Advertisement

Organisms Diversity & Evolution

, Volume 13, Issue 3, pp 425–432 | Cite as

A centipede nymph in Baltic amber and a new approach to document amber fossils

  • Joachim T. Haug
  • Carsten H. G. Müller
  • Andy Sombke
Original Article

Abstract

The fossil record and especially examples of fossilized ontogeny have been described for many major arthropod taxa. However, little is yet known about ontogeny in fossil representatives of Myriapoda. Traditionally, taxonomy has focused on adult stages, and tends to “overlook” non-adults. Assigning an early stage to a specific species would demand having “bridging” juvenile stages. Additionally, as shown for other fossil arthropods, juvenile stages of a given species could have been recognized as separate species in the past. In this context, palaeo-evo-devo links evolutionary developmental knowledge with paleontological evidence. We report a nymphal lithobiomorph centipede from Baltic amber. The specimen was documented under cross-polarized light combined with image stacking. Stereo images were created based on these image stacks. Assessable characters are described and compared with data on extant lithobiomorph taxa. We conclude that the nymph (or larva) described here can be assigned to Lithobiidae and probably represents the fourth post-embryonic stadium. Findings such as that described here are still rare and detailed descriptions are not usually provided. The accessible data therefore represent an important example of fossilized ontogeny for centipedes.

Keywords

Chilopoda Baltic amber Nymphal stadium Palaeo-evo-devo 3D-Imaging 

Notes

Acknowledgments

Paul Mayer, Field Museum Chicago, is thanked for help in the collection and loan of the specimen. Susan Butts and Jessica Utrup, Yale Peabody Museum, are also thanked for help with the loan of the specimen and the use of the equipment at the Peabody Museum. Dieter Waloszek and the Work Group Biosystematic Documentation, University of Ulm, are thanked for providing the ScopeTek DCM 510 ocular camera. We thank Gregory D. Edgecombe for fruitful comments on our manuscript. The specimen was investigated during a research visit at the Yale Peabody Museum, supported by the Alexander von Humboldt-Foundation with a Feodor Lynen fellowship for postdoctoral researchers for J.T.H., and by Yale University and Derek E. G. Briggs, Yale University and Peabody Museum, for which they are heartily thanked. J.T.H. is currently kindly funded by the Alexander von Humboldt Foundation with a Feodor Lynen return fellowship. Carolin Haug, University of Greifswald, is thanked for longstanding support and intense discussions. Steffen Harzsch, University of Greifswald, is thanked for hosting and supporting the authors. We are grateful to people that spend their time for providing free or low cost software that was also used in this study, such as OpenOffice and Image Analyzer.

