Organisms Diversity & Evolution

, Volume 12, Issue 4, pp 349–375 | Cite as

Systematics and phylogenetic species delimitation within Polinices s.l. (Caenogastropoda: Naticidae) based on molecular data and shell morphology

  • Thomas HuelskenEmail author
  • Daniel Tapken
  • Tim Dahlmann
  • Heike Wägele
  • Cynthia Riginos
  • Michael Hollmann
Original Article


Here, we present the first phylogenetic analysis of a group of species taxonomically assigned to Polinices sensu latu (Naticidae, Gastropoda) based on molecular data sets. Polinices s.l. represents a speciose group of the infaunal gastropod family Naticidae, including species that have often been assigned to subgenera of Polinices [e.g. P. (Neverita), P. (Euspira), P. (Conuber) and P. (Mammilla)] based on conchological data. The results of our molecular phylogenetic analysis confirm the validity of five genera, Conuber, Polinices, Mammilla, Euspira and Neverita, including four that have been used previously mainly as subgenera of Polinices s.l. Our results furthermore indicate a close relationship of members of the Polinicinae to Sinum—a genus traditionally placed in the naticid subfamily Sininae. We furthermore present conchological analyses to determine the validity of shell characters used traditionally in species designation in the genus Polinices. Our data reveal several characters (e.g. protoconch, operculum colour, parietal callus) to be informative, while many characters show a high degree of homoplasy (e.g. umbilicus, shell form). Among the species arranged in the genus Polinices s.s., four conchologically very similar taxa often subsumed under the common Indo-Pacific species P. mammilla are separated distinctly in phylogenetic analyses. Despite their striking conchological similarities, none of these four taxa are related directly to each other. Additional conchological analyses of available name-bearing type specimens and type figures reveal the four “mammilla”-like white Polinices species to include true P. mammilla and three additional species, which could be assigned to P. constanti (replacement name for P. dubius), P. jukesii and possibly P. tawhitirahia, based on protoconch and operculum characteristics.


Polinices Molecular systematics Conchology Polinicinae Sininae Naticinae Barcoding 



We are grateful to Dr. Philippe Bouchet of the Muséum National d'Histoire Naturelle (MNHN, Paris, France) and Ian Loch of the Australian Museum (AM, Sydney, Australia) for providing ethanol-preserved specimens and for comments and help with taxonomic questions. We also thank Kathie Way and Amelia MacLellan for access granted to the mollusc collection of the Natural History Museum (NHM, London, UK) and for the permission to publish the photos taken of the syntypes of N. dubia Récluz, 1844, N. flemingiana Récluz, 1844 and N. jukesii, Reeve 1855. We also thank Dr. John Healy of the Queensland Museum (QM, Brisbane, Australia) and Dr. Brian Wilson of the Victoria Museum, (VM, Melbourne, Australia) for access to the malacological collection and seabed material, and for permission to publish the photos taken of the holotype of N. controversa Pritchard & Gatliff, 1913. We are grateful to Dr. Yves Finet (MHNG, Geneva, Switzerland), Dr. Wilma Blom (Auckland Museum, Auckland, New Zealand), Dr. Erica Sjöllin (Museum of Evolution, Uppsala University, Uppsala) and Prof. Ole S. Tendal (Natural History Museum of Denmark, Copenhagen) for permission to publish the photos of the syntypes of N. flemingianus Récluz, 1844, P. tawhitirahia Powell 1965, Nerita mammilla Linnaeus, 1758 and Mamma albula Chemnitz, 1758 [non-binomial], respectively. We thank Dr. Ralph Tollrian (Ruhr University Bochum, Germany) and Dr. Dustin Marshall (University of Queensland) for making their digital binocular microscopes available for taking pictures of protoconchs. We would like to thank Hugh Morrison of Kingsley, Western Australia, for providing ethanol-preserved specimens for sequence analyses and Dr. Lyle Vail and Dr. Anne Hogget of the Lizard Island Research Station, Queensland, Australia, for their kind help during collecting. We additionally thank Dr. Nico Michiels and Dr. Nils Anthes (University of Tuebingen) for the possibility to work on the Lizard Island Research Station. We would like to thank Annette Tolle and Björn Peters for expert sequencing. This paper is an output from the Great Barrier Reef Seabed Biodiversity Project, a collaboration between the Australian Institute of Marine Science (AIMS), the Commonwealth Scientific and Industrial Research Organisation (CSIRO), Queensland Department of Primary Industries & Fisheries (QDPIF) and the Queensland Museum (QM); funded by the CRC Reef Research Centre, the Fisheries Research and Development Corporation and the National Oceans Office led by R. Pitcher (Principal Investigator, CSIRO), P. Doherty (AIMS), J. Hooper (QM) and N. Gribble (QDPIF). We also wish to thank the field team led by D. Gledhill (CSIRO), the crew of the FRV Gwendoline May (QDPI & F) and RV Lady Basten (AIMS). Field and laboratory work were conducted in accordance with the Great Barrier Reef Marine Park Authority (GBRMPA) permit G05/16526.1 to T.H. and M.H. T.H. is funded by a grant from the Deutsche Forschungsgemeinschaft (Hu 1806/1-1, Hu 1806/2-1) and the Malacological Society of Australasia.

