Journal of Morphology, 273(7), 776–790.CrossRefPubMedGoogle Scholar
  89. Yamamoto, M. (1985). Ontogeny of the visual system in the cuttlefish Sepiella japonica. I. Morphological differentiation of the visual cell. The Journal of Comparative Neurology, 232(3), 347–361.CrossRefPubMedGoogle Scholar
  90. Yamamoto, M., Shimazaki, Y., & Shigeno, S. (2003). Atlas of the embryonic brain in the pygmy squid, Idiosepius paradoxus. Zoological Science, 20(2), 163–179.CrossRefPubMedGoogle Scholar
  91. Yamazaki, A., Yoshida, M., & Uematsu, K. (2002). Post-hatching development of the brain in Octopus ocellatus. Zoological Science, 19(7), 763–771.CrossRefPubMedGoogle Scholar
  92. Young, J. Z. (1962). The optic lobes of Octopus vulgaris. Philosophical Transactions of the Royal Society, B: Biological Sciences, 245(718), 19–58.CrossRefGoogle Scholar
  93. Young, J. Z. (1965a). The buccal nervous system of Octopus. Philosophical Transactions of the Royal Society, B: Biological Sciences, 249(755), 27–44.CrossRefGoogle Scholar
  94. Young, J. Z. (1965b). The centres for touch discrimination in Octopus. Philosophical Transactions of the Royal Society, B: Biological Sciences, 249(755), 45–67.CrossRefGoogle Scholar
  95. Young, J. Z. (1965c). The nervous pathways for poisoning, eating and learning in Octopus. The Journal of Experimental Biology, 43(3), 581–593.PubMedGoogle Scholar
  96. Young, J. Z. (1965d). The organization of a memory system. Proceedings of the Royal Society B: Biological Sciences, 163(992), 285–320.CrossRefGoogle Scholar
  97. Young, J. Z. (1970). Neurovenous tissues in cephalopods. Philosophical Transactions of the Royal Society, B: Biological Sciences, 257(815), 309–321.CrossRefGoogle Scholar
  98. Young, J. Z. (1971). The anatomy of the nervous system of Octopus vulgaris (p. 690). Oxford: Clarendon Press.Google Scholar
  99. Young, J. Z. (1974). The central nervous system of Loligo. I. The optic lobe. Philosophical Transactions of the Royal Society B: Biological Sciences, 267(885), 263–302.CrossRefGoogle Scholar
  100. Young, J. Z. (1976a). The ‘cerebellum’ and the control of eye movements in cephalopods. Nature, 264(5586), 572–574.CrossRefPubMedGoogle Scholar
  101. Young, J. Z. (1976b). The nervous system of Loligo. II. Suboesophageal centres. Philosophical Transactions of the Royal Society B: Biological Sciences, 274(930), 101–167.CrossRefGoogle Scholar
  102. Young, J. Z. (1977). The nervous system of Loligo. III. Higher motor centres: the basal supraoesophageal lobes. Philosophical Transactions of the Royal Society B: Biological Sciences, 276(948), 351–398.CrossRefGoogle Scholar
  103. Young, J. Z. (1979). The nervous system of Loligo. V. The vertical lobe complex. Philosophical Transactions of the Royal Society, B: Biological Sciences, 285(1009), 311–354.CrossRefGoogle Scholar
  104. Young, J. Z. (1983). The distributed tactile memory system of Octopus. Proceedings of the Royal Society B: Biological Sciences, 218(1211), 135–176.CrossRefGoogle Scholar
  105. Young, R. E., & Vecchione, M. (2004). Oegopsida Orbigny, 1845. Version 18 August 2004 (under construction). http://tolweb.org/Oegopsida/19407/2004.08.18
  106. Young, R. E., Vecchione, M., & Mangold, K. M. (2012). Cephalopoda Cuvier 1797. Octopods, squids, nautiluses, etc. Version 04 July 2012 (under construction). http://tolweb.org/Cephalopoda/19386/2012.07.04.

Copyright information

© Gesellschaft für Biologische Systematik 2014

Authors and Affiliations

  • Elvira Wild
    • 1
  • Tim Wollesen
    • 4
  • Gerhard Haszprunar
    • 1
    • 2
    • 3
  • Martin Heß
    • 1
    • 3
    Email author
  1. 1.BioZentrum LMUPlanegg-MartinsriedGermany
  2. 2.Zoologische Staatssammlung MünchenMünchenGermany
  3. 3.GeoBioCenter LMUMünchenGermany
  4. 4.Integrative ZoologieUniversität WienWienAustria

Personalised recommendations