References

  1. Andersson, G. (1979). On the use of larval characters in the classification of lithobiomorph centipedes (Chilopoda, Lithobiomorpha. In M. Camatini (Ed.), Myriapod biology (pp. 73–81). London: Academic.Google Scholar
  2. Andersson, G. (1981). Taxonomical studies on the post-embryonic development in Swedish Lithobiomorpha (Chilopoda). Entomologica Scandinavica (Suppl.), 16, 105–124.Google Scholar
  3. Bolaños, J., Cuesta, J. A., Hernandez, G., Hernandez, J., & Felder, D. L. (2004). Abbreviated larval development of Tunicotheres moseri (Rathbun, 1918) (Decapoda: Pinnotheridae), a rare case of parental care among brachyuran crabs. Scientia Marina, 68, 373–384.CrossRefGoogle Scholar
  4. Bonato, L., Edgecombe, G. D., Lewis, J. G. E., Minelli, A., Pereira, L. A., Shelley, R. M., et al. (2010). A common terminology for the external anatomy of centipedes (Chilopoda). ZooKeys, 69, 17–51.PubMedGoogle Scholar
  5. Borucki, H. (1996). Evolution und phylogentisches System der Chilopoda (Mandibulata, Tracheata). Verhandlungen des naturwissenschaftlichen Vereins in Hamburg, NF, 35, 95–226.Google Scholar
  6. Cuesta, J. A., & Schubart, C. D. (1999). First zoeal stages of Geograpsus lividus and Goniopsis pulchra from Panama confirm consistent larval characters for the subfamily Grapsinae (Crustacea: Brachyura: Grapsidae). Ophelia, 51, 163–176.CrossRefGoogle Scholar
  7. Cuesta, J. A., Liu, H., & Schubart, C. D. (2002). First zoeal stages of Epigrapsus politus Heller, E. notatus (Heller) and Gecarcoidea lalandii H. Milne-Edwards, with remarks on zoeal morphology of the Gecarcinidae Macleay (Crustacea: Brachyura). Journal of Natural History, 36, 1671–1685.CrossRefGoogle Scholar
  8. Cuggy, M. B. (1994). Ontogenetic variation in Silurian eurypterids from Ontario and New York State. Canadian Journal of Earth Sciences, 31, 728–732.CrossRefGoogle Scholar
  9. Dunlop, J. A. (2002). Arthropods from the Lower Devonian Severnaya Zemlya Formation of October Revolution Island (Russia). Geodiversitas, 24(2), 349–379.Google Scholar
  10. Edgecombe, G. D. (2004). A new species of the henicopid centipede Haasiella (Chilopoda: Lithobiomorpha): new species from Australia, with a morphology-based phylogeny of Henicopidae. Journal of Natural History, 38, 37–76.CrossRefGoogle Scholar
  11. Edgecombe, G. D. (2011). Chilopoda – Fossil history. In A. Minelli (Ed.), Treatise on Zoology—Anatomy, Taxonomy, Biology. The Myriapoda I (pp. 355–361). Leiden: Brill.CrossRefGoogle Scholar
  12. Edgecombe, G. D., & Giribet, G. (2004). Adding mitochondrial sequence data (16S rRNA and cytochrome c oxidase subunit I) to the phylogeny of centipedes (Myriapoda, Chilopoda): an analysis of morphology and four molecular loci. Journal of Zoological Systematics and Evolutionary Research, 42, 89–134.CrossRefGoogle Scholar
  13. Edgecombe, G. D., Minelli, A., & Bonato, L. (2009). A geophilomorph centipede (Chilopoda) from La Buzinie amber (Late Cretaceous: Cenomanian), SW France. Geodiversitas, 31, 29–39.CrossRefGoogle Scholar
  14. Haug, J. T., Maas, A., & Waloszek, D. (2009a). Ontogeny of two Cambrian stem crustaceans, †Goticaris longispinosa and †Cambropachycope clarksoni. Palaeontographica A, 289, 1–43.Google Scholar
  15. Haug, J. T., Haug, C., Maas, A., Fayers, S. R., Trewin, N. H., & Waloszek, D. (2009b). Simple 3D images from fossil and recent micromaterial using light microscopy. Journal of Microscopy, 233, 93–101.PubMedCrossRefGoogle Scholar
  16. Haug, J. T., Maas, A., & Waloszek, D. (2010a). †Henningsmoenicaris scutula, †Sandtorpia vestrogothiensis gen. et sp. nov. and heterochronic events in early crustacean evolution. Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 100, 311–350.CrossRefGoogle Scholar
