Advertisement

Organisms Diversity & Evolution

, Volume 13, Issue 3, pp 433–451 | Cite as

Phylogeographic patterns of genetic diversity in the common spadefoot toad, Pelobates fuscus (Anura: Pelobatidae), reveals evolutionary history, postglacial range expansion and secondary contact

  • Spartak N. LitvinchukEmail author
  • Angelica Crottini
  • Silvia Federici
  • Philip De Pous
  • David Donaire
  • Franco Andreone
  • Miloš L. Kalezić
  • Georg Džukić
  • Georgy A. Lada
  • Leo J. Borkin
  • Jury M. Rosanov
Original Article

Abstract

Based on allozyme variation of 410 newly collected individuals from 52 localities, we reconstructed range-wide phylogeography of the widespread Western Palearctic anuran, Pelobates fuscus. To study genetic diversity, evolutionary history, postglacial range expansion and secondary contact zones, we used a multidisciplinary approach combining information from various genetic analyses and ecological niche modeling. We confirmed the presence of two main groups in P. fuscus, initially revealed by genome size variation. Pelobates f. vespertinus presents a monomorphic group, but two main groups can be identified in P. f. fuscus: an East European and a West European group. We suggest the existence of at least four different Last Glacial refugia for P. fuscus: (1) the area between the Caspian and Azov Seas as the origin for the expansion of P. f. vespertinus; (2) the northwestern part of the Black Sea area for the East European P. f. fuscus; (3) the southwestern part of the Pannonian Plain and (4) the Po Plain for the West European P. f. fuscus. The routes of postglacial range expansions from the refugia are discussed. We newly identified a hybrid zone between P. f. fuscus and P. f. vespertinus. The width of this zone is about 12.5 km. In light of these findings, the two subspecies of P. fuscus constitute distinct evolutionary lineages and merit recognition as separate species. Our data do not provide support for the validity of P.f. insubricus. We therefore propose to synonymize this subspecies with P. f. fuscus.

Keywords

Allozymes Ecological niche model Genome size Glacial refugium Hybridization Pelobates vespertinus Pelobates fuscus insubricus 

Notes

Acknowledgments

The following persons contributed greatly to some part of the process of this study, during the fieldtrips, laboratory analyses, or reading the manuscript and providing helpful improvements: O. S. Bezman-Moseiko, M. N. Brynskikh, A. Yu. Guseva, O. I. Evstigneev, A. I. Fayzulin, V. P. Foroshchuk, V. P. Ivanchev, N. A. Karpov, V. I. Kazakov, M. D. Khalturin, I. M. Kotserzhinskaya, O. V. Kukushkin, N. F. Marchenko, L. F. Mazanaeva, G. A. Mazepa, K. D. Milto, R. V. Novitsky, M. V. Pestov, J. Plötner, A. V. Ruchin, D. A. Shabanov, A. S. Shapovalov, D. V. Skorinov, S. Yu. Trofimov, M. Veith, A. A. Vlasov, B. Wielstra, and A. I. Zobov. The work was partially funded by grants from the Russian Foundation of Basic Research (project nos. 12-04-01277 and 13-04-90410) and the Serbian Ministry of Education and Science and Technological Development (project no. 173043). PdP was funded by the FI program (Generalitat de Catalunya, Spain) and a grant from the Societas Europaea Herpetologica (2010). Fieldwork in Italy in 2008 was conducted under permit decision DPN-2008-0011754 of 12/05/2008 issued to AC and FA and in Morocco in 2008 and 2009 under permit decision 84°HCEFLCD/DLCDPN/DPRN/CFF issued by Haut Commissariat aux Eaux et Forêts et à la Lutte Contre la Désertification to PdP and DD. The work of AC was supported by a postdoctoral grant from Fundação para a Ciência e a Tecnologia (SFRH/BPD/72908/2010).

