Advertisement

Organisms Diversity & Evolution

, Volume 13, Issue 2, pp 151–162 | Cite as

Evidence from morphological and genetic data confirms that Colossendeis tenera Hilton, 1943 (Arthropoda: Pycnogonida), does not belong to the Colossendeis megalonyx Hoek, 1881 complex

  • Lars Dietz
  • Franz Krapp
  • Michel E. Hendrickx
  • Claudia P. Arango
  • Kathrin Krabbe
  • Johanna M. Spaak
  • Florian LeeseEmail author
Original Article

Abstract

Within the Pycnogonida, genetic studies have revealed that Colossendeis megalonyx Hoek (Challenger Report, Zoology, 3(X), 1–167, 1881), consists of a complex of several cryptic or overlooked species. Colossendeis megalonyx is a typical Southern Hemisphere species complex distributed primarily on the continental shelves in the Antarctic and Subantarctic. However, a different Colossendeis species with a completely different geographic distribution range, Colossendeis tenera Hilton (Journal of Entomology and Zoology, Pomona College, Claremont, 35(1), 2–4, 1943), was considered a subspecies of Colossendeis megalonyx by Turpaeva (Trudy Instituta Okeanology "P. P. Shirshova", Akademy Nauk SSSR, 103, 230–246, 1975). Colossendeis tenera occurs predominantly along the Pacific Coast of North America from the Bering Sea to central California. Prominent differences between these two currently distinct species are found in body proportions and other characters that were interpreted by Turpaeva as a possible case of pedomorphosis induced by deep-sea conditions. In this study, we tested the hypothesis that Colossendeis tenera belongs to the Colossendeis megalonyx complex by analyzing available and novel sequence data (CO1 and H3) of both Colossendeis megalonyx and Colossendeis tenera as well as a similar, apparently closely related species, Colossendeis angusta Sars (Archiv for Mathematik og Naturvidenskab, 2, 237–271, 1877). We compared morphometric data and SEM of the ovigera of these species. Our results clearly indicate that Colossendeis tenera and Colossendeis angusta are not a part of the Colossendeis megalonyx complex. A sister-group relationship of Colossendeis tenera and Colossendeis angusta is strongly supported, but Colossendeis tenera is not clearly resolved as monophyletic with respect to Colossendeis angusta. This work highlights the need for further examination of the variation found in the tenera-angusta clade. It also gives a first hint of the phylogenetic affinities of species within Colossendeis.

Keywords

Pycnogonida Colossendeidae Colossendeis tenera Colossendeis megalonyx Colossendeis angusta Ovigera Integrative taxonomy Biogeography 

Notes

Acknowledgements

We would like to thank Anja Friederichs (Museum für Naturkunde Berlin) for taking additional photographs of the Mexican C. tenera specimen, Hieronymus Dastych (Zoologisches Museum Universität Hamburg) for providing the samples of C. angusta, Anna Soler i Membrives for information on the C. angusta sequence data in GenBank, Saskia Brix and the organizers of the ICEAGE cruise for C. angusta, and Meike Seefeldt for the SEM photographs of C. angusta. We also thank Yoshie Takahashi for information on Colossendeis species from Japan. Furthermore, we would like to thank Christoph Held, Christoph Mayer, Markus Gronwald, and Ralph Tollrian for support and helpful discussions, and three anonymous reviewers for comments that were a great help in improving the manuscript. This work was funded by DFG grant LE 2323/2 to FL within the priority programme, SPP 1158.

Ethical standards

The experiments comply with the current laws of the country in which they were performed.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

13127_2012_120_MOESM1_ESM.doc (96 kb)
Online Resource 1 Sequence data used (DOC 96 kb)
13127_2012_120_MOESM2_ESM.pdf (31 kb)
Online Resource 2 Concatenated ML tree of 16S, 12S, CO1, and H3. Within the Colossendeis megalonyx clade several species with an “*” are those that were downloaded from GenBank. (PDF 30 kb)
13127_2012_120_MOESM3_ESM.pdf (314 kb)
Online Resource 3 (a) Information on the eigenvalues of the ten calculated factors and the total variance. (b) Factor loadings indicating correlations with the different variables. Factors 1 and 2 were visualized in the PCA. (PDF 314 kb)
13127_2012_120_MOESM4_ESM.doc (181 kb)
Online Resource 4 Morphological measurements for all individuals of C. tenera, C. angusta, and C. megalonyx specimens, including both our own measurements and those from the literature (lengths relative to trunk are shown if not listed otherwise). (DOC 181 kb)

