Organisms Diversity & Evolution

, Volume 13, Issue 4, pp 569–581

Spatial pattern of intraspecific mitochondrial diversity in the Northern Carpathian endemic spring snail, Bythinella pannonica (Frauenfeld, 1865) (Gastropoda: Hydrobiidae)

Original Article

Abstract

Bythinella is a species-rich genus of spring-snails, having a wide range in Europe and Asia Minor. The genus contains several endemic species with narrow ranges, creating interest from a conservation perspective as well as their use as a model for research into biogeographical patterns and evolutionary development. Most of the species of the genus Bythinella are difficult to distinguish by traditional methods due to their similar shell morphology. In previous studies, molecular approaches often came to conclusions that contradicted those from a morphology-based approach, hence the classification of species of Bythinella has been in dispute. Bythinella pannonica has clearly distinct shell morphological features, and consequently is one of the few species of undisputed taxonomic status within this genus. As an important step towards clarifying the systematics of this genus, we have attempted to describe the structure and spatial pattern of diversity of the mitochondrial COI marker within this species, in the hope of applying these findings generally to the whole genus. Molecular results support the monophyly of B. pannonica within the genus. The largest pairwise intraspecific COI sequence difference was almost 5 %, much larger than the value of 1.5 % previously proposed as a barcoding threshold for delimitation of Bythinella species. This finding suggests that incautious application of barcoding might lead to incorrect taxonomic conclusions. Within B. pannonica there are two deeply divergent intraspecific clades, the spatial distribution of which has been shaped by fragmentation, as well as by short and long distance dispersal events. These two clades have not been found syntopically but, as a peculiar feature of this taxon, they are able to persist in nearby habitats. We have demonstrated that the patchy distribution of suitable habitats and the restricted, but non-zero gene flow amongst the populations might play a key role in maintenance of the observed genetic structure of this species.

Keywords

Intraspecific diversity COI Barcoding Phylogeography Species delimitation Cryptic lineage 

