Advertisement

Organisms Diversity & Evolution

, Volume 14, Issue 4, pp 397–408 | Cite as

Climate-induced shifts in the niche similarity of two related spadefoot toads (genus Pelobates)

  • Ruben Iosif
  • Monica Papeş
  • Ciprian Samoilă
  • Dan CogălniceanuEmail author
Original Article

Abstract

Of the four species encompassing the genus Pelobates, only two overlap along a narrow contact zone, i.e., Pelobates fuscus and Pelobates syriacus. Our study investigated the shifts in niche similarity of these two closely related species from the Last Interglacial towards the end of the twenty-first century. We computed climatic suitability models using Maxent and projected them onto future and past climates. We used fossil occurrences to test the predictive accuracy of past projections. Niche similarity was assessed between the studied species using Schoener’s D index and a background similarity test. Finally, we evaluated niche differentiation by contrasting the species occurrences using a logistic regression analysis. The ecological niches are slightly extended outside the present geographical ranges in the Caucasus and the Balkans, south for P. fuscus and north and west for P. syriacus, suggesting that their present distribution is not at equilibrium with the climate. The Last Interglacial distribution of P. fuscus included British Isles and broad areas in western, central, and northern Europe, while P. syriacus extended northwards in the Balkans. The validation with fossil records revealed good predictive performance (omission error = 4.1 % for P. fuscus and 16.6 % for P. syriacus). During the Last Glacial Maximum, climatic suitability persisted in refugia in southern Europe, Pannonian Basin, and Caucasus for P. fuscus, and Israel, southern Balkans, and Caucasus for P. syriacus. Present potential distributions revealed a low similarity of species’ ecological niches, comparable with Last Interglacial, but projections towards 2080 revealed a sharp increase.

Keywords

Ecological niche Climate change Pelobates fuscus Pelobates syriacus Glaciations 

Notes

Acknowledgments

This work was partly supported by a grant of the Romanian National Authority for Scientific Research PN-II-PCE-2011-3-0173 and a Fulbright Senior Fellowship to DC. We thank Dr. Roberto Sindaco, Dr. Wieslaw Babik, Dr. Paul Székely, Dr. Laurenţiu Rozylowicz, and Dr. Jan Arntzen for sharing occurrence data with us. We thank Florina Stănescu and Dr. Marton Venczel for the help in compiling the fossil record database. We appreciate the suggestions provided by Dr. Jan Arntzen and an anonymous reviewer to improve this manuscript.

Supplementary material

13127_2014_181_MOESM1_ESM.docx (29 kb)
ESM 1 (DOCX 28.5 KB)