References

  1. Appellöf, A. (1912). Invertebrate bottom fauna of the Norwegian Sea and North Atlantic. Ch. 8. In J. Murray & J. Hjort (Eds.), The depths of the sea: 821. London: Macmillan.Google Scholar
  2. Arango, C. P. (2002). Morphological phylogenetics of the sea spiders (Arthropoda: Pycnogonida). Organisms, Diversity and Evolution, 2(2), 107–125.CrossRefGoogle Scholar
  3. Arango, C. P., & Wheeler, W. C. (2007). Phylogeny of the sea spiders (Arthropoda, Pycnogonida) based on direct optimization of six loci and morphology. Cladistics, 23, 255–293.CrossRefGoogle Scholar
  4. Bamber, R. N. (2007). A holistic re-interpretation of the phylogeny of the Pycnogonida Latreille, 1810 (Arthropoda). Zootaxa, 1668, 295–312.Google Scholar
  5. Bamber, R.N., & El Nagar, A. (Eds.) (2012). Pycnobase: World Pycnogonida Database. Available online at http://www.marinespecies.org/pycnobase/ accessed on 2012-06-08
  6. Bamber, R. N., & Thurston, M. H. (1995). The deep-water pycnogonids (Arthropoda: Pycnogonida) of the northeastern Atlantic Ocean. Zoological Journal of the Linnean Society (London), 115, 117–162.CrossRefGoogle Scholar
  7. Calman, W. T. (1915) British Antarctic (“Terra Nova”) Expedition, 1910. Natural History Reports. Zoology, 3(1), 1–74.Google Scholar
  8. Calman, W. T., & Gordon, I. (1933). A dodecapodous pycnogonid. Proceedings of the Royal Society of London (B), 113, 107–115.CrossRefGoogle Scholar
  9. Cano, E., & López González, P. J. (2007). Colossendeis species (Pycnogonida: Colossendeidae) collected during the Italica XIX cruise to Victoria Land (Antarctica), with remarks on some taxonomic characters of the ovigers. Scientia Marina, 71(4), 661–681.CrossRefGoogle Scholar
  10. Child, C. A. (1994). Deep-sea Pycnogonida from the temperate west coast of the United States. Smithsonian Contributions to Zoology, 556, I–III. 1-23.Google Scholar
  11. Child, C. A. (1995). Pycnogonida of the Western Pacific Islands, XI: Collections from the Aleutians and other Bering Sea Islands, Alaska. Smithsonian Contributions to Zoology, 569, I–IV + 1–30.Google Scholar
  12. Clark, W. C., & Carpenter, A. (1977). Swimming behaviour in a pycnogonid. New Zealand Journal of Marine and Freshwater Research, 11(3), 613–615.CrossRefGoogle Scholar
  13. Dietz, L., Mayer, C., Arango, C. P., & Leese, F. (2011). The mitochondrial genome of Colossendeis megalonyx supports a basal position of Colossendeidae within the Pycnogonida. Molecular Phylogenetics and Evolution, 58(3), 553–558.PubMedCrossRefGoogle Scholar
  14. Diz, A. P., Páez de la Cadena, M., & Rolán-Alvarez, E. (2012) Proteomic evidence of a paedomorphic evolutionary process within a marine snail species: a strategy for adapting to extreme ecological conditions? Journal of Evolutionary Biology, 25, 2569–2581.Google Scholar
  15. Eights, J. (1835). Description of a new animal belonging to the Arachnida of Latreille; discovered in the sea along the shores of the New Shetland Islands. Boston Journal of Natural History, 1(2), 203–206.Google Scholar
  16. Fage, L. (1956). Pycnogonides (exc. le genre Nymphon). Galathea Report, 2, 167–182.Google Scholar
  17. Fry, W. G. (1978). A classification within the pycnogonids. Zoological Journal of the Linnean Society (London), 63(1/2), 35–58.CrossRefGoogle Scholar
  18. Fry, W. G., & Hedgpeth, J. W. (1969). The fauna of the Ross Sea. Part 7. Pycnogonida, 1: Colossendeidae, Pycnogonidae, Endeidae, Ammotheidae. New Zealand Department of Science and Industrial Research Bulletin, 198, 1–139.Google Scholar