Supplementary material

13127_2013_127_MOESM1_ESM.pdf (565 kb)
ESM 1 (PDF 565 kb)

References

  1. Akın, C., Bilgin, C. C., Beerli, P., Westaway, R., Ohst, T., Litvinchuk, S. N., et al. (2010). Phylogeographic patterns of genetic diversity in eastern Mediterranean water frogs were determined by geological processes and climate change in the Late Cenozoic. Journal of Biogeography, 37, 2111–2124.PubMedCrossRefGoogle Scholar
  2. Anderson, E. C., & Thompson, E. A. (2002). A model-based method for identifying species hybrids using multilocus genetic data. Genetics, 160, 1217–1229.PubMedGoogle Scholar
  3. Arntzen, J. W., & Wielstra, B. (2010). Where to draw the line? A nuclear genetic perspective on proposed range boundaries of the crested newts Triturus karelinii and T. arntzeni. Amphibia-Reptilia, 31, 311–322.CrossRefGoogle Scholar
  4. Avise, J. C. (2000). Phylogeography: The history and formation of species. Cambridge: Harvard University Press.Google Scholar
  5. Babik, W., Branicki, W., Sandera, M., Litvinchuk, S., Borkin, L. J., Irwin, J. T., et al. (2004). Mitochondrial phylogeography of the moor frog, Rana arvalis. Molecular Ecology, 13, 1469–1480.PubMedCrossRefGoogle Scholar
  6. Babik, W., Branicki, W., Crnobrnja-Isailović, J., Cogălniceanu, A., Sas, I., Olgun, K., et al. (2007). Phylogeography of two European newt species-discordance between mtDNA and morphology. Molecular Ecology, 14, 2475–2491.CrossRefGoogle Scholar
  7. Ballard, J. W. O., & Whitlock, M. C. (2004). The incomplete natural history of mitochondria. Molecular Ecology, 13, 729–744.PubMedCrossRefGoogle Scholar
  8. Bandi, C., Damiani, G., Magrassi, L., Grigolo, A., Fani, R., & Sacchi, L. (1994). Flavobacteria as intracellular symbionts in cockroaches. Proceedings of the Royal Society of London B: Biological Sciences, 257, 43–48.CrossRefGoogle Scholar
  9. Barton, N. H., & Hewitt, G. M. (1985). Analysis of hybrid zones. Annual Review of Ecology and Systematics, 16, 113–148.CrossRefGoogle Scholar
  10. Böhme, G. (1983). Skelettreste von Amphibien (Urodela, Salientia) aus dem fossilen Tierbautensystem von Pisede bei Malchin. Teil 1: Taxonomie und Biostrationomie. Wissenschaftliche Zeitschrift der Humboldt-Universität zu Berlin, Mathematisch-Naturwissenschaftliche Reihe, 32(6), 657–670.Google Scholar
  11. Bonato, L., & Steinfartz, S. (2005). Evolution of the melanistic colour in the Alpine salamander Salamandra atra as revealed by a new subspecies from the Venetian Prealps. Italian Journal of Zoology, 72, 253–260.CrossRefGoogle Scholar
  12. Borkin, L. J. (1984). The European-Far Eastern disjunctions in distribution of amphibians: a new analysis of the problem. Proceedings of Zoological Institute of RAS, Leningrad, 124, 55–88.Google Scholar
  13. Borkin, L. J., Litvinchuk, S. N., Milto, K. D., Rosanov, J. M., & Khalturin, M. D. (2001). Cryptic speciation in Pelobates fuscus (Anura, Pelobatidae): cytometrical and biochemical evidences. Doklady Biological Sciences, 376, 86–88.CrossRefGoogle Scholar
  14. Borkin, L. J., Litvinchuk, S. N., Rosanov, J. M., & Milto, K. D. (2002 [2001]). Cryptic speciation in Pelobates fuscus (Anura, Pelobatidae): evidence from DNA flow cytometry. Amphibia-Reptilia, 22, 387–396.Google Scholar
  15. Borkin, L. J., Litvinchuk, S. N., Rosanov, J. M., Khalturin, M. D., Lada, G. A., Borissovsky, A. G., et al. (2003). New data on the distribution of two cryptic forms of the common spadefoot toad (Pelobates fuscus) in Eastern Europe. Russian Journal of Herpetology, 10, 115–122.Google Scholar
  16. Borkin, L. J., Litvinchuk, S. N., Rosanov, J. M., & Skorinov, D. V. (2004). On cryptic species (from the example of amphibians). Entomological Review, 84(Suppl. 1), S75–S98.Google Scholar