References

  1. Andreone, F., Bergò, P. E., Bovero, S., & Gazzaniga, E. (2004). On the edge of extinction? The spadefoot Pelobates fuscus insubricus in the Po Plain, and a glimpse at its conservation biology. Bollettino di Zoologia, 71, 61–72.Google Scholar
  2. Araújo, M. B., Thuiller, W., & Pearson, R. G. (2006). Climate warming and the decline of amphibians and reptiles in Europe. Journal of Biogeography, 33, 1712–1728.CrossRefGoogle Scholar
  3. Arntzen, J. W., Espregueira Themudo, G., & Wielstra, B. (2007). The phylogeny of crested newts (Triturus cristatus superspecies): nuclear and mitochondrial genetic characters suggest a hard polytomy, in line with the paleogeography of the centre of origin. Contributions to Zoology, 76, 261–278.Google Scholar
  4. Arntzen, J. W., & Espreguiera Themudo, G. (2008). Environmental parameters that determine species geographical range limits as a matter of time and space. Journal of Biogeography, 35, 1177–1186.CrossRefGoogle Scholar
  5. Baselga, A., Lobo, J. M., Svenning, J. C., & Araújo, M. B. (2012). Global patterns in the shape of species geographical ranges reveal range determinants. Journal of Biogeography, 39, 760–771.CrossRefGoogle Scholar
  6. Bonk, M., & Pabijan, M. (2010). Changes in a regional batrachofauna in south-central Poland over a 25 year period. North-Western Journal of Zoology, 6, 225–244.Google Scholar
  7. Böhme M., & Ilg A. (2003). fosFARbase, www.wahre-staerke.com/. Accessed 8 June 2012.
  8. Cogălniceanu, D., Székely, P., Székely, D., Roşioru, D. M., Băncilă, R. I., & Miaud, C. (2013). When males are larger than females in ecthotherms: reproductive investment in the Eastern Spadefoot Toad Pelobates syriacus. Copeia, 4, 699–706.CrossRefGoogle Scholar
  9. Collins, W. D., Bitz, C. M., Blackmon, M. L., Bonan, G. B., Bretherton, C. S., Carton, J. A., et al. (2006). The Community Climate System Model Version 3 (CCSM3). Journal of Climate, 19, 2122–2143.CrossRefGoogle Scholar
  10. Costa, G. C., & Schlupp, I. (2010). Biogeography of the Amazon molly: ecological niche and range limits of an asexual hybrid species. Global Ecology and Biogeography, 19, 442–451.Google Scholar
  11. Crottini, A., Andreone, F., Kosuch, J., Borkin, L. J., Litvinchuk, S. N., Eggert, C., et al. (2007). Fossorial but widespread: the phylogeography of the common spadefoot toad (Pelobates fuscus), and the role of the Po Valley as a major source of genetic variability. Molecular Ecology, 16, 2734–2754.PubMedCrossRefGoogle Scholar
  12. Delfino, M., Bar-Oz, G., & Weissbrod, L. (2007). Recent shrinkage of the range of the Eastern spadefoot toad, Pelobates syriacus (Amphibia, Anura): archaeological evidence from the Bronze Age in Israel. Zoology in the Middle East, 40, 45–52.CrossRefGoogle Scholar
  13. Dobrowski, S. Z. (2011). A climatic basis for microrefugia: the influence of terrain on climate. Global Change Biology, 17, 1022–1035.CrossRefGoogle Scholar
  14. Džukić, G., Beskov, V., Sidorovska, V., Cogălniceanu, D., & Kalezić, M. (2005). Historical and contemporary ranges of the spadefoot toads (Pelobates spp., Amphibia, Anura) in the Balkan Peninsula. Acta Zoologica Cracoviensia, 48, 1–9.Google Scholar
  15. Elith, J., Graham, C. H., Anderson, R. P., Dudík, M., Ferrier, S., Guisan, A., et al. (2006). Novel methods improve prediction of species’ distributions from occurrence data. Ecography, 29, 129–151.CrossRefGoogle Scholar
  16. Elith, J., Kearney, M., & Phillips, S. (2010). The art of modelling range-shifting species. Methods in Ecology and Evolution, 1, 330–342.CrossRefGoogle Scholar
  17. Espregueira Themudo, E., & Arntzen, J. W. (2007). Newts under siege: range expansion of Triturus pygmaeus isolates populations of its sister species. Diversity and Distributions, 13, 580–586.CrossRefGoogle Scholar
  18. Forzieri, G., Feyen, L., Rojas, R., Flörke, M., Wimmer, F., & Bianchi, A. (2014). Ensemble projections of future streamflow droughts in Europe. Hydrology and Earth System Sciences, 18, 85–108.CrossRefGoogle Scholar
  19. Giovannini, A., Seglie, D., & Giacoma, C. (2014). Identifying priority areas for conservation of Pelobates fuscus insubricus (Cornalia, 1873) using a maximum entropy approach. Biodiversity and Conservation, 23, 1427–1439.CrossRefGoogle Scholar
  20. Gray, A. (1912). Scientific papers of Asa Gray. Vol. 2. 1912. Reprint. London: Forgotten Books, 2013. 230–1. http://www.forgottenbooks.org/readbook_text/Scientific_Papers_of_Asa_Gray_v2_000777018/235. Accessed 25 June 2014
  21. Guisan, A., & Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling, 135, 147–186.CrossRefGoogle Scholar