Supplementary material

13127_2012_111_Fig7_ESM.jpg (136 kb)
Fig. S1

Phylograms obtained through Bayesian inference based on the 16S and 28S gene fragments. Posterior probabilities are indicated at the nodes. Branches supported by values > 0.95 are not shown. Polytomies are due to the cut-off value specified for the consensus tree (50% used as the default value in MrBayes) (JPEG 136 kb)

13127_2012_111_MOESM1_ESM.tif (489 kb)
High resolution image (TIFF 488 kb)
13127_2012_111_Fig8_ESM.jpg (121 kb)
Fig. S2

Phylograms obtained through Bayesian inference based on the 18S and H3 gene fragments. Posterior probabilities are indicated at the nodes. Branches supported by values > 0.95 are not shown. Polytomies are due to the cut-off value specified for the consensus tree (50% used as the default value in MrBayes) (JPEG 121 kb)

13127_2012_111_MOESM2_ESM.tif (432 kb)
High resolution image (TIFF 432 kb)
13127_2012_111_Fig9_ESM.jpg (34 kb)
Fig. S3

Conchological variability between specimens of different size in Polinices species. a Polinices mellosus (Lizard Island). b Polinices sp. 2 (Lizard Island) (JPEG 34 kb)

13127_2012_111_MOESM3_ESM.tif (3.5 mb)
High resolution image (TIFF 3567 kb)
13127_2012_111_MOESM4_ESM.docx (95 kb)
Table S1 Characters and character states analysed in the conchological analysis (DOCX 95 kb)
13127_2012_111_MOESM5_ESM.docx (130 kb)
Table S2 Taxa of white Polinices species worldwide, with type information and literature reference to the original descriptions. Altogether, 55 taxa have been found in the literature and are listed alphabetically in three groups. Group 1: White Polinices taxa (21) from the Indo-Pacific region. Group 2: White Polinices taxa (10, plus 1 non-binomial name) with unknown type locality. Questionable type localities based on assumed species synonymy are marked with a ?. Group 3: White Polinices taxa (24) from regions outside the Indo-Pacific area. H holotype, S Syntype, pS possible syntype, P paratype, pP possible paratype, NT neotype, L lectotype, PL paralectotype, pPL possible paralectotype, Uk type unknown (DOCX 129 kb)