  17. Haug, J. T., Waloszek, D., Haug, C., & Maas, A. (2010b). High-level phylogenetic analysis using developmental sequences: the Cambrian †Martinssonia elongata, †Musacaris gerdgeyeri gen. et sp. nov. and their position in early crustacean evolution. Arthropod Structure and Development, 39, 154–173.CrossRefGoogle Scholar
  18. Haug, J. T., Haug, C., Waloszek, D., & Schweigert, G. (2011). The importance of lithographic limestones for revealing ontogenies in fossil crustaceans. Swiss Journal of Geosciences, 104(Suppl.), 1, 85–98.Google Scholar
  19. Haug, C., Van Roy, P., Leipner, A., Funch, P., Rudkin, D. M., Schöllmann, L., et al. (2012a). A holomorph approach to xiphosuran evolution – a case study on the ontogeny of Euproops. Development, Genes and Evolution, 222, 253–268.CrossRefGoogle Scholar
  20. Haug, J. T., Waloszek, D., Maas, A., Liu, Y., & Haug, C. (2012b). Functional morphology, ontogeny and evolution of mantis shrimp-like predators in the Cambrian. Palaeontology, 55, 369–399.CrossRefGoogle Scholar
  21. Horner, J. R., Goodwin, M. B. (2009). Extreme cranial ontogeny in the Upper Cretaceous dinosaur Pachycephalosaurus. PloS ONE, 4(10), art. e7626, 11pp.Google Scholar
  22. Hughes, N. C., Minelli, A., & Fusco, G. (2006). The ontogeny of trilobite segmentation: a comparative approach. Paleobiology, 32, 602–627.CrossRefGoogle Scholar
  23. Klug, C. (2001). Life-cycles of Emsian and Eifelian ammonoids (Devonian). Lethaia, 34, 215–233.CrossRefGoogle Scholar
  24. Knowlton, R. E., & Vargo, C. K. (2004). The larval morphology of Palaemon floridanus Chace, 1942 (Decapoda, Palaemonidae) compared with other species of Palaemon and Palaemonetes. Crustaceana, 77, 683–715.CrossRefGoogle Scholar
  25. Kobbert, M. J. (2005). Bernstein—Fenster in die Urzeit. Göttingen: Planet Poster.Google Scholar
  26. Kukalová-Peck, J. (1997). Mazon Creek insect fossils: the origin of insect wings and clues about the origin of insect metamorphosis. In C. W. Shabica & A. A. Hay (Eds.), Richardson’s guide to the fossil fauna of Mazon Creek (pp. 194–207). Chicago: Northeastern Illinois University Press.Google Scholar
  27. Lago, R. P. (1988). Larval development of Spiroplax spiralis (Barnard, 1950) (Brachyura: Hexapodidae) in the laboratory; the systematic position of the family on the basis of larval morphology. Journal of Crustacean Biology, 8, 576–593.CrossRefGoogle Scholar
  28. Lago, R. P. (1993). Larval development of Sesarma guttatum A. Milne Edwards (Decapoda: Brachyura: Grapsidae) reared in the laboratory, with comments on larval generic and familial characters. Journal of Crustacean Biology, 13, 745–762.CrossRefGoogle Scholar
  29. Lewis, J. G. E. (1981). The biology of centipedes. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
  30. Malchus, N. (2000). Early shell stages of the Middle Jurassic bivalves Camptochlamys (Pectinidae) and Atreta (Dimyidae) from Poland. Journal of Molluscan Studies, 66, 577–581.CrossRefGoogle Scholar
  31. Manton, S. M. (1965). The evolution of arthropod locomotory mechanisms. Part 8. Functional requirements and body designs in Chilopoda, together with a comparative account of their skeletomuscular systems and an appendix on the comparison between burrowing forces of annelids and chilopods and its bearing upon the evolution of the arthropodan haemocoel. Journal of the Linnean Society (Zoology), 46, 251–483.Google Scholar
  32. McLaughlin, P. A., Gore, R. H., & Crain, J. A. (1988). Studies on the Provenzanoi and other pagurid groups: 2. A reexamination of the larval stages of Pagurus hirsutiusculus hirsutiusculus (Dana) (Decapoda: Anomura: Paguridae) reared in the laboratory. Journal of Crustacean Biology, 8, 430–450.CrossRefGoogle Scholar
  33. McLaughlin, P. A., Gore, R. H., & Harvey, A. W. (1991). Studies on the Provenzanoi and other pagurid groups: 5. The larval stages of Pagurus arenisaxatilis Harvey and McLaughlin, 1991 (Decapoda: Anomura: Paguridae), reared in the laboratory. Journal of Crustacean Biology, 11, 416–431.CrossRefGoogle Scholar
