Organisms Diversity & Evolution

, Volume 14, Issue 1, pp 11–20 | Cite as

DNA barcoding of brown Parmeliae (Parmeliaceae) species: a molecular approach for accurate specimen identification, emphasizing species in Greenland

  • Steven D. Leavitt
  • Theodore L. Esslinger
  • Eric Steen Hansen
  • Pradeep K. Divakar
  • Ana Crespo
  • Bradley F. Loomis
  • H. Thorsten Lumbsch
Original Article

Abstract

Warming of Arctic and alpine regions has a substantial impact on high-altitude/-latitude ecosystems. Shifting biomes due to climate change may lead to adjustments in species distributions and potential extinctions. Therefore, detailed monitoring is requisite to assess biologically meaningful shifts in community composition and species distributions. Some Arctic-alpine lichens have been shown to be particularly sensitive to climatic shifts associated with global change. However, accurate identification of lichenized fungal species remains challenging and may limit the effective use of lichens in climate change research. Given the inherent difficulties in accurate identification of lichenized fungi and the potential value of efficient identifications for bio-monitoring research, we investigated the utility of DNA barcode identification of the 13 brown Parmeliae (Ascomycota) species occurring in Greenland. For these species, we assessed monophyly and genetic distances using the nuclear ribosomal internal transcribed spacer region (ITS), the standard DNA barcode for fungi. We also compared intraspecific distance values to a proposed intra-interspecific threshold value for Parmeliaceae to identify nominal taxa potentially masking previously unrecognized diversity. Our results indicated that the 13 brown Parmeliae species occurring in Greenland can be successfully discriminated using the ITS region. All phenotypically circumscribed species were recovered as well-supported, monophyletic clades. Furthermore, our data supported a barcode gap among congeners for all brown Parmeliae species investigated here. However, high intraspecific genetic distances suggest the potential for previously unrecognized species-lineages in at least five species: Melanelia agnata, M. hepatizon, Montanelia disjuncta, M. panniformis, and M. tominii. Our research facilitates effective, long-term bio-monitoring of climate change in Greenland using lichens by providing accurate molecular identification of brown Parmeliae specimens.

Keywords

Arctic Barcode gap Climate change Genetic distances Lichens Molecular systematics 

Supplementary material

13127_2013_147_MOESM1_ESM.xlsx (46 kb)
Supplementary Table S1Collection information for all brown Parmeliae specimens included in the present study (XLSX 46 kb)
13127_2013_147_MOESM2_ESM.pdf (406 kb)
Supplementary Figure S1Maximum likelihood ITS phylogeny of 372 samples brown Parmeliaespecimens. Non-parametric bootstrap support is indicated at nodes (PDF 405 kb)