  1. Agassiz, L. (1837). In J. Sowerby (Ed.), Großbritanniens Mineral-Conchologie oder ausgemahlte Abbildungen und Beschreibungen der Schaltier-Überreste, welche zu verschiedenen Zeiten und in verschiednen Tiefen der Erde erhalten worden sind. Neuchatel: Buchdruckerei von Petitierre.Google Scholar
  2. Aronowsky, A. (2003). Evolutionary biology of naticid gastropods (PhD thesis). Ann Arbor, Michigan: UMI Dissertation Services.Google Scholar
  3. Avise, J. C. (2000). Phylogeography. The history and formation of species. Cambridge: Harvard University Press.Google Scholar
  4. Bandel, K. (1984). The radulae of Caribbean and other Mesogastropoda and Neogastropoda. Zoologische Verhandelingen, 214, 1–188.Google Scholar
  5. Bandel, K. (1999). On the origin of the carnivorous gastropod group Naticoidea (Mollusca) in the Cretaceous with description of some convergent but unrelated groups. Greifswalder Geowissenschaftliche Beiträge, 6, 134–175.Google Scholar
  6. Bernard, F. R. (1967). Studies on the biology of the naticid clam drill Polinices lewisii (Gould) (Gastropoda: Prosobranchia). Fisheries Research Board of Canada Technical Report, 42, 1–42.Google Scholar
  7. Booth, D. T. (1995). Oxygen availablity and embryonic development in sand snail (Polinices sordidus) egg masses. Journal of Experimental Biology, 198, 241–247.PubMedGoogle Scholar
  8. Bouchet, P. (1989). A review of poecilogony in gastropods. Journal of Molluscan Studies, 55, 67–78.CrossRefGoogle Scholar
  9. Bucquoy, E., Dautzenberg, P., & Dollfus, G. (1882–86). Les mollusques marins du Roussillon. 1. Gastropodes. Paris.Google Scholar
  10. Cernohorsky, W. O. (1971). The family Naticidae (Mollusca: Gastropoda) in the Fiji Islands. Records of the Auckland Institute and Museum, 8, 169–208.Google Scholar
  11. Cernohorsky, W. O. (1974). Type specimens of Mollusca in the University Zoological Museum, Copenhagen. Records of the Auckland Institute and Museum, 11, 143–192.Google Scholar
  12. Chénu, J.-C. (1842–1853). Illustrations conchyliologiques ou description et figures de toutes les coquilles connues vivantes et fossiles, classées suivant le systéme de Lamarck, modifié d´après les progrès de la science, et comprenant les genres nouveaux et les espèces récemment découvertes (Vol. [Note: Pls. 2–4 of the genus Natica (pl. 1 was never published) are attributed to C.A. Récluz (fide Kabat et al. 1997)]). Paris: Fortin, Masson.Google Scholar
  13. Colgan, D. J., Ponder, W. F., Beacham, E., & Macaranas, J. (2007). Molecular phylogenetics of Caenogastropoda (Gastropoda: Mollusca). Molecular Phylogenetics and Evolution, 42(3), 717–737. doi: 10.1016/J.Ympev.2006.10.009.PubMedCrossRefGoogle Scholar
  14. Collin, R. (2003). Phylogenetic relationships among calyptraeid gastropods and their implications for the biogeography of marine speciation. Systematic Biology, 52, 618–640Google Scholar
  15. Cook, N., & Bendell-Young, L. (2010). Determining the ecological role of Euspira lewisii: Part I: Feeding Ecology. Journal of Shellfish Research, 29(1), 223–232.CrossRefGoogle Scholar
  16. Davison, A. (2000). The inheritance of divergent mitochondria in the land snail, Cepaea nemoralis. Journal of Molluscan Studies, 66, 143–147.CrossRefGoogle Scholar
  17. Finlay, H. J., & Marwick, J. (1937). The Wangaloan and associated molluscan faunas of Kaitangata-Green Island Subdivision. New Zealand Geological Survey Paleontological Bulletin, 15, 1–140.Google Scholar
  18. Funk, D. J., & Omland, K. E. (2003). Species-level paraphyly and polyphyly: Frequency, causes and consequences, with insights from animal mitochondrial DNA. Annual Review of Ecology Evolution and Systematics, 34, 397–423. doi: 10.1146/Annurev.Ecolsys.34.011802.132421.CrossRefGoogle Scholar
