Organisms Diversity & Evolution

, Volume 12, Issue 4, pp 339–348 | Cite as

Who am I — and if so, how many? Species diversity of calcareous dinophytes (Thoracosphaeraceae, Peridiniales) in the Mediterranean Sea

  • Sylvia Soehner
  • Carmen Zinssmeister
  • Monika Kirsch
  • Marc Gottschling
Original Article


The diversity of extant calcareous dinophytes (Thoracosphaeraceae, Dinophyceae) is not fully recorded at present. The establishment of algal strains collected at multiple localities is necessary for a rigorous study of taxonomy, morphology and evolution in these unicellular organisms. We collected sediment and water tow samples from more than 60 localities in coastal areas of the eastern Mediterranean Sea and documented 15 morphospecies of calcareous dinophytes. Internal transcribed spacer (ITS) barcoding identified numerous species of the Scrippsiella trochoidea species complex that were genetically distinct, but indistinguishable in gross morphology (i.e. with the same tabulation patterns of the motile theca and similar spiny coccoid stages). We assessed a possible minimal number of cryptic species using ITS ribotype networks that indicated the existence of at least 21 species within the Scrippsiella trochoidea species complex. Species diversity of calcareous dinophytes appears higher in the Mediterranean Sea than in other parts of the world’s oceans such as the North Sea. Our data underline the importance of field work to record the diversity of calcareous dinophytes and other unicellular life forms.


Calcareous dinophytes ITS Ribotype Cryptic species 



We thank Julia Daum, Patricia Silva Flores and Martina Rom-Roeske for their assistance during cultivation of the strains. Mona Hoppenrath (Bremerhaven) and Michael Schweikert (Stuttgart) gave valuable advices in methodologies. We thank two anonymous reviewers for constructive and motivating reviews of our manuscript. Financial support was provided by the Deutsche Forschungsgemeinschaft (grants KE 322/36, RI 1738/5, and WI 725/25), and the Münchener Universitätsgesellschaft, which is grateful acknowledged here.

Supplementary material

13127_2012_109_MOESM1_ESM.pdf (142 kb)
ESM 1 (PDF 142 kb)