  19. Gordon, I. (1944). Pycnogonida. British and New Zealand Antarctic Research Expedition 1929-1931. Reports (B = Zoology & Botany), 5(1), 1–72.Google Scholar
  20. Griffiths, H. J., Arango, C. P., Munilla, T., & McInnes, S. J. (2011). Biodiversity and biogeography of Southern Ocean pycnogonids. Ecography, 34(4), 616–627.CrossRefGoogle Scholar
  21. Hedgpeth, J. W. (1943). On a new species of pycnogonid from the North Pacific. Journal of the Washington Academy of Sciences, 33(7), 223–224.Google Scholar
  22. Hedgpeth, J. W. (1947). On the evolutionary significance of the Pycnogonida. Smithsonian Miscellaneous Collections, 106(18), 1–53. Pl. 1.Google Scholar
  23. Hedgpeth, J. W. (1949). Report on the Pycnogonida collected by the Albatross in Japanese Waters in 1900 and 1906. Proceedings of the United States National Museum, 98, 233–321.CrossRefGoogle Scholar
  24. Hilton, W. A. (1943). Pycnogonida from the Pacific. Family Colossendeidae. Journal of Entomology and Zoology, Pomona College, Claremont, 35(1), 2–4.Google Scholar
  25. Hodgson, T. V. (1907). Pycnogonida. Natural History Collections of the "Discovery" National Antarctic Expedition, Zoology. London, 3, 1–72. Pls. 1–10.Google Scholar
  26. Hoek, P. P. C. (1881). Report on the Pycnogonida, dredged by H. M. S. "Challenger" 1873/76. Challenger Report, Zoology, 3(X), 1–167. Pls I-XXI.Google Scholar
  27. Huelsenbeck, J. P., & Ronquist, F. (2001). MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.PubMedCrossRefGoogle Scholar
  28. Jarzynsky, T. (1870). Praemissus catalogus Pycnogonidarum, inventarum in mari Glaciali, ad oras Lapponiae rossicae et in mari Albo, anno 1869 et 1870. Annales de la Société des Naturalistes de St. Pétersbourg, 1, 319–320.Google Scholar
  29. Krabbe, K., Leese, F., Mayer, C., Tollrian, R., & Held, C. (2010). Cryptic mitochondrial lineages in the widespread pycnogonid Colossendeis megalonyx Hoek, 1881 from Antarctic and Subantarctic waters. Polar Biology, 33, 281–292.CrossRefGoogle Scholar
  30. Meinert, F. (1899). Pycnogonida. Copenhagen.Google Scholar
  31. Meusemann, K., von Reumont, B. M., Simon, S., Roeding, F., Strauss, S., Kück, P., et al. (2010). A phylogenomic approach to resolve the arthropod tree of life. Molecular Biology and Evolution, 27(11), 2451–2464.PubMedCrossRefGoogle Scholar
  32. Minnaard, V. A., & Zamponi, M. O. (1984). Estudios sistemáticos de algunos pantopodos de la región subantártica. Historia Natural, 4, 257–279.Google Scholar
  33. Möbius, K. (1902). Die Pantopoden der deutschen Tiefsee-Expedition 1898-1899. Wissenschaftliche Ergebnisse der Deutschen Tiefsee-Expedition auf "Valdivia" 1898-1899. Jena, 3(6), 175–196. Tafeln 24-30.Google Scholar
  34. Munilla León, T. (1999). Evolución y filogenia de los picnogónidos. Boletín de la Sociedad Entomológica Aragonesa, 26, 273–279.Google Scholar
  35. Munilla, T., & Soler-Membrives, A. (2009). Check-list of the pycnogonids from Antarctic and sub-Antarctic waters: zoogeographic implications. Antarctic Science, 21, 1–13.Google Scholar
  36. Nakamura, K., & Child, C. A. (1983). Shallow-Water Pycnogonida from the Izu Peninsula, Japan. Smithsonian Contributions to Zoology, 386, 1–71.CrossRefGoogle Scholar
  37. Nakamura, K., & Child, C. A. (1991). Pycnogonida from Waters adjacent to Japan. Smithsonian Contributions to Zoology, 512, 1–74.CrossRefGoogle Scholar
  38. Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.Google Scholar