  19. Garrard, T. A. (1961). Mollusca collected by mv Challenge off the East Coast of Australia. Journal of the Malacological Society of Australia, 1(5), 2–37.Google Scholar
  20. Grey, M., Lelievre, P. G., & Boulding, E. G. (2007). Selection for prey shell thickness by the naticid gastropod Euspira lewisii (Naticidae) on the bivalve Protothaca staminea (Veneridae). Veliger, 48(4), 317–322.Google Scholar
  21. Hacking, N. (1998). Macrofaunal community structure of beaches in northern New South Wales, Australia. Marine Freshwater Research, 49, 47–53.CrossRefGoogle Scholar
  22. Huelsken, T. (2011). First evidence of drilling predation by Conuber sordidus (Swainson, 1821) (Gastropoda: Naticidae) on soldier crabs (Mictyridae). Molluscan Research, 31(2), 125–132.Google Scholar
  23. Huelsken, T., Marek, C., Schreiber, S., Schmidt, I., & Hollmann, M. (2008). The Naticidae (Mollusca: Gastropoda) of Giglio Island (Tuscany, Italy): Shell characters, live animals and a molecular analysis of egg masses. Zootaxa, 1770, 1–40.Google Scholar
  24. Huelsken, T., Schreiber, S., & Hollmann, M. (2011). COI amplification success from mucus-rich marine gastropods (Gastropoda: Naticidae) depends on DNA extraction method and preserving agent. Mitteilungen der Deutschen Malakozoologischen Gesellschaft, 85(July 2011), 17–26.Google Scholar
  25. Huelsken, T., Wägele, H., Peters, B., Mather, A., & Hollmann, M. (2011). Molecular analysis of adults and egg masses reveals two independent lineages within the infaunal gastropod Naticarius onca (Röding, 1798) (Caenogastropoda: Naticidae). Molluscan Research, 31(3), 141–151.Google Scholar
  26. Hülsken, T., Clemmensen, M., & Hollmann, M. (2006). Neverita delessertiana (Récluz in Chénu, 1843): a naticid species (Gastropoda: Caenogastropoda) distinct from Neverita duplicata (Say, 1822) based on molecular data, morphological characters and geographical distribution. Zootaxa, 1257, 1–25.Google Scholar
  27. Huson, D. H. (1998). Splitstree: analyzing and visualizing evolutionary data. Bioinformatics, 14(1), 68–73.PubMedCrossRefGoogle Scholar
  28. Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 245–267.Google Scholar
  29. Kabat, A. R. (1990). Species of Naticidae (Mollusca: Gastropoda) described by Linnaeus in the Systema Naturae (1758). Zoological Journal of the Linnean Society, 100(1), 1–25.CrossRefGoogle Scholar
  30. Kabat, A. R. (1991). The classification of the Naticidae (Mollusca: Gastropoda): Review and analysis of the supraspecific taxa. Bulletin of the Museum of Comparative Zoology, 152(7), 417–449.Google Scholar
  31. Kabat, A. R. (1996). Biogeography of the genera of Naticidae (Gastropoda) in the Indo-Pacific. American Malacological Bulletin, 12(1/2), 29–35.Google Scholar
  32. Kabat, A. R. (2000). Results of the Rumphius Biohistorical Expedition to Ambon. Part 10: Mollusca, Gastropoda, Naticidae. Zoologische Mededelingen, 1, 345–380.Google Scholar
  33. Kabat, A. R., Finet, Y., & Way, K. (1997). Catalogue of the Naticidae (Mollusca: Gastropoda) described by C.A. Récluz, including the location of type specimens. Apex, 12, 15–26.Google Scholar
  34. Kool, S. P. (1993). Phylogenetic analysis of the Rapaninae (Neogastropoda: Muricidae). Malacologia, 35, 155–259.Google Scholar
  35. Linnaeus, C. (1758). Systema Naturae per Regna tria Naturae, secundum classes ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I, Editio Decima, Reformata. Holmiae: Laurentius Salvius.Google Scholar