  1. Attaran-Fariman, G., & Bolch, C. J. S. (2007). Scrippsiella irregularis sp. nov. (Dinophyceae), a new dinoflagellate from the southeast coast of Iran. Phycologia, 46, 572–582.CrossRefGoogle Scholar
  2. Beaugrand, G., Edwards, M., & Legendre, L. (2010). Marine biodiversity, ecosystem functioning, and carbon cycles. Proceedings of the National Academy of Sciences, 107, 10120–10124.CrossRefGoogle Scholar
  3. CBOL Plant Working Group. (2009). A DNA barcode for land plants. Proceedings of the National Academy of Sciences, 106(31), 12794–12797.CrossRefGoogle Scholar
  4. Clement, M. J., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.PubMedCrossRefGoogle Scholar
  5. D’Onofrio, G., Marino, D., Bianco, L., Busico, E., & Montresor, M. (1999). Toward an assessment on the taxonomy of dinoflagellates that produce calcareous cysts (Calciodinelloideae, Dinophyceae): A morphological and molecular approach. Journal of Phycology, 35, 1063–1078.CrossRefGoogle Scholar
  6. Daniels, S. R., & Ruhberg, H. (2010). Molecular and morphological variation in a South African velvet worm Peripatopsis moseleyi (Onychophora, Peripatopsidae): Evidence for cryptic speciation. Journal of Zoology, 282, 171–179.CrossRefGoogle Scholar
  7. Deflandre, G. (1947). Calciodinellum nov. gen., premier répresentant d´une famille nouvelle de Dinoflagellés fossiles à theque calcaire. Comptes Rendus Hebdomadaires des Séances de l’Académie des Sciences, 224, 1781–1782.Google Scholar
  8. Deflandre, G. (1949). Les Calciodinellidés. Dinoflagellatés fossiles à thèque calcaire. Le Botaniste, 34, 191–219.Google Scholar
  9. Elbrächter, M., Gottschling, M., Hildebrand-Habel, T., Keupp, H., Kohring, R., Lewis, J., et al. (2008). Establishing an agenda for calcareous dinoflagellate research (Thoracosphaeraceae, Dinophyceae) including a nomenclatural synopsis of generic names. Taxon, 57, 1289–1303.Google Scholar
  10. Esper, O., Versteegh, G. J. M., Zonneveld, K. A. F., & Willems, H. (2004). A palynological reconstruction of the Agulhas Retroflection (South Atlantic Ocean) during the Late Quaternary. Global and Planetary Change, 41, 31–62.CrossRefGoogle Scholar
  11. Feau, N., Vialle, A., Allaire, M., Tanguay, P., Joly, D. L., Frey, P., et al. (2009). Fungal pathogen (mis-)identifications: A case study with DNA barcodes on Melampsora rusts of aspen and white poplar. Mycological Research, 113, 713–724.PubMedCrossRefGoogle Scholar
  12. Fensome, R. A., & Williams, G. L. (2004). The Lentin and Williams index of fossil dinoflagellates. College Park: American Association of Stratigraphic Palynologists.Google Scholar
  13. Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I., & Williams, G. L. (1993). A classification of living and fossil dinoflagellates. Micropaleontology Special Publication Number, 7, 1–245.Google Scholar
  14. Fensome, R. A., Saldarriaga, J. F., & Taylor, F. J. R. (1999). Dinoflagellate phylogeny revisited: Reconciling morphological and molecular based phylogenies. Grana, 38, 66–80.Google Scholar
  15. Genovesi, B., Shin-Grzerbyk, M., Grzerbyk, D., Laabir, M., Gagnaire, P., Vaquer, A., et al. (2011). Assessment of cryptic species diversity within blooms and cyst bank of the Alexandrium tamarense complex (Dinophyceae) in a Mediterranean lagoon facilitated by semi-multiplex PCR. Journal of Plankton Research, 33, 405–414.CrossRefGoogle Scholar
  16. Godhe, A., Norén, F., Kuylenstierna, M., Ekberg, C., & Karlson, B. (2001). Relationshsips between planktonic dinoflagellate abundance, cysts recovered in sediment traps and environmental factors in the Gullmar Fjord, Sweden. Journal of Plankton Research, 23, 923–938.CrossRefGoogle Scholar
  17. Gómez, F. (2003). Checklist of Mediterranean free-living dinoflagellates. Botanica Marina, 46, 215–242.CrossRefGoogle Scholar
  18. Gottschling, M., & Kirsch, M. (2009). Annotated list of Scandinavian calcareous dinoflagellates collected in fall 2003. Berliner Paläobiologische Abhandlungen, 10, 193–198.Google Scholar
  19. Gottschling, M., Keupp, H., Plötner, J., Knop, R., Willems, H., & Kirsch, M. (2005a). Phylogeny of calcareous dinoflagellates as inferred from ITS and ribosomal sequence data. Molecular Phylogenetics and Evolution, 36, 444–455.PubMedCrossRefGoogle Scholar