  17. Bossuyt, F., & Milinkovitch, M. C. (2000). Convergent adaptive radiations in Madagascan and Asian ranid frogs reveal covariation between larval and adult traits. Proceedings of the National Academy of Science of the United States of America, 97, 6585–6590.CrossRefGoogle Scholar
  18. Busack, S. D., Maxson, L. R., & Wilson, M. A. (1985). Pelobates varaldii (Anura: Pelobatidae): a morphologically conservative species. Copeia, 1985, 107–112.CrossRefGoogle Scholar
  19. Canestrelli, D., & Nascetti, G. (2008). Phylogeography of the pool frog Rana (Pelophylax) lessonae in the Italian peninsula and Sicily: multiple refugia, glacial expansions and nuclear–mitochondrial discordance. Journal of Biogeography, 35, 1923–1936.CrossRefGoogle Scholar
  20. Canestrelli, D., Cimmaruta, R., & Nascetti, G. (2007). Phylogeography and historical demography of the Italian treefrog, Hyla intermedia, reveals multiple refugia, population expansions and secondary contacts within peninsular Italy. Molecular Ecology, 16, 4808–4821.PubMedCrossRefGoogle Scholar
  21. Canestrelli, D., Salvi, D., Maura, M., Bologna, M. A., & Nascetti, G. (2012). One species, three Pleistocene evolutionary histories: phylogeography of the Italian crested newt, Triturus carnifex. PLoS One, 7(7), e41754.PubMedCrossRefGoogle Scholar
  22. Chepalyga, A. L. (1987). Climatic events in the cainozoic of parathetis. In Climates of the earth in a geological past (pp. 214–225). Moscow: Nauka.Google Scholar
  23. Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.PubMedCrossRefGoogle Scholar
  24. Crochet, P.-A., & Dubois, A. (2004). Recent changes in the taxonomy of European amphibians and reptiles. In J. P. Gasc et al. (Eds.), Atlas of amphibians and reptiles in Europe (2nd ed., pp. 496–516). Paris: Societas Europaea Herpetologica & Museum National d’Histoire Naturelle.Google Scholar
  25. Crottini, A., Andreone, F., Kosuch, J., Borkin, L. J., Litvinchuk, S. N., Eggert, C., et al. (2007). Fossorial but widespread: the phylogeography of the common spadefoot toad (Pelobates fuscus), and the role of the Po Valley as a major source of genetic variability. Molecular Ecology, 16, 2734–2754.PubMedCrossRefGoogle Scholar
  26. Currat, M., Ruedi, M., Petit, R. J., & Excoffer, L. (2008). The hidden side of invasions: massive introgression by local genes. Evolution, 62, 1908–1920.PubMedGoogle Scholar
  27. de Queiroz, K. (2005). Ernst Mayr and the modern concept of species. Proceedings of the National Academy of Sciences of the United States of America, 102, 6600–6607.PubMedCrossRefGoogle Scholar
  28. Džukić, G., Beškov, V., Sidorovska, V., Cogălniceanu, D., & Kalezić, M. L. (2008). Contemporary chorology of the spadefoot toads (Pelobates spp.) in the Balkan Peninsula. Zeitschrift für Feldherpetologie, 15, 61–78.Google Scholar
  29. Earl, D. A., & vonHoldt, B. M. (2012). Structure Harvester: a website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources, 4, 359–361.CrossRefGoogle Scholar
  30. Eggert, C. (2002). Use of fluorescent pigments and implantable transmitters to track a fossorial toad (Pelobates fuscus). Herpetological Journal, 12, 69–74.Google Scholar
  31. Eggert, C., Coaglniceanu, D., Veith, M., Dzukic, G., & Taberlet, P. (2006). The declining Spadefoot toad, Pelobates fuscus (Pelobatidae): Paleo and recent environmental changes as a major influence on current population structure and status. Conservation Genetics, 7, 185–195.CrossRefGoogle Scholar
  32. Elith, J. (2002). Quantitative methods for modeling species habitat: Comparative performance and an application to Australian plants. In S. Ferson & M. Burgman (Eds.), Quantitative methods for conservation biology (pp. 39–58). New York: Springer.Google Scholar
  33. Elith, J., Kearney, M., & Phillips, S. J. (2010). The art of modeling range shifting species. Methods in Ecology and Evolution, 1, 330–342.CrossRefGoogle Scholar