References

  1. Aitken, S. N., Yeaman, S., Holliday, J. A., Wang, T. L., & Curtis-McLane, S. (2008). Adaptation, migration or extirpation: climate change outcomes for tree populations. Evolutionary Applications, 1(1), 95–111. doi:10.1111/j.1752-4571.2007.00013.x.PubMedCentralGoogle Scholar
  2. Araújo, M. B., & Rahbek, C. (2006). How does climate change affect biodiversity? Science, 313(5792), 1396–1397. doi:10.1126/science.1131758.PubMedCrossRefGoogle Scholar
  3. Arup, U., & Berlin, E. S. (2011). A taxonomic study of Melanelixia fuliginosa in Europe. The Lichenologist, 43, 89–97. doi:10.1017/S0024282910000678.CrossRefGoogle Scholar
  4. Baird, D. J., & Hajibabaei, M. (2012). Biomonitoring 2.0: a new paradigm in ecosystem assessment made possible by next-generation DNA sequencing. Molecular Ecology, 21, 2039–2044. doi:10.1111/j.1365-294X.2012.05519.x.PubMedCrossRefGoogle Scholar
  5. Bässler, C., Müller, J., & Dziock, F. (2010). Detection of climate-sensitive zones and identification of climate change indicators: a case study from the Bavarian Forest National Park. Folia Geobotanica, 45, 163–182. doi:10.1007/s12224-010-9059-4.CrossRefGoogle Scholar
  6. Beck, P. S. A., Juday, G. P., Alix, C., Barber, V. A., Winslow, S. E., Sousa, E. E., et al. (2011). Changes in forest productivity across Alaska consistent with biome shift. Ecology Letters, 14, 373–379.PubMedCrossRefGoogle Scholar
  7. Begerow, D., Nilsson, H., Unterseher, M., & Maier, W. (2010). Current state and perspectives of fungal DNA barcoding and rapid identification. Applications in Microbiology and Biotechnology, 97, 99–108.CrossRefGoogle Scholar
  8. Bjerke, J. W. (2011). Winter climate change: Ice encapsulation at mild subfreezing temperatures kills freeze-tolerant lichens. Environmental and Experimental Botany, 72, 404–408. doi:10.1016/j.envexpbot.2010.05.014.CrossRefGoogle Scholar
  9. Blanco, O., Crespo, A., Divakar, P. K., Esslinger, T. L., Hawksworth, D. L., & Thorsten Lumbsch, H. (2004a). Melanelixia and Melanohalea, two new genera segregated from Melanelia (Parmeliaceae) based on molecular and morphological data. Mycological Research, 108(8), 873–884. doi:10.1017/S0953756204000723.PubMedCrossRefGoogle Scholar
  10. Blanco, O., Crespo, A., Elix, J. A., Hawksworth, D. L., & Lumbsch, H. T. (2004b). A molecular phylogeny and a new classification of parmelioid lichens containing Xanthoparmelia-type lichenan (Ascomycota: Lecanorales). Taxon, 53, 959–975.CrossRefGoogle Scholar
  11. Bradshaw, W. E., & Holzapfel, C. M. (2006). Evolutionary response to rapid climate change. Science, 312, 1477–1478. doi:10.1126/science.1127000.PubMedCrossRefGoogle Scholar
  12. Chase, M. W., & Fay, M. F. (2009). Barcoding of plants and fungi. Science, 325, 682–683. doi:10.1126/science.1176906.PubMedCrossRefGoogle Scholar
  13. Collins, R. A., & Cruickshank, R. H. (2012). The seven deadly sins of DNA barcoding. Molecular Ecology Resources, in press, doi:10.1111/1755-0998.12046.Google Scholar
  14. Cornelissen, J. H. C., Callaghan, T. V., Alatalo, J. M., Michelsen, A., Graglia, E., Hartley, A. E., et al. (2001). Global change and arctic ecosystems: is lichen decline a function of increases in vascular plant biomass? Journal of Ecology, 89, 984–994.CrossRefGoogle Scholar
  15. Crespo, A., Kauff, F., Divakar, P. K., del Prado, R., Perez-Ortega, S., Amo de Paz, G., et al. (2010). Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon, 59, 1735–1753.Google Scholar
  16. Crespo, A., & Lumbsch, H. T. (2010). Cryptic species in lichen-forming fungi. IMA Fungus, 1, 167–170.PubMedCentralPubMedCrossRefGoogle Scholar
  17. Crespo, A., Lumbsch, H. T., Mattsson, J.-E., Blanco, O., Divakar, P. K., Articus, K., et al. (2007). Testing morphology-based hypotheses of phylogenetic relationships in Parmeliaceae (Ascomycota) using three ribosomal markers and the nuclear RPB1 gene. Molecular Phylogenetics and Evolution, 44, 812–824. doi:10.1016/j.ympev.2006.11.029.PubMedCrossRefGoogle Scholar