References

  1. Avise, J. C. (2000). Phylogeography. Cambridge: Harvard University Press.Google Scholar
  2. Bank, R. (2012). Gastropoda. Fauna Europaea version 2.5, http://www.faunaeur.org. Accessed 30 August 2012.
  3. Bauer, A. M., Parham, J. F., Brown, R. M., Stuart, B. L., Grismer, L., Papenfuss, T. J., et al. (2011). Availability of new Bayesian-delimited gecko names and the importance of character-based species descriptions. Proceedings of the Royal Society B, 278, 490–492.PubMedCrossRefGoogle Scholar
  4. Benke, M., Brändle, M., Albrecht, C., & Wilke, T. (2009). Pleistocene phylogeography and phylogenetic concordance in cold-adapted spring snails (Bythinella spp.). Molecular Ecology, 18, 890–903.PubMedCrossRefGoogle Scholar
  5. Bichain, J.-M., Gaubert, P., Samadi, S., & Boisselier-Dubayle, M.-C. (2007). A gleam in the dark: phylogenetic species delimitation in the confusing spring-snail genus Bythinella Moquin-Tandon, 1856 (Gastropoda: Rissooidea: Amnicolidae). Molecular Phylogenetics and Evolution, 45, 927–941.PubMedCrossRefGoogle Scholar
  6. Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148–155.CrossRefGoogle Scholar
  7. Bousquet, J., Simon, L., & Lalonde, M. (1990). DNA amplification from vegetative and sexual tissues of trees using polymerasechain reaction. Canadian Journal of Forest Research, 20, 254–457.CrossRefGoogle Scholar
  8. Boeters, H. D., & Falkner, G. (2008). Westeuropäische Hydrobiidae 11. Die Gattung Bythinella Moquin-Tandon 1856 in Westeuropa, 2. Heldia, 5, 115–136.Google Scholar
  9. Bunje, P. M. E. (2005). Pan-European phylogeography of the aquatic snail Theodoxus fluviatilis (Gastropoda: Neritidae). Molecular Ecology, 14, 4323–4340.PubMedCrossRefGoogle Scholar
  10. Burridge, C. P., Craw, D., Fletcher, D., & Waters, J. M. (2008). Geological dates and molecular rates: fish DNA sheds light on time dependency. Molecular Biology and Evolution, 25, 624–633.PubMedCrossRefGoogle Scholar
  11. Castelloe, J., & Templeton, A. R. (1994). Root probabilities for intraspecific gene trees under neutral coalescent theory. Molecular Phylogenetics and Evolution, 3, 102–113.PubMedCrossRefGoogle Scholar
  12. Clement, M., Posada, D., & Crandall, K. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1660.PubMedCrossRefGoogle Scholar
  13. Cuttelod, A., Seddon, M., & Neubert, E. (2011). The European red list of non-marine Molluscs. Luxembourg: Publications Office of the European Union.Google Scholar
  14. Davison, A. (2000). The inheritance of divergent mitochondria in the land snail, Cepaea nemoralis. Journal of Molluscan Studies, 66, 143–147.CrossRefGoogle Scholar
  15. de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56, 879–886.PubMedCrossRefGoogle Scholar
  16. Domokos, T. (1992). New records of freshwater molluscs in the Bükk Mts. Abstracta Botanica, 16, 129–138.Google Scholar
  17. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.Google Scholar
  18. Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88.PubMedCrossRefGoogle Scholar
  19. Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.PubMedCrossRefGoogle Scholar
  20. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics Online, 1, 47–50.Google Scholar
  21. Falniowski, A., & Szarowska, M. (2009). Letter to the Editor: Comments to the paper of Bichain et al. (2007) A gleam in the dark: phylogenetic species delimitation in the confusing spring-snail genus Bythinella Moquin-Tandon, 1856 (Gastropoda: Rissooidea: Amnicolidae), published in Mol Phyl Evol. 45(3): 927–941 (2007). Molecular Phylogenetics and Evolution, 46, 405–406.CrossRefGoogle Scholar
  22. Falniowski, A., & Szarowska, M. (2011). Radiation and phylogeography in a spring snail Bythinella (Mollusca: Gastropoda: rissooidea) in continental Greece. Annales Zoologici Fennici, 48, 67–90.CrossRefGoogle Scholar