  34. Elith, J., Phillips, S. J., Hastie, T., Dudík, M., Chee, Y. E., & Yates, C. J. (2010). A statistical explanation of MaxEnt for ecologists. Diversity and Distributions, 17, 43–57.CrossRefGoogle Scholar
  35. Endler, J. A. (1977). Geographic Variation, Speciation, and Clines. Princeton: Princeton University Press.Google Scholar
  36. ESRI. (2011). ArcGIS, version 10. Redlands, CA: Environmental Systems Research Institute.Google Scholar
  37. Evanno, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software Structure: a simulation study. Molecular Ecology, 14, 2611–2620.PubMedCrossRefGoogle Scholar
  38. Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10, 564–567.PubMedCrossRefGoogle Scholar
  39. Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.PubMedGoogle Scholar
  40. Falush, D., Stephens, M., & Pritchard, J. K. (2003). Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics, 164, 1567–1587.PubMedGoogle Scholar
  41. Felsenstein, J. (2004). PHYLIP v. 3.6b. Seattle: University of Washington.Google Scholar
  42. Fijarczyk, A., Nadachowska, K., Hofman, S., Litvinchuk, S. N., Babik, W., Stuglik, M., et al. (2011). Nuclear and mitochondrial phylogeography of the European fire-bellied toads Bombina bombina and B. variegata supports their independent histories. Molecular Ecology, 20, 3381–3398.PubMedCrossRefGoogle Scholar
  43. Fromhage, L., Vences, M., & Veith, M. (2004). Testing alternative vicariance scenarios in Western Mediterranean discoglossid frogs. Molecular Phylogenetics and Evolution, 31, 308–322.PubMedCrossRefGoogle Scholar
  44. Garcia-Porta, J., Litvinchuk, S. N., Crochet, P. A., Romano, A., Geniez, P., Lo-Valvo, M., et al. (2012). Molecular phylogenetics and historical biogeography of the west-palearctic common toads (Bufo bufo species complex). Molecular Phylogenetics and Evolution, 63, 113–130.PubMedCrossRefGoogle Scholar
  45. Giovanelli, J. G. R., Ferreira de Siquera, M., Haddad, C. F. B., & Alexandrini, J. (2010). Modeling a spatially restricted distribution in the Netropics: How the size of calibration area affects the performance of five presence-only methods. Ecological Modeling, 221, 215–224.CrossRefGoogle Scholar
  46. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium, 41, 95–98.Google Scholar
  47. Hernandez, P. A., Graham, C. H., Master, L. L., & Albert, D. L. (2006). The effect of sample size and species characteristics on performance of different species distribution modeling methods. Ecography, 29, 773–785.CrossRefGoogle Scholar
  48. Hewitt, G. M. (1999). Post-glacial recolonization of European Biota. Biological Journal of the Linnean Society, 68, 87–112.CrossRefGoogle Scholar
  49. Hewitt, G. M. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913.PubMedCrossRefGoogle Scholar
  50. Hewitt, G. M. (2011a). Mediterranean peninsulas: The evolution of hotspots. In F. E. Zachos & J. C. Habel (Eds.), Biodiversity hotspots. Part. 2 (pp. 123–147). Heidelberg: Springer.CrossRefGoogle Scholar
  51. Hewitt, G. M. (2011b). Quaternary phylogeography: the roots of hybrid zones. Genetica, 139, 617–638.PubMedCrossRefGoogle Scholar
  52. Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25, 1965–1978.CrossRefGoogle Scholar
  53. Hofman, S., Spolsky, C., Uzzell, T., Cogălniceanu, D., Babik, W., & Szymura, J. M. (2007). Phylogeography of the fire-bellied toads Bombina: independent Pleistocene histories inferred from mitochondrial genomes. Molecular Ecology, 16, 2301–2316.PubMedCrossRefGoogle Scholar
  54. Jiménez-Valverde, A., Lobo, J. M., & Hortal, J. (2008). Not as good as they seem: the importance of concepts in species distribution modeling. Diversity and Distributions, 14, 885–890.CrossRefGoogle Scholar
  55. Jockusch, E. L., & Wake, D. B. (2002). Falling apart and merging: Diversification of slender salamanders (Plethodontidae: Batrachoseps) in the American West. Biological Journal of the Linnaean Society, 76, 361–391.CrossRefGoogle Scholar