  18. Crespo, A., & Pérez-Ortega, S. (2009). Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid, 66(S1), 71–81.CrossRefGoogle Scholar
  19. Culberson, C. F. (1972). Improved conditions and new data for identification of lichen products by standardized thin-layer chromatographic method. Journal of Chromatography A, 72, 113–125. doi:10.1016/0021-9673(72)80013-X.CrossRefGoogle Scholar
  20. Del-Prado, R., Cubas, P., Lumbsch, H. T., Divakar, P. K., Blanco, O., de Paz, G. A., et al. (2010). Genetic distances within and among species in monophyletic lineages of Parmeliaceae (Ascomycota) as a tool for taxon delimitation. Molecular Phylogenetics and Evolution, 56, 125–133. doi:10.1016/j.ympev.2010.04.014.PubMedCrossRefGoogle Scholar
  21. Dillman, K. L. (1996). Use of the lichen Rhizoplaca melanophthalma as a biomonitor in relation to phosphate refineries near Pocatello, Idaho. Environmental Pollution, 92, 91–96. doi:10.1016/0269-7491(95)00084-4.PubMedCrossRefGoogle Scholar
  22. Dirnböck, T., Dullinger, S., & Grabherr, G. (2003). A regional impact assessment of climate and land-use change on alpine vegetation. Journal of Biogeography, 30, 401–417. doi:10.1046/j.1365-2699.2003.00839.x.CrossRefGoogle Scholar
  23. Divakar, P. K., Del-Prado, R., Lumbsch, H. T., Wedin, M., Esslinger, T. L., Leavitt, S. D., et al. (2012). Diversification of the newly recognized lichen-forming fungal lineage Montanelia (Parmeliaceae, Ascomycota) and its relation to key geological and climatic events. American Journal of Botany, 99, 2014–2026. doi:10.3732/ajb.1200258.PubMedCrossRefGoogle Scholar
  24. Divakar, P. K., Figueras, G., Hladun, N., & Crespo, A. (2010). Molecular phylogenetic studies reveal an undescribed species within the North American concept of Melanelixia glabra (Parmeliaceae). Fungal Diversity, 42, 47–55. doi:10.1007/s13225-010-0027-3.CrossRefGoogle Scholar
  25. Elix, J. A. (1993). Progress in the generic delimitation of Parmelia sensu lato lichens (Ascomycotina: Parmeliaceae) and a synoptic key to the Parmeliaceae. The Bryologist, 96, 359–383.CrossRefGoogle Scholar
  26. Esslinger, T. L. (1977). A chemosytematic revision of the brown Parmeliae. Journal of Hattori Botanical Laboratory, 42, 1–211.Google Scholar
  27. Esslinger, T. L. (1978). A new status for brown Parmeliae. Mycotaxon, 7, 45–54.Google Scholar
  28. Fujita, M. K., Leaché, A. D., Burbrink, F. T., McGuire, J. A., & Moritz, C. (2012). Coalescent-based species delimitation in an integrative taxonomy. Trends in Ecology & Evolution, 9, 480–488. doi:10.1016/j.tree.2012.04.012.CrossRefGoogle Scholar
  29. Hansen, E. S. (1995). Greenland Lichens. Atuagkat & Rhodos in cooperation with the Danish Polar Center. Copenhagen. 124 pp.Google Scholar
  30. Hansen, E. S. (2009). Lichens from Johannes V. Jensen Land, N Greenland, the northernmost arctic land area. Willdenowia, 39, 179–186.CrossRefGoogle Scholar
  31. Hansen, E. S. (2010). Lichens from five inland and coastal localities in south-west Greenland and their present climatic preferences in Greenland as regards oceanity and continentality. Bibliotheca Lichenologica, 104, 143–154.Google Scholar
  32. Hansen, E. S. (2011a). Qaanaaq og Siorapaluk - laver og natur i et ændret klima. Tidsskriftet Grønland, 2(2011), 136–149.Google Scholar
  33. Hansen, E. S. (2011b). Lichens from Qaanaaq and Siorapaluk, Northwest Greenland. Folia Cryptogamica Estonia, 48, 4–11.Google Scholar
  34. Hansen, E. S. (2012a). Lichens from five localities in south-east Greenland and their exposure to climate change. Bibliotheca Lichenologica, 108, 123–134.Google Scholar