  23. Falniowski, A., Szarowska, M., & Sîrbu, I. (2009a). Bythinella Moquin-Tandon, 1856 (Gastropoda: Rissooidea: Bythinellidae) in Romania: its morphology, with description of four new species. Folia Malacologica, 17, 33–48.Google Scholar
  24. Falniowski, A., Szarowska, M., & Sîrbu, I. (2009b). Bythinella Moquin-Tandon, 1856 (Gastropoda: Rissooidea: Bythinellidae) in Romania: species richness in a glacial refugium. Journal of Natural History, 43, 2955–2973.CrossRefGoogle Scholar
  25. Falniowski, A., Horsák, M., & Szarowska, M. (2009c). Bythinella hansboetersi Glöer et Pešić, 2006 (Gastropoda: Risooidea) in Bulgaria: its morphology, molecular distinctness and phylogeography. Folia Malacologica, 17, 9–11.Google Scholar
  26. Falniowski, A., Szarowska, M., Glöer, P., Pešić, V., Georgiev, D., Horsák, M., et al. (2012). Radiation in Bythinella Moquin-Tandon, 1856 (Mollusca: Gastropoda: Rissooidea) in the Balkans. Folia Malacologica, 20, 1–10.CrossRefGoogle Scholar
  27. Farkas, R. (2005). Adatok az Aggteleki-karszt, a Cserehát és a Putnoki dombság Mollusca faunájához I. Malakológiai Tájékoztató, 23, 177–202.Google Scholar
  28. Fehér, Z., Szabó, K., Bozsó, M., & Pénzes, Z. (2009). Phylogeny and phylogeography of the Lozekia-Kovacsia species group (Gastropoda: Hygromiidae). Journal of Zoological Systematics and Evolutionary Research, 47, 306–314.CrossRefGoogle Scholar
  29. Flot, J.-F., Couloux, A., & Tillier, S. (2010). Haplowebs as a graphical tool for delimiting species: a revival of Doyle's "field for recombination" approach and its application to the coral genus Pocillopora in Clipperton. BMC Evolutionary Biology, 10, 372.PubMedCrossRefGoogle Scholar
  30. Folmer, O., Black, M., Hoeh, W., Lutz, R. A., & Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.PubMedGoogle Scholar
  31. Frankham, R. (2005). Genetics and extinction. Biological Conservation, 126, 131–140.CrossRefGoogle Scholar
  32. Franz, C. (2012). 'cramer' package v. 08–1. http://cran.r-project.org/web/packages/cramer/index.html. Accessed 7 April 2012.
  33. Galtier, N., Nabholz, B., Glémin, S., & Hurst, G. D. D. (2009). Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Molecular Ecology, 18, 4541–4550.PubMedCrossRefGoogle Scholar
  34. Garrick, R. C., Dyer, R. J., Beheregaray, L. B., & Sunnucks, P. (2008). Babies and bathwater: a comment on the premature obituary for nested clade phylogeographic analysis. Molecular Ecology, 17, 1401–1403.PubMedCrossRefGoogle Scholar
  35. Georgiev, D. (2009). Bythinella gloeeri n. sp. A New Cave inhabiting Species from Bulgaria (Gastropoda: Risooidea: Hydrobiidae). Acta Zoologica Bulgarica, 61, 223–227.Google Scholar
  36. Gittenberger, E., Piel, W. H., & Groenenberg, D. S. J. (2004). The Pleistocene glaciations and the evolutionary history of the polytypic snail species Arianta arbustorum (Gastropoda, Pulmonata, Helicidae). Molecular Phylogenetics and Evolution, 30, 64–73.PubMedCrossRefGoogle Scholar
  37. Gittenberger, E., Groenenberg, D. S. J., Kokshoorn, B., & Preece, R. C. (2006). Molecular trails from hitch-hiking snails. Nature, 439, 409.PubMedCrossRefGoogle Scholar
  38. Giusti, F., & Pezzoli, E. (1977). Primo contributo alla revisione del genere Bythinella in Italia. Natura Bresciana Annales Museo civico di scienze naturali di Brescia, 14, 3–80.Google Scholar
  39. Glöer, P., & Georgiev, D. (2009). New Hydrobiidae from Bulgaria (Gastropoda: Rissooidea). Mollusca, 27, 123–136.Google Scholar
  40. Glöer, P., & Georgiev, D. (2011). Bulgaria, a hot spot of Biodiversity (Gastropoda: Rissooidea)? Journal of Concholgy, 40, 489–504.Google Scholar
  41. Glöer, P., & Pešić, V. (2006). Bythinella hansboetersi n. sp., a new species from Bulgaria. Heldia, 6, 11–15.Google Scholar
  42. Glöer, P., & Pešić, V. (2010). The freshwater snails of the Genus Bythinella Moquin-Tandon (Gastropoda: Rissooidea: Hydrobiidae) from Montenegro. Journal Archives of Biological Sciences, Belgrade, 62, 441–447.CrossRefGoogle Scholar