  34. McLaughlin, P. A., Siddiqui, F. A., & Crain, J. A. (1993). Larval and early juvenile development in Pagurus stevensae Hart, 1971 (Decapoda: Anomura: Paguridae), reared in the laboratory. Journal of Crustacean Biology, 13, 322–342.CrossRefGoogle Scholar
  35. McWilliam, P. S. (1995). Evolution in the phyllosoma and puerulus phases of the spiny lobster genus Panulirus White. Journal of Crustacean Biology, 15, 542–557.CrossRefGoogle Scholar
  36. Minelli, A., & Koch, M. (2011). Chilopoda—General morphology. In A. Minelli (Ed.), Treatise on Zoology—Anatomy, Taxonomy, Biology. The Myriapoda I (pp. 43–66). Leiden: Brill.CrossRefGoogle Scholar
  37. Minelli, A., & Sombke, A. (2011). Chilopoda—Development. In A. Minelli (Ed.), Treatise on Zoology—Anatomy, Taxonomy, Biology. The Myriapoda I (pp. 295–308). Leiden: Brill.CrossRefGoogle Scholar
  38. Nützel, A., Fryda, J., Yancey, T. E., & Anderson, J. R. (2007). Larval shells of Late Palaeozoic naticopsid gastropods (Neritopsoidea: Neritimorpha) with a discussion of the early neritimorph evolution. Paläontologische Zeitschrift, 81, 213–228.CrossRefGoogle Scholar
  39. Poinar, G. O., & Edwards, C. A. (1995). First description of a fossil symphylan, Scutigerella dominica sp. n. (Scutigerellidae, Symphyla) in Dominican amber. Experientia, 51, 391–393.CrossRefGoogle Scholar
  40. Rodriguez, A., & Spivak, E. D. (2001). The larval development of Panopeus margentus (Decapoda: Brachyura: Panopeidae) reared in the laboratory. Journal of Crustacean Biology, 21, 806–820.CrossRefGoogle Scholar
  41. Sánchez-Villagra, M. R. (2010). Developmental palaeontology in synapsids: the rock record of ontogeny in mammals and their closest relatives. Proceedings of the Royal Society B, 277, 1139–1147.PubMedCrossRefGoogle Scholar
  42. Santana, W., Marques, F., & Pohle, G. (2004). Larval stages of Stenocionops furcatus (Olivier, 1791) (Decapoda: Brachyura: Majoidea) and a reappraisal of larval morphological characters for Mithracidae. Journal of Plankton Research, 26, 859–874.CrossRefGoogle Scholar
  43. Santana, W., Pohle, G., & Marques, F. (2004b). Larval development of Apiomithrax violaceus (A. Milne Edwards, 1868) (Decapoda: Brachyura: Majoidea: Pisidae) reared in laboratory conditions, and a review of larval characters of Pisidae. Journal of Natural History, 38, 1773–1797.CrossRefGoogle Scholar
  44. Scheffel, H. (1969). Untersuchungen über die hormonale Regulation der Häutung und Anamorphose von Lithobius forficatus (L.) (Myriapoda, Chilopoda). Zoologische Jahrbücher. Abteilung für allgemeine Zoologie und Physiologie der Tiere, 74, 436–505.Google Scholar
  45. Scheller, U., & Wunderlich, J. (2001). First description of a fossil pauropod, Eopauropus balticus n. gen. n. sp. (Pauropoda: Pauropodidae), in Baltic amber. Mitteilungen aus dem Geologisch-Paläontologischen Institut der Universität Hamburg, 85, 221–227.Google Scholar
  46. Scheller, U., & Wunderlich, J. (2004). Two fossil symphylan species, Scutigerella baltica n. sp. and Hanseniella baltica n. sp. (Tracheata, Scutigerellidae), in Baltic amber. Stuttgarter Beiträge zur Naturkunde Serie B (Geologie und Paläontologie), 351, 1–11.Google Scholar
  47. Schoch, R. R., & Fröbisch, N. B. (2006). Metamorphosis and neoteny: alternative pathways in an extinct amphibian clade. Evolution, 60, 1467–1475.PubMedGoogle Scholar
  48. Schubart, C. D., & Cuesta, J. A. (1998). First zoeal stages of four Sesarma species from Panama, with identification keys and remarks on the American Sesarminae (Crustacea: Brachyura: Grapsidae). Journal of Plankton Research, 20, 61–84.CrossRefGoogle Scholar
  49. Sevastopulo, G. D. (2005). The early ontogeny of blastoids. Geological Journal, 40, 351–362.CrossRefGoogle Scholar