  35. Hansen, E. S. (2012b). Hvad fortæller laverne on klimaet ved Zackenberg. Tidsskriftet Grønland, 1(2012), 42–51.Google Scholar
  36. Hansen, K. (1971). Lichens in South Greenland, distribution and ecology. Meddelelser om Grønland, 178, 1–84.Google Scholar
  37. Jackson, S. T., & Overpeck, J. T. (2000). Responses of plant populations and communities to environmental changes of the late Quaternary. Paleobiology, 26, 194–220.CrossRefGoogle Scholar
  38. Jägerbrand, A., Lindblad, K. M., Björk, R., Alatalo, J., & Molau, U. (2006). Bryophyte and lichen diversity under simulated environmental change compared with observed variation in unmanipulated alpine tundra. Biodiversity and Conservation, 15, 4453–4475. doi:10.1007/s10531-005-5098-1.CrossRefGoogle Scholar
  39. Jensen, L. M. ed. (2012). Zackenberg Ecological Research Operations, 17th Annual Report, 2011. Aarhus University, DCE - Dannish Center for Environment and Energy. 120 pp.Google Scholar
  40. Kelly, L. J., Hollingsworth, P. M., Coppins, B. J., Ellis, C. J., Harrold, P., Tosh, J., et al. (2011). DNA barcoding of lichenized fungi demonstrates high identification success in a floristic context. New Phytologist, 191, 288–300. doi:10.1111/j.1469-8137.2011.03677.x.PubMedCrossRefGoogle Scholar
  41. Kortsch, S., Primicerio, R., Beuchel, F., Renaud, P. E., Rodrigues, J., Lønne, O. J., et al. (2012). Climate-driven regime shifts in Arctic marine benthos. Proceedings of the National Academy of Sciences, 109, 14052–14057. doi:10.1073/pnas.1207509109.CrossRefGoogle Scholar
  42. Kristinsson, H., Zhurbenko, M., & Hansen, E. S. (2010). Panarctic checklist of lichens and lichenicolous fungi. CAFF Technical Report No. 20. Akureyri, Iceland: CAFF International Secretariat.Google Scholar
  43. Larena, I., Salazar, O., González, V., Julián, M. C., & Rubio, V. (1999). Design of a primer for ribosomal DNA internal transcribed spacer with enhanced specificity for ascomycetes. Journal of Biotechnology, 75, 187–194. doi: 10.1016/s0168-1656(99)00154-6 Google Scholar
  44. Leavitt, S., Esslinger, T. L., Divakar, P. K., & Lumbsch, H. (2012a). Miocene and Pliocene dominated diversification of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota) and Pleistocene population expansions. BMC Evolutionary Biology, 12, 176.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Leavitt, S. D., Esslinger, T. L., Divakar, P. K., & Lumbsch, H. T. (2012b). Miocene divergence, phenotypically cryptic lineages, and contrasting distribution patterns in common lichen-forming fungi (Ascomycota: Parmeliaceae). Biological Journal of the Linnean Society, 1007, 920–937.CrossRefGoogle Scholar
  46. Leavitt, S. D., Fernández-Mendoza, F., Pérez-Ortega, S., Sohrabi, M., Divakar, P. K., Lumbsch, H. T., et al. (2013a). DNA barcode identification of lichen-forming fungal species in the Rhizoplaca melanophthalma species-complex (Lecanorales, Lecanoraceae), including five new species MycoKeys, 7, 1–22. doi:10.3897/mycokeys.7.4508.
  47. Leavitt, S. D., Esslinger, T. L., Spribille, T., Divakar, P. K., & Lumbsch, H. T. (2013b). Multilocus phylogeny of the lichen-forming fungal genus Melanohalea (Parmeliaceae, Ascomycota): Insights on diversity, distributions, and a comparison of species tree and concatenated topologies. Molecular Phylogenetics and Evolution, 66, 138–152. doi:10.1016/j.ympev.2012.09.013.PubMedCrossRefGoogle Scholar
  48. Leavitt, S. D., & St. Clair, L. L. (2011). Estimating Xanthoparmelia (Parmeliaceae) population density in subalpine communities in southern Utah, U.S.A. using two distance methods, with implications for assessing community composition. The Bryologist, 114, 625–636. doi:10.1639/0007-2745-114.3.625.CrossRefGoogle Scholar