  43. Green, A. J., & Figuerola, J. (2005). Recent advances in the study of long distance dispersal of aquatic invertebrates via birds. Diversity and Distributions, 11, 149–156.CrossRefGoogle Scholar
  44. Groh, K., & Fuchs, H. (1988). Zum Vorkommen der Quellschnecke Bythinella dunkeri (Frauenfeld 1857) in der Eifel. Mitteilungen der Deutschen Malakozoologischen Gesellschaft, 43, 19–27.Google Scholar
  45. Haase, M., Misof, B., Wirth, T., Baminger, H., & Baur, B. (2003). Mitochondrial differentiation in a polymorphic land snail: evidence for Pleistocene survival within boundaries of permafrost. Journal of Evolutionary Biology, 16, 415–428.PubMedCrossRefGoogle Scholar
  46. Haase, M., Wilke, T. H., & Mildner, P. (2007). Indentifying species of Bythinella (Caenogastropoda: Rissooidea): a plea for an integrative approach. Zootaxa, 1563, 1–16.Google Scholar
  47. Hauswald, A. K., Remais, J., Xiao, N., Davis, G. M., Ding, L., Bale, M. J., et al. (2011). Stirred, not shaken: genetic structure of the intermediate snail host Oncomelania hupensis robertsoni in an historically endemic schistosomiasis area. Parasites & Vectors, 4, 206.CrossRefGoogle Scholar
  48. Havermans, C., Nagy, Z. T., Sonet, G., De Broyer, C., & Martin, P. (2010). Incongruence between molecular phylogeny and morphological classification in amphipod crustaceans: a case study of Antarctic lysianassoids. Molecular Phylogenetics and Evolution, 55, 202–209.PubMedCrossRefGoogle Scholar
  49. Ho, S. Y. W., Phillips, M. J., Cooper, A., & Drummond, A. (2005). Time dependency of molecular rate estimates and systematic overestimation of recent divergence times. Molecular Biology and Evolution, 22, 1561–1568.PubMedCrossRefGoogle Scholar
  50. Kappes, H., & Haase, P. (2012). Slow, but steady: dispersal of freshwater molluscs. Aquatic Sciences, 74, 1–14.CrossRefGoogle Scholar
  51. Knowles, L. L. (2008). Why does a method that fails continue to be used? Evolution, 2008(62), 2713–2717.CrossRefGoogle Scholar
  52. Knowles, L. L., & Maddison, W. P. (2002). Statistical phylogeography. Molecular Ecology, 11, 2623–2635.PubMedCrossRefGoogle Scholar
  53. Kozak, K. H., Graham, C. H., & Wiens, J. J. (2008). Integrating GIS-based environmental data into evolutionary biology. Trends in Ecology & Evolution, 23, 141–148.CrossRefGoogle Scholar
  54. Krolopp, E. (1992). The Pleistocene mollusc fauna of the Bükk Mountains. Abstracta Botanica, 16, 95–100.Google Scholar
  55. Lisicky, M. J. (1991). Mollusca Slovenska. Bratislava: VEDA.Google Scholar
  56. Lukács, D. (1954). Adatok a planáriák és a Sadleriana pannonica Bükk-hegységi elterjedésének ismeretéhez. Állattani Közlemények, 44, 87–93.Google Scholar
  57. Machordom, A., Araujo, R., Erpenbeck, D., & Ramos, M. A. (2003). Phylogeography and conservation genetics of endangered European Margaritiferidae (Bivalvia: Unionidae). Biological Journal of the Linnean Society, 78, 235–252.CrossRefGoogle Scholar
  58. Maciorowski, G., Urbańska, M., & Gierszal, H. (2012). An example of passive dispersal of land snails by birds. Folia Malacologica, 20, 139–141.CrossRefGoogle Scholar
  59. Meyer, C. P., & Paulay, G. (2005). DNA barcoding: Error rates based on comprehensive sampling. PLoS Biology, 3, e422.PubMedCrossRefGoogle Scholar
  60. Muñoz, A. G., Baxter, S. W., Linares, M., & Jiggins, C. D. (2011). Deep mitochondrial divergence within a Heliconius butterfly species is not explained by cryptic speciation or endosymbiotic bacteria. BMC Evolutionary Biology, 11, 358.PubMedCrossRefGoogle Scholar
  61. Páll-Gergely, B., Kornilios, P., & Giokas, S. (2012). Higher than anticipated diversity within an Albinaria species (Gastropoda, Pulmonata, Clausiliidae) in southern Turkey. Journal of Biological Research Thessaloniki, 18, 345–352.Google Scholar
  62. Peakall, R., & Smouse, P. E. (2006). GENALEX 6: genetic analysis in Excel. Population genetic software for teaching and research. Molecular Ecology Notes, 6, 288–295.CrossRefGoogle Scholar