  20. Gottschling, M., Knop, R., Plötner, J., Kirsch, M., Willems, H., & Keupp, H. (2005b). A molecular phylogeny of Scrippsiella sensu lato (Calciodinellaceae, Dinophyta) with interpretations on morphology and distribution. European Journal of Phycology, 40, 207–220.CrossRefGoogle Scholar
  21. Gottschling, M., Soehner, S., Zinssmeister, C., John, U., Plötner, J., Schweikert, M., et al. (2012). Delimitation of the Thoracosphaeaceae (Dinophyceae), including the calcareous dinoflagellates, based on large amounts of ribosomal RNA sequence data. Protist, 163, 15–24.PubMedCrossRefGoogle Scholar
  22. Gu, H.-F., Sun, J., Kooistra, W. H. C. F., & Zeng, R. (2008). Phylogenetic position and morphology of thecae and cysts of Scrippsiella (Dinophyceae) species in the East China Sea. Journal of Phycology, 44, 478–494.CrossRefGoogle Scholar
  23. Harper, J. T., Waanders, E., & Keeling, P. J. (2005). On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. International Journal of Systematic and Evolutionary Microbiology, 55, 487–496.PubMedCrossRefGoogle Scholar
  24. Hebert, P. D. N., Cywinska, A., Ball, S. L., & deWaard, J. R. (2003). Biological identifications through DNA barcodes. Proceedings of the Royal Society B: Biological Science, 270, 313–321.CrossRefGoogle Scholar
  25. Hebert, P. D. N., Stoekle, M. Y., & Zemlak, C. M. F. (2004). Identification of birds through DNA barcodes. PLoS Biology, 2(10), e312.PubMedCrossRefGoogle Scholar
  26. Horton, T. R., & Bruns, T. D. (2001). The molecular revolution in ectomycorrhizal ecology: Peeking into the black-box. Molecular Ecology, 10, 1855–1871.PubMedCrossRefGoogle Scholar
  27. Janofske, D. (1992). Kalkiges Nannoplankton, insbesondere Kalkige Dinoflagellaten-Zysten der alpinen Ober-Trias: Taxonomie, Biostratigraphie und Bedeutung für die Phylogenie der Peridiniales. Berliner Geowissenschaftliche Abhandlungen (E), 4, 1–53.Google Scholar
  28. Janofske, D. (2000). Scrippsiella trochoidea and Scrippsiella regalis, nov. comb. (Peridiniales, Dinophyceae): A comparison. Journal of Phycology, 36, 178–189.CrossRefGoogle Scholar
  29. Karwath, B. (2000). Ecological studies on living and fossil calcareous dinoflagellate of the equatorial and tropical Atlantic Ocean. Berichte, Fachbereich Geowissenschaften, Universität Bremen, 152, 1–175.Google Scholar
  30. Keller, M. D., Selvin, R. C., Claus, W., & Guillard, R. R. L. (1987). Media for the culture of oceanic ultraphytoplankton. Journal of Phycology, 23, 633–638.CrossRefGoogle Scholar
  31. Kress, W. J., Wurdack, K. J., Zimmer, E., Weight, L. A., & Janzen, D. H. (2005). Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences, 102, 8369–8374.CrossRefGoogle Scholar
  32. Leander, B. S., & Keeling, P. J. (2004). Early evolutionary history of dinoflagellates and apicomplexans (Alveolata) as inferred from hsp90 and actin phylogenies. Journal of Phycology, 40, 341–350.CrossRefGoogle Scholar
  33. Lewis, J. (1991). Cyst-theca relationships in Scrippsiella (Dinophyceae) and related orthoperidinoid genera. Botanica Marina, 34, 91–106.Google Scholar
  34. Lilly, E. L., Halanych, K. M., & Anderson, D. M. (2007). Species boundaries and global biogeography of the Alexandrium tamarense complex (Dinophyceae). Journal of Phycology, 43, 1329–1338.CrossRefGoogle Scholar
  35. Lin, S., Zhang, H., Hou, Y., Zhuang, Y., & Miranda, L. (2009). High-level diversity of dinoflagellates in the natural environment, revealed by assessment of mitochondrial cox1 and cob genes for dinoflagellate DNA barcoding. Applied and Environmental Microbiology, 75(12), 1279–1290.PubMedCrossRefGoogle Scholar
  36. Litaker, R. W., Vandersea, M. W., Kibler, S. R., Reece, K. S., Stokes, N. A., Lutzoni, F. M., et al. (2007). Recognizing dinoflagellate species using ITS rDNA sequences. Journal of Phycology, 43, 344–355.CrossRefGoogle Scholar
  37. Lo, E. Y. Y., Stefanovic, S., & Dickinson, T. A. (2010). Reconstructing reticulation history in a phylogenetic framework and the potential of allopatric speciation driven by polyploidy in an agamic complex in Crataegus (Rosaceae). Evolution, 64, 3593–3608.PubMedCrossRefGoogle Scholar
  38. Loeblich, A. R. III (1976). Dinoflagellate evolution: Speculation and evidence. Journal of Protozoology, 23(1), 13–28.PubMedGoogle Scholar