  36. Maddison, W. P., & Maddison, D. R. (2006). MacClade. (4.06 ed.). Sunderland, MA: Sinauer.Google Scholar
  37. Majima, R. (1989). Cenozoic fossil Naticidae (Mollusca: Gastropoda) in Japan. Bulletin of American Paleontology, 96(331), 1–159. pls. 151–114.Google Scholar
  38. Makowsky, R., Cox, C. L., Roelke, C., & Chippindale, P. T. (2010). Analyzing the relationship between sequence divergence and nodal support using Bayesian phylogenetic analyses. Molecular Phylogenetics and Evolution, 57(2), 485–494. doi: 10.1016/J.Ympev.2010.05.009.PubMedCrossRefGoogle Scholar
  39. Marincovich, L. N. (1977). Cenozoic Naticidae (Mollusca: Gastropoda) of the Northeastern Pacific. Bulletins of American Paleontology, 70(294), 169–212.Google Scholar
  40. Martini, F. H. W., & Chemnitz, J. H. (1769–1829). Neues systematisches Conchylien-Cabinet. Nürnberg, Vol. 5 [of 12], xxii + 324, pls. 160–198.Google Scholar
  41. Meyer, C. P., & Paulay, G. (2005). DNA barcoding: error rates based on comprehensive sampling. PLoS Biology, 3(12), 422.CrossRefGoogle Scholar
  42. Montfort, P. D. (1810). Conchyliologie systematique et classification méthodique des coquilles … (Vol. 2, Paris, F. Schoell).Google Scholar
  43. Morton, B. (2008). Biology of the swash-riding Moon Snail Polinices incei (Gastropoda: Naticidae) predating the Pipi, Donax deltoides (Bivalvia: Donacidae), on wave-exposed sandy beaches of North Stradbroke Island, Queensland, Australia. Memoirs of the Queensland Museum, 54(1), 303–322.Google Scholar
  44. Murray, F. V. (1962). Notes on the spawn and early life history of two species of Conuber Finlay & Marwick, 1937. Journal of the Malacological Society of Australia, 6, 49–58.Google Scholar
  45. Murray, F. V. (1966). A brief account of the spawn of Conuber incei (Philippi, 1853). Journal of the Malacological Society of Australia, 10, 49–52.Google Scholar
  46. Nylander, J. A. A. (2004). MrModeltest v2. Program distributed by the author.Google Scholar
  47. MorphoBank 2.5: Web application for morphological phylogenetics and taxonomy (2007).
  48. Okutani, T. (2000). Marine Mollusks in Japan. Tokyo: Tokai University Press.Google Scholar
  49. Oyama, K. (1969). Systematic revision of Japanese Naticidae. Venus, The Japanese Journal of Malacology, 28(2), 69–88. pl. 64–65.Google Scholar
  50. Philippi, R. A. (1849–1853). Die Gattungen Natica und Amaura. In Martini, Chemnitz, Schubert G.H.v., J. A. Wagner, & H. C. Küster (Eds.), Systematisches Conchylien-Cabinet von Martini und Chemnitz (Vol. 2, pp. 164). Nürnberg: Bauer und Rapse.Google Scholar
  51. Pitcher, C. R., Doherty, P., Arnold, P., Hooper, J., Gribble, N., Bartlett, C., et al. (2007). Seabed Biodiversity on the Continental Shelf of the Great Barrier Reef World Heritage Area. AIMS/CSIRO/QM/QDPI Final Report to CRC Reef Research.Google Scholar
  52. Popenoe, W. P., Saul, L. R., & Susuki, T. (1987). Gyrodiform gastropods from the Pacific coast Cretaceous and Paleaocene. Journal of Palaeontology, 61(1), 70–100.Google Scholar
  53. Powell, A. W. (1965). New Zealand molluscan systematics with descriptions of new species. 5. Records of the Auckland Institute and Museum, 6(2), 161–168.Google Scholar
  54. Récluz, C.-A. (1844). Descriptions of new species of Navicella, Neritina, Nerita and Natica, in the cabinet of H. Cuming. Proceedings of the Zoological Society of London, 11(130), 197–214.Google Scholar
  55. Récluz, C.-A. (1850). Description de Natices nouvelles. Journal de Conchyliologie, 1(4), 379–402.Google Scholar
  56. Reeve, L. A. (1855). Monograph of the genus Natica. In Conchologia Iconica. Or, Illustrations of the shells of molluscous animals (Vol. 9, 30 pls.). London: Lovell Reeve.Google Scholar