  49. Longton, R. E. (1997). The role of bryophytes and lichens in polar ecosystems. In S. J. Woodin & M. Marquiss (Eds.), The Arctic: Environment, People, Policy (pp. 69–96). Oxford: Blackwell Science.Google Scholar
  50. Lumbsch, H. T., & Leavitt, S. D. (2011). Goodbye morphology? A paradigm shift in the delimitation of species in lichenized fungi. Fungal Diversity, 50, 59–72. doi:10.1007/s13225-011-0123-z.CrossRefGoogle Scholar
  51. Manel, S., Joost, S., Epperson, B. K., Holderegger, R., Storfer, A., Rosenberg, M. S., et al. (2010). Perspectives on the use of landscape genetics to detect genetic adaptive variation in the field. Molecular Ecology, 19, 3760–3772.PubMedCrossRefGoogle Scholar
  52. McCune, B. (2000). Lichen Communities as Indicators of Forest Health. The Bryologist, 103(2), 353–356.CrossRefGoogle Scholar
  53. Medinger, R., Nolte, V., Pandey, R. V., Jost, S., Ottenwäder, B., Schlötterer, C., et al. (2010). Diversity in a hidden world: potential and limitation of next-generation sequencing for surveys of molecular diversity of eukaryotic microorganisms. Molecular Ecology, 19, 32–40. doi:10.1111/j.1365-294X.2009.04478.x.PubMedCentralPubMedCrossRefGoogle Scholar
  54. Monaghan, M. T., Wild, R., Elliot, M., Fujisawa, T., Balke, M., Inward, D. J. G., et al. (2009). Accelerated species inventory on Madagascar using coalescent-based models of species delineation. Systematic Biology, 58, 298–311. doi:10.1093/sysbio/syp027.PubMedCrossRefGoogle Scholar
  55. Nelsen, M. P., Chavez, N., Sackett-Hermann, E., Thell, A., Randlane, T., Divakar, P. K., et al. (2011). The cetrarioid core group revisited (Lecanorales: Parmeliaceae). The Lichenologist, 43, 537–551. doi:10.1017/S0024282911000508.CrossRefGoogle Scholar
  56. Nilsson, R. H., Ryberg, M., Kristiansson, E., Abarenkov, K., Larsson, K.-H., & Kõljalg, U. (2006). Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One, 1, e59.PubMedCentralPubMedCrossRefGoogle Scholar
  57. O'Brien, H. E., Parrent, J. L., Jackson, J. A., Moncalvo, J.-M., & Vilgalys, R. (2005). Fungal community analysis by large-scale sequencing of environmental samples. Applied and Environmental Microbiology, 71, 5544–5550. doi:10.1128/aem.71.9.5544-5550.2005.PubMedCentralPubMedCrossRefGoogle Scholar
  58. Orange, A., James, P. W., & White, F. J. (2001). Microchemical methods for the identification of lichens. London: British Lichen Society.Google Scholar
  59. Orock, E. A., Leavitt, S. D., Fonge, B. A., St. Clair, L. L., & Lumbsch, H. T. (2012). DNA-based identification of lichen-forming fungi: Can publicly available Sequence databases aid in lichen diversity inventories of Mount Cameroon (West Africa)? The Lichenologist, 44, 833–839. doi:10.1017/S0024282912000424.CrossRefGoogle Scholar
  60. Otte, V., Esslinger, T. L., & Litterski, B. (2005). Global distribution of the European species of the lichen genus Melanelia Essl. Journal of Biogeography, 32, 1221–1241. doi:10.1111/j.1365-2699.2005.01268.x.CrossRefGoogle Scholar
  61. Parmesan, C., & Yohe, G. (2003). A globally coherent fingerprint of climate change impacts across natural systems. [10.1038/nature01286]. Nature, 421, 37–42, doi:http://www.nature.com/nature/journal/v421/n6918/suppinfo/nature01286_S1.html.
  62. Pino-Bodas, R., Martin, A. P., Burgaz, A. R., & Lumbsch, H. T. (2013). Species delimitation in Cladonia (Ascomycota): a challenge to the DNA barcoding philosophy. Molecular Ecology Resources. doi:1111/1755-0998.12086.
  63. Post, E., Forchhammer, M. C., Bret-Harte, M. S., Callaghan, T. V., Christensen, T. R., Elberling, B., et al. (2009). Ecological dynamics across the Arctic associated with recent climate change. Science, 325, 1355–1358. doi:10.1126/science.1173113.PubMedCrossRefGoogle Scholar
  64. Schoch, C. L., Seifert, K. A., Huhndorf, S., Robert, V., Spouge, J. L., Levesque, C. A., et al. (2012). Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for Fungi. Proceedings of the National Academy of Sciences, 109, 6241–6246. doi:10.1073/pnas.1117018109.CrossRefGoogle Scholar