  56. Khalturin, M. D., Litvinchuk, S. N., Borkin, L. J., Rosanov, J. M., & Milto, K. D. (2003). Genetic variation in two cryptic forms, with different genome size, of the common spadefoot toad, Pelobates fuscus (Pelobatidae, Anura, Amphibia). Tsitologia, St. Petersburg, 45, 308–323.Google Scholar
  57. Klicka, J., & Zink, R. M. (1997). The importance of recent ice ages in speciation: A failed paradigm. Science, 277, 1666–1669.CrossRefGoogle Scholar
  58. Kwet, A., & Nöllert, A. (2009). Von Rösel von Rosenhof zum Froschlurch des Jahres: Die Knoblauchkröte. Sekretär, 9, 71–78.Google Scholar
  59. Lada, G. A., Borkin, L. J., & Litvinchuk, S. N. (2005). Morphological variation in two cryptic forms of the common spadefoot toad (Pelobates fuscus) from eastern Europe. In N. Ananjeva, O. Tsinenko (Eds.), Herpetologia Petropolitana (pp. 53–56). St. Petersburg.Google Scholar
  60. Laurenti, J. N. (1768). Josephi Nicolai Laurenti Austriaci Viennensis Specimen Medicum, exhibens Synopsin Reptilium emendatam cum experimentis circa venena et antidota reptilium austriacorum. Viennae: Typ. Joan. Thom. Nob. de Trattnern, Caes. Reg. Aulae Typogr. et Bibliop.Google Scholar
  61. Litvinchuk, S. N. (2005). A record of the Danube newt, Triturus dobrogicus, from the Dnepr River Delta (Ukraine). Russian Journal of Herpetology, 12, 69–72.Google Scholar
  62. Litvinchuk, S. N., & Borkin, L. J. (2009). Evolution, Systematics and Distribution of the Crested Newts (Triturus cristatus complex) in the Territory of Russia and Adjacent Countries. St. Petersburg: Evropeyskiy Dom.Google Scholar
  63. Litvinchuk, S. N., Borkin, L. J., Džukić, G., Kalezić, M. L., Khalturin, M. D., & Rosanov, Y. M. (1999). Taxonomic status of Triturus karelinii on the Balkans, with some comments about other crested newt taxa. Russian Journal of Herpetology, 6, 153–163.Google Scholar
  64. Litvinchuk, S. N., Rosanov, J. M., Borkin, L. J., & Skorinov, D. V. (2008). Molecular-biochemical and cytogenetic aspects of microevolution in anuran amphibians of the fauna of Russia and adjacent countries. In N. B. Ananjeva et al. (Eds.), The Problems of Herpetology (pp. 247–257). St. Petersburg.Google Scholar
  65. Meissner, K. (1970). Obligatorisches Lernen im Funktionskreis der Vergrabehandlung von Pelobates fuscus fuscus Laur. (Anura). Ein Beitrag zur Ethometrie des Appetenzverhaltens. Zoologische Jahrbücher. Abteilung für allgemeine Zoologie und Physiologie der Tiere, 75, 423–469.Google Scholar
  66. Mertens, R., & Müller, L. (1928). Liste der Amphibien und Reptilien Europas. Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft, Frankfurt am Main, 41, 1–62.Google Scholar
  67. Mezhzherin, S. V., Morozov-Leonov, S. Y., Rostovskaya, O. V., & Sobolenko, L. Y. (2010). Reconstruction of species area recolonization based on the geographical variation analysis of Ldh-B allozymes of a pond frog Rana esculenta (= lessonae). Reports of the National Academy of Sciences of Ukraine, Kiev, 2, 164–169.Google Scholar
  68. Miller, M. P. (1997). Tools for Population Genetic Analyses (TFPGA) 1.3. http://www.marksgeneticsoftware.net/. Accessed 8 September 2012.
  69. Moritz, C., Schneider, C. J., & Wake, D. B. (1992). Evolutionary relationships within the Ensatina eschscholtzii complex confirm the ring species interpretation. Systematic Biology, 41, 273–291.Google Scholar
  70. Nascetti, G., Zangari, F., & Canestrelli, D. (2005). The spectacled salamanders, Salamandrina terdigitata (Lacépède, 1788) and S. perspicillata (Savi, 1821): genetic differentiation and evolutionary history. Rendiconti Lincei. Scienze Fisiche e Naturali, 16, 159–169.CrossRefGoogle Scholar
  71. Nei, M. (1978). Estimation of average heterozygosity and genetic distance from a small number of individuals. Proceedings of the National Academy of Sciences of the United States of America, 70, 3321–3323.CrossRefGoogle Scholar