  22. Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68, 87–112.CrossRefGoogle Scholar
  23. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
  24. Hof, C., Araujo, M. B., Jetz, W., & Rahbek, C. (2011). Additive threats from pathogens, climate and land-use change for global amphibian diversity. Nature, 480, 516–519.PubMedGoogle Scholar
  25. Holman, J. A. (1998). Pleistocene amphibians and reptiles in Britain and Europe. USA: Oxford University Press.Google Scholar
  26. Ibrahim, K. M., Nichols, R. A., & Hewitt, G. M. (1996). Spatial patterns of genetic variation generated by different forms of dispersal during range expansion. Heredity, 77, 282–291.CrossRefGoogle Scholar
  27. Kieren, S., Crottini, A., De Pous, P., & Veith, M. (2013). Phylogeny and phylogeography of the Syrian spadefoot toad (Pelobates syriacus). 17th European Congress of Herpetology, Programme & Abstracts, P 129.Vesprem, Hungary.Google Scholar
  28. Kozak, K. H., & Wiens, J. (2006). Does niche conservatism promote speciation? A case study in North American salamanders. Evolution, 60, 2604–2621.PubMedCrossRefGoogle Scholar
  29. Litvinchuk, S., Crottini, A., Federici, S., De Pous, P., Donaire, D., Andreone, F., et al. (2013). Phylogeographic patterns of genetic diversity in the common spadefoot toad, Pelobates fuscus (Anura, Pelobatidae), reveals evolutionary history, postglacial range expansion and secondary contact. Organisms Diversity & Evolution, 13, 433–451.CrossRefGoogle Scholar
  30. Loarie, S. R., Duffy, P. B., Hamilton, H., Asner, G. P., Field, C. B., & Ackerly, D. D. (2009). The velocity of climate change. Nature, 462, 1052–1055.PubMedCrossRefGoogle Scholar
  31. Martín, C., & Sanchiz, B. (2013). Lisanfos KMS. Version 1.2. http://www.lisanfos.mncn.csic.es/. Museo Nacional de Ciencias Naturales, MNCN-CSIC. Madrid, Spain. Accessed 8 June 2012.
  32. Mateo, R. G., de la Estrella, M., Felicísimo, Á. M., Muñoz, J., & Guisan, A. (2013). A new spin on a compositionalist predictive modelling framework for conservation planning: a tropical case study in Ecuador. Biological Conservation, 160, 150–161.CrossRefGoogle Scholar
  33. Mendelssohn, H., & Steinitz, H. (1944). Contribution to the ecological zoogeography of the amphibians in Palestine. Revue de la Faculté des Sciences de l’Université d’Istanbul, 9, 289–298.Google Scholar
  34. Munwes, I., Geffen, E., Roll, U., Friedmann, A., Daya, A., Tikochinski, Y., et al. (2010). The change in genetic diversity down the core-edge gradient in the Eastern spadefoot toad (Pelobates syriacus). Molecular Ecology, 19, 2675–2689.PubMedCrossRefGoogle Scholar
  35. Nakazato, T., Warren, D. L., & Moyle, L. C. (2010). Ecological and geographic modes of species divergence in wild tomatoes. American Journal of Botany, 97, 680–693.PubMedCrossRefGoogle Scholar
  36. Nakicenovic, N., & Swart, R. (2000). Emission scenarios: a special report of Working Group II of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University.Google Scholar
  37. Nöllert, A. (1990). Die Knoblauchkröte. Wittenberg Lutherstadt: Ziemsen.Google Scholar
  38. Nyström, P., Birkedal, L., Dahlberg, C., & Brönmark, C. (2002). The declining spadefoot toad Pelobates fuscus: calling site choice and conservation. Ecography, 25, 488–498.CrossRefGoogle Scholar
  39. Otto-Bliesner, B. L., Marshall, S. J., Overpeck, J. T., Miller, G. H., Hu, A., & CAPE Last Interglacial Project members. (2006). Simulating arctic warmth and icefield retreat in the Last Interglaciation. Science, 311, 1751–1753.Google Scholar
  40. Parmesan, C. (2006). Ecological and evolutionary responses to recent climate change. Annual Review of Ecology, Evolution, and Systematics, 37, 637–669.CrossRefGoogle Scholar
  41. Pearson, R. G., Raxworthy, C. J., Nakamura, M., & Peterson, T. A. (2007). Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. Journal of Biogeography, 34, 102–117.CrossRefGoogle Scholar
  42. Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., & Nakamura, N., et al. (2011). Ecological niches and geographic distributions. Monographs in Population Biology, 49. Princeton University Press.Google Scholar
  43. Phillips, S.J., Dudik, M., & Schapire, R.E. (2004). A maximum entropy approach to species distribution modeling. In Proceedings of the 21st International Conference on Machine Learning, p. 83. ACM, Banff, Alberta, Canada.Google Scholar
  44. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modelling, 190, 231–259.CrossRefGoogle Scholar
  45. Phillips, S. J., & Dudik, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.CrossRefGoogle Scholar