  65. Serreze, M. C., Walsh, J. E., Chapin, I. F. S., Osterkamp, T., Dyurgerov, M., Romanovsky, V., et al. (2000). Observational evidence of recent change in the northern high-latitude environment. Climatic Change, 46, 159–207.CrossRefGoogle Scholar
  66. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690. doi:10.1093/bioinformatics/btl446.PubMedCrossRefGoogle Scholar
  67. Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A Rapid Bootstrap Algorithm for the RAxML Web Servers. Systematic Biology, 57, 758–771. doi:10.1080/10635150802429642.PubMedCrossRefGoogle Scholar
  68. Strum, M., Racine, C., & Tapes, K. (2001). Climate change: Increasing shrub abundance in the Arctic. Nature, 411, 546–547.CrossRefGoogle Scholar
  69. Swofford, D. (2002). PAUP. Phylogenetic Analysis Using Parsimony (* and Other Methods), version 4.0b10. Verson 4 edn.Google Scholar
  70. Sykes, M. T., Prentice, I. C., & Laarif, F. (1999). Quantifying the impact of global climate change on potential natural vegetation. Climatic Change, 41, 37–52.CrossRefGoogle Scholar
  71. Thell, A., Crespo, A., Divakar, P. K., Kärnefelt, I., Leavitt, S. D., Lumbsch, H. T., et al. (2012). A review of the lichen family Parmeliaceae – history, phylogeny and current taxonomy. Nordic Journal of Botany, 30, 641–664. doi:10.1111/j.1756-1051.2012.00008.x.CrossRefGoogle Scholar
  72. Thell, A., Högnabba, F., Elix, J. A., Feuerer, T., Kärnefelt, I., Myllys, L., et al. (2009). Phylogeny of the cetrarioid core ( Parmeliaceae) based on five genetic markers. The Lichenologist, 41, 489–511. doi:10.1017/S0024282909990090.CrossRefGoogle Scholar
  73. Thell, A., Feuerer, T., Kärnefelt, I., Myllys, L., & Stenroos, S. (2004). Monophyletic groups within the Parmeliaceae identified by ITS rDNA, β-tubulin and GAPDH sequences. Mycologogical Progress, 3, 297–314. doi:10.1007/s11557-006-0100-1.CrossRefGoogle Scholar
  74. Van Wijk, M. T., Clemmensen, K. E., Shaver, G. R., Williams, M., Callaghan, T. V., Chapin, F. S., et al. (2004). Long-term ecosystem level experiments at Toolik Lake, Alaska, and at Abisko, Northern Sweden: generalizations and differences in ecosystem and plant type responses to global change. Global Change Biology, 10, 105–123. doi:10.1111/j.1365-2486.2003.00719.x.CrossRefGoogle Scholar
  75. Wheeler, D. L., Barrett, T., Benson, D. A., Bryant, S. H., Canese, K., Chetvernin, V., et al. (2006). Database resources of the National Center for Biotechnology Information. Nucleic Acids Research, gkl1031, doi:10.1093/nar/gkl1031.Google Scholar
  76. Whinam, J., & Copson, G. (2006). Sphagnum moss: an indicator of climate change in the sub-Antarctic. Polar Record, 42, 43–49. doi:10.1017/S0032247405004900.CrossRefGoogle Scholar
  77. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In N. Innis, D. Gelfand, J. Sninsky, & T. J. White (Eds.), PCR protocols (pp. 315–322). San Diego: Academic Press.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2013

Authors and Affiliations

  • Steven D. Leavitt
    • 1
    • 2
  • Theodore L. Esslinger
    • 3
  • Eric Steen Hansen
    • 4
  • Pradeep K. Divakar
    • 5
  • Ana Crespo
    • 5
  • Bradley F. Loomis
    • 1
  • H. Thorsten Lumbsch
    • 1
  1. 1.Department of BotanyThe Field MuseumChicagoUSA
  2. 2.Department of Biology and M. L. Bean Life Science Museum, 193 MLBMBrigham Young UniversityProvoUSA
  3. 3.Department of Biological Sciences #2715North Dakota State UniversityFargoUSA
  4. 4.Herbarium, Botanical Garden, Natural History Museum of DenmarkUniversity of CopenhagenCopenhagen KDenmark
  5. 5.Departamento de Biología Vegetal II, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain

Personalised recommendations