  72. Nielsen, E. E., Bach, L. A., & Kotlicki, P. (2006). Hybridlab (version 1.0): a program for generating simulated hybrids from population samples. Molecular Ecology Notes, 6, 971–973.CrossRefGoogle Scholar
  73. Pallas, P. S. (1771). Reise durch verschiedene Provinzen des Rußischen Reichs. Erster Theil. St. Petersburg: Gedruckt bey der Kayserlichen Academie der Wissenschaften.Google Scholar
  74. Palo, J. U., Schmeller, D. S., Laurila, A., Primmer, C. R., Kuzmin, S. L., & Merilä, J. (2004). High degree of population subdivision in a widespread amphibian. Molecular Ecology, 13, 2631–2644.PubMedCrossRefGoogle Scholar
  75. Phillips, S. J., & Dudík, M. (2008). Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography, 31, 161–175.CrossRefGoogle Scholar
  76. Phillips, S. J., Anderson, R. P., & Schapire, R. E. (2006). Maximum entropy modeling of species geographic distributions. Ecological Modeling, 190, 231–259.CrossRefGoogle Scholar
  77. Posada, D. (2008). jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25, 1253–1256.PubMedCrossRefGoogle Scholar
  78. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.PubMedGoogle Scholar
  79. Provan, J., & Benett, K. D. (2008). Phylogeographic insights into cryptic glacial refugia. Trends in Ecology & Evolution, 23, 564–571.CrossRefGoogle Scholar
  80. Raes, N., Roos, M. C., Slik, J. W. F., Van Loon, E. E., & ter Steege, H. (2009). Botanical richness and endemicity patterns of Borneo derived from species distribution models. Ecography, 32, 180–192.CrossRefGoogle Scholar
  81. Rambaut, A., & Drummond, A. J. (2007). Tracer v1.4. http://beast.bio.ed.ac.uk/Tracer. Accessed 8 September 2012.
  82. Ratnikov, V. Y. (2009). Fossil remains of modern amphibian and reptile species as the material for studying of their areas history. Trudy Nauchno-Issledovatel’skogo Instituta Geologii Voronezhskogo Gosudarstvennogo Universiteta, Voronezh, 59, 1–91.Google Scholar
  83. Rödder, D., & Engler, J. O. (2011). Quantitative metrics of overlaps in Grinnellian niches: advances and possible drawbacks. Global Ecology and Biogeography, 20, 915–927.CrossRefGoogle Scholar
  84. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.PubMedCrossRefGoogle Scholar
  85. Rousset, F. (2008). Genepop’007: a complete re-implementation of the Genepop software for Windows and Linux. Molecular Ecology Resources, 8, 103–106.PubMedCrossRefGoogle Scholar
  86. Sardà-Palomera, F., & Vieites, D. R. (2011). Modeling species’ climatic distributions under habitat constrains: a case study with Coturnix coturnix. Annales Zoologici Fennici, 48, 147–160.CrossRefGoogle Scholar
  87. Schmitt, T. (2007). Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology, 4, 11.PubMedCrossRefGoogle Scholar
  88. Schoener, T. W. (1968). Anolis lizards of Bimini: resource partitioning in a complex fauna. Ecology, 49, 704–726.CrossRefGoogle Scholar
  89. Snell, C., Tetteh, J., & Evans, I. H. (2005). Phylogeography of the pool frog (Rana lessonae Camerano) in Europe: evidence for native status in Great Britain and for an unusual postglacial colonization route. Biological Journal of the Linnean Society, 85, 41–51.CrossRefGoogle Scholar
  90. Sotiropoulos, K., Eleftherakos, K., Džkić, G., Kalezić, M. L., Legakis, A., & Polymeni, R. M. (2007). Phylogeny and biogeography of the alpine newt Mesotriton alpestris (Salamandridae, Caudata), inferred from mtDNA sequences. Molecular Phylogenetics and Evolution, 45, 211–226.PubMedCrossRefGoogle Scholar
  91. Stöck, M., Moritz, C., Hickerson, M., Frynta, D., Dujsebayeva, T., Eremchenko, V., et al. (2006). Evolution of mitochondrial relationships and biogeography of Palearctic green toads (Bufo viridis subgroup) with insights in their genomic plasticity. Molecular Phylogenetics and Evolution, 41, 663–689.PubMedCrossRefGoogle Scholar