  46. Popescu, V. D., Rozylowicz, L., Cogălniceanu, D., Niculae, I. M., & Cucu, A. L. (2013). Moving into protected areas? Setting conservation priorities for Romanian reptiles and amphibians at risk from climate change. PLoS ONE, 8, e79330.PubMedCentralPubMedCrossRefGoogle Scholar
  47. Reading, C. (2007). Linking global warming to amphibian declines through its effects on female body condition and survivorship. Oecologia, 151, 125–131.PubMedCrossRefGoogle Scholar
  48. Renner, I. W., & Warton, D. I. (2013). Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics, 69, 274–281.PubMedCrossRefGoogle Scholar
  49. Rödder, D., & Engler, J. O. (2011). Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Global Ecology and Biogeography, 20, 915–927.CrossRefGoogle Scholar
  50. Rot-Nikčević, I., Sidorovska, V., Džukić, G., & Kalezić, M. L. (2001). Sexual size dimorphism and life history traits of two European spadefoot toads (Pelobates fuscus and P. syriacus) in allopatry and sympatry. Annales Series Historia Naturalis, 11, 107–120.Google Scholar
  51. Schoener, T. W. (1968). The anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49, 704–726.CrossRefGoogle Scholar
  52. Shpun, S., Hoffman, J., Nevo, E., & Katz, U. (1993). Is the distribution of Pelobates syriacus related to its limited osmoregulatory capacity? Comparative Biochemistry and Physiology, 105, 135–139.CrossRefGoogle Scholar
  53. Székely, P. (2010). Faunistical and ecological studies on amphibians from Podişul Dobrogei. Unpubl. Ph.D. Thesis, Babeş–Bolyai University, Cluj-Napoca. [In Romanian]Google Scholar
  54. Székely, P., Tudor, M., & Cogălniceanu, D. (2010). Effect of habitat drying on the development of the Eastern spadefoot toad (Pelobates syriacus) tadpoles. Amphibia-Reptilia, 31, 425–434.CrossRefGoogle Scholar
  55. Székely, P., Iosif, R., Székely, D., Stănescu, F., & Cogălniceanu, D. (2013). Range extension for the Eastern spadefoot toad Pelobates syriacus (Boettger, 1889) (Anura: Pelobatidae). Herpetology Notes, 6, 481–484.Google Scholar
  56. Tarkhnishvili, D., Serbinova, I., & Gavashelishvili, A. (2009). Modelling the range of Syrian spadefoot toad (Pelobates syriacus) with combination of GIS-based approaches. Amphibia-Reptilia, 30, 401–412.CrossRefGoogle Scholar
  57. Thuiller, W., Brotons, L., Araújo, M. B., & Lavorel, S. (2004). Effects of restricting environmental range of data to project current and future species distributions. Ecography, 27, 165–172.CrossRefGoogle Scholar
  58. Wake, D. B., & Vredenburg, V. T. (2008). Are we in the midst of the sixth mass extinction? A view from the world of amphibians. Proceedings of the National Academy of Sciences, 105, 11466–11473.CrossRefGoogle Scholar
  59. Walls, S., Barichivich, W., & Brown, M. (2013). Drought, deluge and declines: the impact of precipitation extremes on amphibians in a changing climate. Biology, 2, 399–418.PubMedCentralPubMedCrossRefGoogle Scholar
  60. Warren, D. L., Glor, R. E., & Turelli, M. (2008). Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution, 62, 2868–2883.PubMedCrossRefGoogle Scholar
  61. Warren, D. L., & Seifert, S. N. (2010). Ecological niche modeling in Maxent: the importance of model complexity and the performance of model selection criteria. Ecological Applications, 21, 335–342.CrossRefGoogle Scholar
  62. Wielstra, B., Crnobrnja-Isailović, J., Litvinchuk, S., Reijnen, B., Skidmore, A., Sotiropoulos, K., et al. (2013). Tracing glacial refugia of Triturus newts based on mitochondrial DNA phylogeography and species distribution modeling. Frontiers in Zoology, 10, 1–14.CrossRefGoogle Scholar
  63. Wisz, M. S., Pottier, J., Kissling, W. D., Pellissier, L., Lenoir, J., Damgaard, C. F., et al. (2013). The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biological Reviews, 88, 15–30.PubMedCentralPubMedCrossRefGoogle Scholar
  64. Wunsch, C., Schmitt, R. W., & Baker, D. J. (2013). Climate change as an intergenerational problem. Proceedings of the National Academy of Sciences, 110, 4435–4436.CrossRefGoogle Scholar
  65. Zeisset, I., & Beebee, T. J. C. (2008). Amphibian phylogeography: a model for understanding historical aspects of species distributions. Heredity, 101, 109-119.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2014

Authors and Affiliations

  • Ruben Iosif
    • 1
  • Monica Papeş
    • 2
  • Ciprian Samoilă
    • 1
  • Dan Cogălniceanu
    • 1
    Email author
  1. 1.Faculty of Natural and Agricultural SciencesOvidius University ConstanţaConstanţaRomania
  2. 2.Department of ZoologyOklahoma State UniversityStillwaterUSA

Personalised recommendations