  63. Pertoldi, C., Bijlsma, R., & Loeschcke, V. (2007). Conservation genetics in a globally changing environment: present problems, paradoxes and future challenges. Biodiversity and Conservation, 16, 4147–4163.CrossRefGoogle Scholar
  64. Petit, R. J. (2007). The coup de grace for the nested clade phylogeographic analysis? Molecular Ecology, 17, 516–518.PubMedGoogle Scholar
  65. Petit, R. J., & Excoffier, L. (2009). Gene flow and species delimitation. Trends in Ecology & Evolution, 24, 386–393.CrossRefGoogle Scholar
  66. Pfenninger, M., Posada, D., & Magnin, F. (2003). Phylogeography of the land snail Trochoidea geyeri (Soós 1926) (Helicellinae, Stylommatophora): response to Pleistocene climatic changes. BMC Evolutionary Biology, 3, 8.PubMedCrossRefGoogle Scholar
  67. Pintér, L., & Suara, R. (2004). Magyarországi puhatestűek katalógusa. Budapest: Magyar Természettudományi Múzeum.Google Scholar
  68. Poisot, T., Verneau, O., & Desdevises, Y. (2011). Morphological and molecular evolution are not linked in Lamellodiscus (Plathyhelminthes, Monogenea). PLoS One, 6(10), e26252.PubMedCrossRefGoogle Scholar
  69. Ponder, W. F., & Colgan, D. J. (2002). What makes a narrow-range taxon? Insights from Australian freshwater snails. Invertebrate Systematics, 16, 571–582.CrossRefGoogle Scholar
  70. Pons, J., Barraclough, T. G., Gomez-Zurita, J., Cardoso, A., Duran, D. P., Hazell, S., et al. (2006). Sequence based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology, 55, 595–609.PubMedCrossRefGoogle Scholar
  71. Pons, J., Ribera, I., Bertranpetit, J., & Balke, M. (2010). Nucleotide substitution rates for the full set of mitochondrial protein-coding genes in Coleoptera. Molecular Phylogenetics and Evolution, 56, 796–807.PubMedCrossRefGoogle Scholar
  72. Posada, D., & Crandall, K. A. (1998). Modeltest: testing the model of DNA substitution. Bioinformatics, 14, 817–818.PubMedCrossRefGoogle Scholar
  73. Posada, D., Crandall, K. A., & Templeton, A. R. (2000). GeoDis: a program for the cladistic nested analysis of the geographical distribution of haplotypes. Molecular Ecology, 9, 487–488.PubMedCrossRefGoogle Scholar
  74. Prié, V., & Bichain, J.-M. (2009). Phylogenetic relationships and description of a new stygobite species of Bythinella (Mollusca, Gastropoda, Caenogastropoda, Amnicolidae) from southern France. Zoosystema, 31, 987–1000.CrossRefGoogle Scholar
  75. R Development Core Team (2012). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, http://www.R-project.org/. Accessed 7 April 2012.
  76. Rambaut, A. & Drummond, A. J. (2009). Tracer v1.5. 2009. http://beast.bio.ed.ac.uk/Tracer. Accessed 1 May 2012.
  77. Rissler, L. J., & Apodaca, J. J. (2007). Adding more ecology into species delimitation: ecological Niche Models and phylogeography help define cryptic species in the Black Salamander (Aneides flavipunctatus). Systematic Biology, 56, 924–942.PubMedCrossRefGoogle Scholar
  78. Rogers, A. R., & Harpending, H. (1992). Population growth makes waves in the distribution of pairwise genetic differences. Molecular Biology and Evolution, 9, 552–569.PubMedGoogle Scholar
  79. Rosetti, N., & Remis, M. I. (2012). Spatial genetic structure and mitochondrial DNA phylogeography of Argentinean populations of the grasshopper Dichroplus elongatus. PLoS One, 7, e40807.PubMedCrossRefGoogle Scholar
  80. Samadi, S., & Barberousse, A. (2006). The tree, the network and the species. Biological Journal of the Linnean Society, 89, 509–521.CrossRefGoogle Scholar
  81. Schmidt, H. A., Strimmer, K., Vingron, M., & von Haeseler, A. (2002). TREE-PUZZLE: maximum likelihood phylogenetic analysis using quartets and parallel computing. Bioinformatics, 18, 502–504.PubMedCrossRefGoogle Scholar
  82. Sites, J. W., & Marshall, J. C. (2003). Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology & Evolution, 18, 462–470.CrossRefGoogle Scholar
  83. Slatkin, M., & Hudson, R. (1991). Pairwise comparisons of mitochondrial DNA sequences in stable and exponentially growing populations. Genetics, 129, 555–562.PubMedGoogle Scholar