  39. Pawlowski, J., Fahrni, J., Lecroq, B., Longet, D., Cornelius, N., Excoffier, L., et al. (2007). Bipolar gene flow in deep-sea benthic foraminifera. Molecular Ecology, 16(19), 4089–4096.PubMedCrossRefGoogle Scholar
  40. Regier, J. C., Shultz, J. W., Zwick, A., Hussey, A., Ball, B., Wetzer, R., et al. (2010). Arthropod relationships revealed by phylogenomic analysis of nuclear protein-coding sequences. Nature, 463, 1079–1083.PubMedCrossRefGoogle Scholar
  41. Sars, G. O. (1877). Prodromus descriptionis crustaceorum et pycnogonidarum, quae in expeditione norvegica anno 1876, observavit. Archiv for Mathematik og Naturvidenskab, 2, 237–271.Google Scholar
  42. Sars, G. O. (1891). Pycnogonida. The Norwegian North-Atlantic Expedition 1876/78. Christiania: Grøndahl & Søns.Google Scholar
  43. Schimkewitsch, W. (1893). Compte-rendu sur les Pantopodes. In Reports on the dredging operations off the west coast of Central America to the Galapagos, to the west coast of Mexico, and in the Gulf of California, in charge of Alexander Agassiz, carried on by the U. S. Fish Commission Steamer "Albatross", during 1891, Lieut. Commander Z. L. Tanner, U. S. N., commanding. Bulletin of the Museum of Comparative Zoology, Harvard College 25(2), 27-43. Pls. 1-2.Google Scholar
  44. Stamatakis, A. (2006). RAxML–VI–HPC: maximum likelihood–based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.PubMedCrossRefGoogle Scholar
  45. Stock, J. H. (1963). South African deep-sea Pycnogonida, with descriptions of new species. Annals of the South African Museum, 46(12), 321–340.Google Scholar
  46. Strugnell, J., Rogers, A. D., Prodöhl, P. A., Collins, M. A., & Allcock, A. L. (2008). The thermohaline expressway: the Southern Ocean as a centre of origin for deep-sea octopuses. Cladistics, 24, 853–860.CrossRefGoogle Scholar
  47. Turpaeva, E. F. (1975). On some deep-water pantopods (Pycnogonida) collected in north-western and south-eastern Pacific. Trudy Instituta Okeanology "P. P. Shirshova", Akademy Nauk SSSR, 103, 230–246. In Russian.Google Scholar
  48. Turpaeva, E. F. (1996). Variability of sea spiders morphological characters (Pycnogonida) related to their habitat depth. Okeanologiya, 36(6), 892–896. In Russian.Google Scholar
  49. Wilson, E. B. (1881). XIII. Report on the Pycnogonida. In Reports on the Results of Dredging, under the Supervision of Alexander Agassiz, along the coast of the United States, during the summer of 1880, by the U. S. Coast Survey Steamer "Blake“, Commander J. R. Bartlett, U. S. N., Commanding. Bulletin of the Museum of Comparative Zoology, 239-256. Pls. I- V.Google Scholar
  50. Wood-Mason, J. (1873). On Rhopalorhynchus Kröyeri, a new genus and species of Pycnogonida. Journal of the Asiatic Society Bengal, 42(9), 171–175. Tab. 13.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2013

Authors and Affiliations

  • Lars Dietz
    • 1
  • Franz Krapp
    • 2
  • Michel E. Hendrickx
    • 3
  • Claudia P. Arango
    • 4
  • Kathrin Krabbe
    • 1
    • 5
  • Johanna M. Spaak
    • 1
  • Florian Leese
    • 1
    Email author
  1. 1.Department of Animal Ecology, Evolution and BiodiversityRuhr University BochumBochumGermany
  2. 2.Zoologisches Forschungsmuseum Alexander KoenigBonnGermany
  3. 3.Laboratorio de Invertebrados BentónicosUnidad Académica Mazatlan, ICML, UNAMMazatlanMexico
  4. 4.Natural Environments ProgramQueensland MuseumSouth BrisbaneAustralia
  5. 5.Labor für AbstammungsbegutachtungenRheinbachGermany

Personalised recommendations