  57. Riedel, F. (2000). Ursprung und Evolution der "höheren" Caenogastropoda (Vol. Band E: Paläobiologie, Berliner Geowissenschaftlichen Abhandlungen, Vol. 32). Berlin.Google Scholar
  58. Risso, A. (1826). Histoire naturelle des principales productions de l´europe meridionale et particulierement de celles des environs de Nice et des Alpes maritimes. Levrault.Google Scholar
  59. Röding, P. F. (1798). Museum Boltenianum, sive catalogus cimeliorum e tribus regnis naturae quae olim collegerat Joa. Fried. Bolten, M.D.p.d. Pars secunda, continens conchylia sive testacea univalvia, bivalvia & multivalvia. Hamburg [Reprinted, 1906, Watford (England)]: Joachim Friedrich Bolten.Google Scholar
  60. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19(12), 1572–1574.PubMedCrossRefGoogle Scholar
  61. Sanderson, M. J., Donoghue, M. J., Piel, W., & T., E. (1994). TreeBASE: a prototype database of phylogenetic analyses and an interactive tool for browsing the phylogeny of life. American Journal of Botany, 81(6), 183.Google Scholar
  62. Schuhmacher, C. F. (1817). Essai d'un nouveau système des habitations des vers testacés avec XXII planches. Copenhagen: Schultz.CrossRefGoogle Scholar
  63. Solsona, M., & Martinell, J. (1999). Protoconch as a taxonomic tool in Gastropoda systematics. Application in the Pliocene Mediterranean Naticidae Geobios, 32(3), 409–419.Google Scholar
  64. Strong, E. E. (2003). Refining molluscan characters: morphology, character coding and a phylogeny of the Caenogastropoda. Zoological Journal of the Linnean Society, 137(4), 447–554.CrossRefGoogle Scholar
  65. Swainson, W. (1840). A Treatise on Malacology or the natural classification of shells and shellfish. London: Spottiwoode.CrossRefGoogle Scholar
  66. Swofford, D. L. (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Version 4. Sunderland, MA: Sinauer.Google Scholar
  67. Thomaz, D., Guiller, A., & Clarke, B. (1996). Extreme divergence of mitochondrial DNA within species of pulmonate land snails. Proceedings of the Royal Society of London Series B-Biological Sciences, 263(1368), 363–368.CrossRefGoogle Scholar
  68. Torigoe K., & Inaba A. (2011). Revision on the classification of Recent Naticidae. Bulletin of the Nishinomiya Shell Museum, 7, 133 + 115 pp., 134 pls.Google Scholar
  69. Troschel, F. H. (1856–1863). Das Gebiss der schnecken zur Begründung einer natürlichen classification. Berlin: Nicolaische Verlagsbuchhandlung.Google Scholar
  70. Tryon, G. W. (1886). Manual of Conchology, Series 1, Vol. 8: Naticidae, Calyptraeidae, Turritellidae, Vermetidae, Caecidae, Eulimidae, Turbonillidae, Pyramidellidae. Philadelphia: Academy of Natural Science.Google Scholar
  71. Vermeij, G. J., & Carlson, S. J. (2000). The muricid gastropod subfamily Rapaninae: phylogeny and ecological history. Paleobiology, 26(1), 19–46.CrossRefGoogle Scholar
  72. Wiens, J. J. (2001). Character analysis in morphological phylogenetics: problems and solutions. Systematic Biology, 50(5), 689–699.PubMedCrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2012

Authors and Affiliations

  • Thomas Huelsken
    • 1
    • 3
    Email author
  • Daniel Tapken
    • 2
  • Tim Dahlmann
    • 2
  • Heike Wägele
    • 3
  • Cynthia Riginos
    • 1
  • Michael Hollmann
    • 2
  1. 1.School of Biological SciencesThe University of Queensland, St. LuciaBrisbaneAustralia
  2. 2.Department of Biochemistry I - Receptor Biochemistry, Faculty of Chemistry and BiochemistryRuhr University BochumBochumGermany
  3. 3.Zoologisches Forschungsmuseum Alexander KoenigBonnGermany

Personalised recommendations