  92. Stöck, M., Dubey, S., Klütsch, C., Litvinchuk, S. N., Scheidt, U., & Perrin, N. (2008). Mitochondrial and nuclear phylogeny of circum-Mediterranean tree frogs from the Hyla arborea group. Molecular Phylogenetics and Evolution, 49, 1019–1024.PubMedCrossRefGoogle Scholar
  93. Stöck, M., Dufresnes, C., Litvinchuk, S. N., Lymberakis, P., Biollay, S., Berroneau, M., et al. (2012). Cryptic diversity among Western Palearctic tree frogs: Postglacial range expansion, range limits, and secondary contacts of three European tree frog lineages (Hyla arborea group). Molecular Phylogenetics and Evolution, 65, 1–9.PubMedCrossRefGoogle Scholar
  94. Swets, K. (1988). Measuring the accuracy of diagnostic systems. Science, 240, 1285–1293.PubMedCrossRefGoogle Scholar
  95. Swofford, D. L., & Selander, R. B. (1999). BIOSYS-2: a computer program for the analysis of allelic variation in population genetics and biochemical systematics. Release 2.0. Urbana, IL: University of Illinois.Google Scholar
  96. Szymura, J. M., & Barton, N. H. (1986). Genetic analysis of a hybrid zone between the fire-bellied toads, Bombina bombina and B. variegata near Cracow in southern Poland. Evolution, 40, 1141–1159.CrossRefGoogle Scholar
  97. Taberlet, P., Fumagalli, L., Wust-Saucy, A.-G., & Cosson, J.-F. (2008). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453–464.CrossRefGoogle Scholar
  98. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731–2739.PubMedCrossRefGoogle Scholar
  99. Teacher, A. G. F., Garner, T. W. J., & Nichols, R. A. (2009). European phylogeography of the common frog (Rana temporaria): routes of postglacial colonization into the British Isles, and evidence for an Irish glacial refugium. Heredity, 102, 490–496.PubMedCrossRefGoogle Scholar
  100. Templeton, A. R., Crandall, K. A., & Sing, C. F. (1992). A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics, 132, 619–633.PubMedGoogle Scholar
  101. Toews, D. P. L., & Brelsford, A. (2012). The biogeography of mitochondrial and nuclear discordance in animals. Molecular Ecology, 21, 3907–3930.PubMedCrossRefGoogle Scholar
  102. Veith, M., Schmidtler, F. J., Kosuch, J., Baran, I., & Seitz, A. (2003). Paleoclimatic changes explain Anatolian mountain frogs: evolution: a test for alternating vicariance and dispersal events. Molecular Ecology, 12, 185–199.PubMedCrossRefGoogle Scholar
  103. Veith, M., Baumgart, A., Dubois, A., Ohler, A., Galán, P., Vieites, D. R., et al. (2012). Discordant patterns of nuclear and mitochondrial introgression in Iberian populations of the Common frog. Journal of Heredity, 103, 240–249.PubMedCrossRefGoogle Scholar
  104. Vörös, J., & Arntzen, J. W. (2010). Weak population structuring in the Danube crested newt, Triturus dobrogicus, inferred from allozymes. Amphibia-Reptilia, 31, 339–346.CrossRefGoogle Scholar
  105. Waltari, E., Hijmans, R. J., Peterson, A. T., Nyári, Á. S., Perkins, S. L., & Guralnick, R. P. (2007). Locating pleistocene refugia: Comparing phylogeographic and ecological niche model predictions. PLoS One, 2, e563.PubMedCrossRefGoogle Scholar
  106. Warren, D. L., Glor, R. E., & Turelli, M. (2010). ENMTools: a toolbox for comparative studies of environmental niche models. Ecography, 33, 607–611.CrossRefGoogle Scholar
  107. Wiens, J. J. (2000). Reconstructing phylogenies from allozyme data: comparing method performance with congruence. Biological Journal of the Linnean Society, 70, 613–632.CrossRefGoogle Scholar
  108. Yakovleva, T. I., & Yakovlev, A. G. (2009). Characteristics of Holocene amphibians and reptiles locations of the west slope of Southern Urals. Samarskaya Luka, Togliatti, 20, 28–48.Google Scholar
  109. Zeisset, I., & Beebee, T. J. C. (2007). Two clades of north European pool frogs Rana lessonae identified by cytochrome b sequence analysis. Herpetological Journal, 17, 255–260.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2013