  50. Shear, W. A., & Bonamo, P. M. (1988). Devonobiomorpha, a new order of centipedes (Chilopoda) from the Middle Devonian of Gilboa, New York State, USA, and the phylogeny of centipede orders. American Museum Novitates, 2917, 1–30.Google Scholar
  51. Shear, W. A., & Edgecombe, G. D. (2010). The geological record and phylogeny of the Myriapoda. Arthropod Structure and Development, 39, 174–190.PubMedCrossRefGoogle Scholar
  52. Stein, M., Waloszek, D., Maas, A., Haug, J. T., & Müller, K. J. (2008). Oelandocaris oelandica revisited. Acta Palaeontologica Polonica, 53, 461–484.CrossRefGoogle Scholar
  53. Strasser, K. M., & Felder, D. L. (1999). Larval development in two populations of the ghost shrimp Callichirus major (Decapoda: Thalassinidea) under laboratory conditions. Journal of Crustacean Biology, 19, 844–878.CrossRefGoogle Scholar
  54. Sumrall, C. D. (2008). The origin of Lovén’s Law in glyptocystitoid rhombiferans and its bearing on the plate homology and the heterochronic evolution of the hemicosmitid peristomal border. In W. I. Ausich & G. D. Webster (Eds.), Echinoderm Paleobiology (pp. 228–241). Bloomington, IN: University of Indiana Press.Google Scholar
  55. Sumrall, C. D., & Wray, G. A. (2007). Ontogeny in the fossil record: Diversification of body plans and the evolution of “aberrant” symmetry in Paleozoic echinoderms. Paleobiology, 33, 149–163.CrossRefGoogle Scholar
  56. Tack, Y. W. (1971). The larval and postlarval development of Parthenope serrata reared in the laboratory and the systematic position of the Parthenopinae (Crustacea, Brachyura). Biological Bulletin, 140, 166–189.CrossRefGoogle Scholar
  57. van Dover, C. L., Gore, R. H., & Castro, P. (1986). Echinoecus pentagonus (A. Milne Edwards, 1879): larval development and systematic position (Crustacea: Brachyura: Xanthoidea nec Parthenopoidea). Journal of Crustacean Biology, 6, 757–776.CrossRefGoogle Scholar
  58. Verhoeff, K. W. (1905). Über die Entwicklungsstufen der Steinläufer, Lithobiiden, und Beiträge zur Kenntnis der Chilopoden. Zoologische Jahrbücher. Abteilung für Systematik, Ökologie und Geographie der Tiere, 8, 195–289.Google Scholar
  59. Verhoeff, K. W. (1938). Zur Biologie der Scutigera coleoptrata und über die jüngeren Larvenstadien. Zeitschrift für Wissenschaftliche Zoologie, 150, 262–282.Google Scholar
  60. Voigtländer, K. (2007). The life cycle of Lithobius mutabilis L. Koch, 1862 (Myriapoda: Chilopoda). Bonner Zoologische Beiträge, 55, 9–25.Google Scholar
  61. Walossek, D. (1993). The Upper Cambrian Rehbachiella and the phylogeny of Branchiopoda and Crustacea. Fossils and Strata, 32, 1–202.Google Scholar
  62. Weitschat, W., & Wichard, W. (1998). Atlas der Pflanzen und Tiere im Baltischen Bernstein. München: Pfeil.Google Scholar
  63. Wichard, W., Gröhn, C., & Seredszus, F. (2009). Wasserinsekten im Baltischen Bernstein: Aquatic Insects in Baltic Amber. Remagen-Oberwinter: Kessel.Google Scholar
  64. Yang, H. J., & Kim, C. H. (2005). Zoeal stages of Heptacarpus futilirostris (Decapoda, Caridea, Hippolytidae) reared in the laboratory. Crustaceana, 78, 543–564.CrossRefGoogle Scholar
  65. Zapparoli, M., & Edgecombe, G. D. (2011). Chilopoda—Taxonomic overview. Order Lithobiomorpha. In A. Minelli (Ed.), Treatise on Zoology—Anatomy, Taxonomy, Biology. The Myriapoda I (pp. 371–389). Leiden: Brill.Google Scholar
  66. Zhang, X.-G., Maas, A., Haug, J. T., Siveter, D. J., & Waloszek, D. (2010). A eucrustacean metanauplius from the Lower Cambrian. Current Biology, 20, 1075–1079.PubMedCrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2013

Authors and Affiliations

  • Joachim T. Haug
    • 1
  • Carsten H. G. Müller
    • 1
  • Andy Sombke
    • 1
  1. 1.Ernst-Moritz-Arndt-University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary BiologyGreifswaldGermany

Personalised recommendations