  39. Meier, K. J. S., & Willems, H. (2003). Calcareous dinoflagellate cysts in surface sediments from the Mediterranean Sea: Distribution patterns and influence of main environmental gradients. Marine Micropaleontology, 48, 321–354.CrossRefGoogle Scholar
  40. Meier, K. J. S., Janofske, D., & Willems, H. (2002). New calcareous dinoflagellates (Calciodinelloideae) from the Mediterranean Sea. Journal of Phycology, 38, 602–615.Google Scholar
  41. Meier, K. J. S., Höll, C., & Willems, H. (2004). Effect of temperature on culture growth and cyst production in the calcareous dinoflagellates Calciodinellum albatrosianum, Leonella granifera and Pernambugia tuberosa. Micropaleontology, 50, 93–106.CrossRefGoogle Scholar
  42. Meier, K. J. S., Young, J. R., Kirsch, M., & Feist-Burkhardt, S. (2007). Evolution of different life-cycle strategies in oceanic calcareous dinoflagellates. European Journal of Phycology, 42, 81–89.CrossRefGoogle Scholar
  43. Montresor, M. (1995). Scrippsiella ramonii sp. nov. (Peridiniales, Dinophyceae), a marine dinoflagellate producing a calcareous resting cyst. Phycologia, 34(1), 87–91.CrossRefGoogle Scholar
  44. Montresor, M., & Zingone, A. (1988). Scrippsiella precaria spec. nov. (Dinophyceae), a marine dinoflagellate from the Gulf of Naples. Phycologia, 27, 387–394.CrossRefGoogle Scholar
  45. Montresor, M., Zingone, A., & Marino, D. (1993). The calcareous resting cyst of Pentapharsodinium tyrrhenicum comb. nov. (Dinophyceae). Journal of Phycology, 29, 223–230.CrossRefGoogle Scholar
  46. Montresor, M., Montesarchio, E., Marino, D., & Zingone, A. (1994). Calcareous dinoflagellate cysts in marine sediments of the Gulf of Naples (Mediterranean Sea). Review of Palaeobotany and Palynology, 84, 45–56.CrossRefGoogle Scholar
  47. Montresor, M., Janofske, D., & Willems, H. (1997). The cyst-theca relationship in Calciodinellum operosum emend. (Peridiniales, Dinophyceae) and a new approach for the study of calcareous cysts. Journal of Phycology, 33, 122–131.CrossRefGoogle Scholar
  48. Montresor, M., Zingone, A., & Sarno, D. (1998). Dinoflagellate cyst production at a coastal Mediterranean site. Journal of Plankton Research, 20, 2291–2312.CrossRefGoogle Scholar
  49. Montresor, M., Sgrosso, S., Procaccini, G., & Kooistra, W. H. C. F. (2003). Intraspecific diversity in Scrippsiella trochoidea (Dinophyceae): Evidence for cryptic species. Phycologia, 42, 56–70.CrossRefGoogle Scholar
  50. Peng, Y. Y., Baum, B. R., Ren, C. Z., Jiang, Q. T., Chen, G. Y., Zheng, Y. L., et al. (2010). The evolution pattern of rDNA ITS in Avena and phylogenetic relationship of the Avena species (Poaceae: Aveneae). Hereditas, 147, 183–204.PubMedCrossRefGoogle Scholar
  51. Penna, A., Battocchi, C., Garcés, E., Anglès, S., Cucchiari, E., Totti, C., et al. (2010). Detection of microalgal resting cysts in European coastal sediments using a PCR-based assay. Deep Sea Research Part II: Topical Studies in Oceanography, 57, 288–300.CrossRefGoogle Scholar
  52. Persson, A., Godhe, A., & Karlson, B. (2000). Dinoflagellate cysts in recent sediments from the west coast of Sweden. Botanica Marina, 43, 69–79.CrossRefGoogle Scholar
  53. Posada, D., & Crandall, K. A. (2001). Intraspecific gene genealogies: Trees grafting into networks. Trends in Ecology & Evolution, 16, 37–45.CrossRefGoogle Scholar
  54. Rizzo, P. J. (2003). Those amazing dinoflagellate chromosomes. Cell Research, 13, 215–217.PubMedCrossRefGoogle Scholar
  55. Satta, C. T., Anglès, S., Garcés, E., Lugliè, A., Padedda, B. M., & Sechi, N. (2010). Dinoflagellate cysts in recent sediments from two semi-enclosed areas of the Western Mediterranean Sea subject to high human impact. Deep Sea Research Part II: Topical Studies in Oceanography, 57, 256–267.CrossRefGoogle Scholar
  56. Stein, F. (1883). Die Naturgeschichte der arthrodelen Flagellaten. Der Organismus der Infusionstiere. III. Pt. 2., 1–30.Google Scholar
  57. Stern, R. F., Horak, A., Andrew, R. L., Coffroth, M.-A., Andersen, R. A., Küpper, F. C., et al. (2010). Environmental barcoding reveals massive dinoflagellate diversity in marine environments. PLoS One, 5(11), e13991.PubMedCrossRefGoogle Scholar
  58. Stern, R. F., Andersen, R. A., Jameson, I., Küpper, F. C., Coffroth, M.-A., Vaulot, D., et al. (2012). Evaluating the ribosomal internal transcribed spacer (ITS) as candidate dinoflagellate barcode marker. PLoS One, 7(8), e42780.PubMedCrossRefGoogle Scholar