  84. Šteffek, J., Falniowski, A., Szarowska, M., & Grego, J. (2011). “Hauffenia” Pollonera, 1898 (Caenogastropoda: Hydrobiidae) in Slovakia: a preliminary report. Folia Malacologica, 19, 1–7.CrossRefGoogle Scholar
  85. Szabó, S. (1984). Über die Dispersionsverhältnisse der im Wassersystem des Garadna-Baches lebenden Sadleriana pannonica (Frauenfeld). Soosiana, 12, 51–59.Google Scholar
  86. Szarowska, M., & Wilke, T. (2004). Sadleriana pannonica (Frauenfeld, 1865): a lithoglyphid, hydrobiid, or amnicolid taxon? Journal of Molluscan Studies, 70, 49–57.CrossRefGoogle Scholar
  87. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedCrossRefGoogle Scholar
  88. Templeton, A. R., Boerwinkle, E., & Sing, C. F. (1987). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. I. Basic theory and an analysis of alcohol dehydrogenase activity in Drosophila. Genetics, 117, 343–351.PubMedGoogle Scholar
  89. Templeton, A. R., Routman, E. J., & Phillips, C. (1995). Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. Genetics, 140, 767–782.PubMedGoogle Scholar
  90. Templeton, A. R., & Sing, C. F. (1993). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping. IV. Nested analyses with cladogram uncertainty and recombination. Genetics, 134, 659–669.PubMedGoogle Scholar
  91. Templeton, A. R. (2004). Statistical phylogeography: methods of evaluating and minimizing inference errors. Molecular Ecology, 13, 789–809.PubMedCrossRefGoogle Scholar
  92. Templeton, A. R. (2008). Nested clade analysis: extensively validated method for strong phylogeographic inference. Molecular Ecology, 17, 1877–1880.PubMedCrossRefGoogle Scholar
  93. Vilaça, S. T., Redondo, R. A. F., Lins, L. V., & Santos, F. R. (2012). Remaining genetic diversity in Brazilian Merganser (Mergus octosetaceus). Conservation Genetics, 13, 293–298.CrossRefGoogle Scholar
  94. Wada, S., Kawakami, K., & Chiba, S. (2012). Snails can survive passage through a bird’s digestive system. Journal of Biogeography, 39, 69–73.CrossRefGoogle Scholar
  95. Wagner, J. (1937). Die Formen von Sadleriana pannonica Frauenfeld und ihre Verbreitung in Oberungarn. Basteria, 2, 40–45.Google Scholar
  96. Weigand, A. M., Jochum, A., Pfenninger, M., Steinke, D., & Klussmann-Kolb, A. (2011). A new approach to an old conundrum—DNA barcoding sheds new light on phenotypic plasticity and morphological stasis in microsnails (Gastropoda, Pulmonata, Carychiidae). Molecular Ecology Resources, 11, 255–265.PubMedCrossRefGoogle Scholar
  97. Wiemers, M., & Fiedler, K. (2007). Does the DNA barcoding gap exist?—a case study in blue butterflies (Lepidoptera: Lycaenidae). Frontiers in Zoology, 4, 8.PubMedCrossRefGoogle Scholar
  98. Wilke, T., Benke, M., Brändle, M., Albrecht, C., & Bichain, J.-M. (2010). The neglected side of the coin: Non-adaptive radiations in spring snails (Bythinella spp.). In M. Glaubrecht (Ed.), Evolution in action. Case studies in adaptive radiation, speciation and the origin of biodiversity (pp. 551–578). Dordrecht: Springer.Google Scholar
  99. Wilke, T., & Falniowski, A. (2001). The genus Adriohydrobia (Hydrobiidae: Gastropoda): polytypic species or polymorphic populations? Journal of Zoological Systematics and Evolutionary Research, 39, 227–234.CrossRefGoogle Scholar
  100. Wilke, T., Schultheiss, R., & Albrecht, C. (2009). As time goes by: a simple fool's guide to molecular clock approaches in invertebrates. American Malacological Bulletin, 27, 25–45.CrossRefGoogle Scholar
  101. Zhang, Z.-Q. (2008). Contributing to the progress of descriptive taxonomy. Zootaxa, 1968, 65–68.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2013

Authors and Affiliations

  1. 1.Department of ZoologyHungarian Natural History MuseumBudapestHungary
  2. 2.Laboratory of Molecular TaxonomyHungarian Natural History MuseumBudapestHungary

Personalised recommendations