Authors and Affiliations

  • Spartak N. Litvinchuk
    • 1
    Email author
  • Angelica Crottini
    • 2
  • Silvia Federici
    • 3
  • Philip De Pous
    • 4
    • 5
    • 6
  • David Donaire
    • 7
  • Franco Andreone
    • 8
  • Miloš L. Kalezić
    • 9
  • Georg Džukić
    • 10
  • Georgy A. Lada
    • 11
  • Leo J. Borkin
    • 12
  • Jury M. Rosanov
    • 1
  1. 1.Institute of Cytology of Russian Academy of SciencesSt. PetersburgRussia
  2. 2.CIBIO, Centro de Investigação em Biodiversidade e Recursos GenéticosVairãoPortugal
  3. 3.ZooPlantLab, Dipartimento di Biotecnologie e BioscienzeUniversitá degli Studi di Milano-BicoccaMilanoItaly
  4. 4.Escola Tècnica Superior Enginyeria Agrària, Departament Producció Animal (Fauna Silvestre)University of LleidaLleidaSpain
  5. 5.Institute of Evolutionary Biology (CSIC-UPF)BarcelonaSpain
  6. 6.Society for the Preservation of Herpetological DiversityDen HaagThe Netherlands
  7. 7.Jerez de la FronteraSpain
  8. 8.Museo Regionale di Scienze NaturaliTorinoItaly
  9. 9.Faculty of BiologyInstitute of ZoologyBelgradeSerbia
  10. 10.Institute for Biological ResearchBelgradeSerbia
  11. 11.Tambov State UniversityTambovRussia
  12. 12.Zoological Institute of Russian Academy of SciencesSt. PetersburgRussia

Personalised recommendations