  59. Streng, M., Hildebrand-Habel, T., & Willems, H. (2004). A proposed classification of archeopyle types in calcareous dinoflagellate cysts. Journal of Paleontology, 78, 456–483.CrossRefGoogle Scholar
  60. Tautz, D., Arctander, P., Minelli, A., Thomas, R. H., & Vogler, A. P. (2003). A plea for DNA taxonomy. Trends in Ecology & Evolution, 18(2), 70–74.CrossRefGoogle Scholar
  61. Taylor, F. J. R. (1980). On dinoflagellate evolution. Biosystems, 13, 65–108.PubMedCrossRefGoogle Scholar
  62. Tittensor, D. P., Mora, C., Jetz, W., Lotze, H. K., Ricard, D., Vanden Berghe, E., et al. (2010). Global patterns and predictors of marine biodiversity across taxa. Nature, 466, 1098–1101.PubMedCrossRefGoogle Scholar
  63. Tommasa, L. D., Danovaro, R., Belmonte, G., & Boero, F. (2004). Resting stage abundance in the biogenic fraction of surface sediments from the deep Meditarranean Sea. Scientia Marina, 68, 103–111.Google Scholar
  64. Versteegh, G. (1993). New Pliocene and Pleistocene calcareous dinoflagellate cysts from southern Italy and Crete. Review of Palaeobotany and Palynology, 78, 353–380.CrossRefGoogle Scholar
  65. Vink, A. (2004). Calcareous dinoflagellate cysts in South and equatorial Atlantic surface sediments: diversity, distribution, ecology and potential for palaeoenvironmental reconstruction. Marine Micropaleontology, 50, 43–88.CrossRefGoogle Scholar
  66. Wall, D., & Dale, B. (1966). "Living fossils" in Western Atlantic plankton. Nature, 211, 1025–1026.CrossRefGoogle Scholar
  67. Wall, D., & Dale, B. (1968). Quaternary calcareous dinoflagellates (Calciodinellideae) and their natural affinities. Journal of Paleontology, 42, 1395–1408.Google Scholar
  68. Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. (2005). DNA barcoding Australia’s fish species. Philosophical Transactions of the Royal Society B: Biological Science, 360, 1847–1857.CrossRefGoogle Scholar
  69. White, T. J., Bruns, T., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA for phylogenetics. In M. A. Innis, D. H. Gelfand, J. J. Sninsky, & T. J. White (Eds.), PCR protocols: A guide to methods and amplifications (pp. 315–322). New York: Academic.Google Scholar
  70. Williams, M. J., Ausubel, J., Poiner, I., Garcia, S. M., Baker, D. J., Clark, M. R., et al. (2010). Making marine life count: a new baseline for policy. PLoS Biology, 8(11), e1000531Google Scholar
  71. Zinssmeister, C., Soehner, S., Facher, E., Kirsch, M., Meier, K. J. S., & Gottschling, M. (2011). Catch me if you can: The taxonomic identity of Scrippsiella trochoidea (F.Stein) A.R.Loebl. (Thoracosphaeraceae, Dinophyceae). Systematics and Biodiversity, 9, 145–157.CrossRefGoogle Scholar
  72. Zinssmeister, C., Soehner, S., Kirsch, M., Facher, E., Meier, K. J. S., Keupp, H. & Gottschling, M. (in press). Same but different: Two novel bicarinate species of extant calcareous dinophytes (Thoracosphaeraceae, Peridiniales) from the Mediterranean Sea. Journal of Phycology, 47. doi: 10.1111/j.1529-8817.2012.01182.x
  73. Zonneveld, K. A. F., Höll, C., Janofske, D., Karwath, B., Kerntopf, B., Rühlemann, C., et al. (1999). Calcareous dinoflagellate cysts as paleo-environmental tools. In G. Fischer & G. Wefer (Eds.), Use of proxies in paleoceanography: Examples from the South Atlantic (pp. 145–164). Berlin: Springer.CrossRefGoogle Scholar
  74. Zonneveld, K. A. F., Meier, K. J. S., Esper, O., Siggelkow, D., Wendler, I., & Willems, H. (2005). The (palaeo-)environmental significance of modern calcareous dinoflagellate cysts: A review. Paläontologische Zeitschrift, 79, 61–77.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2012

Authors and Affiliations

  • Sylvia Soehner
    • 1
    • 2
  • Carmen Zinssmeister
    • 1
    • 2
  • Monika Kirsch
    • 3
  • Marc Gottschling
    • 1
  1. 1.Department Biologie, Systematische Botanik und Mykologie, GeoBio-CenterLudwig-Maximilians-Universität MünchenMünchenGermany
  2. 2.Fachbereich Geologische Wissenschaften, Fachrichtung PaläontologieFreie Universität BerlinBerlinGermany
  3. 3.Fachbereich Geowissenschaften, Fachrichtung Historische Geologie / PaläontologieUniversität BremenBremenGermany

Personalised recommendations