Advertisement

Organisms Diversity & Evolution

, Volume 13, Issue 1, pp 15–31 | Cite as

A RAPD study of the Sarcostemma group of Cynanchum (Apocynaceae-Asclepiadoideae-Asclepiadeae)

  • Sigrid Liede-SchumannEmail author
  • Stefan Dötterl
  • Margit Gebauer
  • Ulrich Meve
Original Article
  • 229 Downloads

Abstract

One hundred and thirty-seven accessions of Cynanchum viminale and its relatives, formerly known as Sarcostemma, were studied using randomly amplified polymorphic DNA (RAPD). A fingerprinting technique was used because sequencing had failed to differentiate between morphologically separable groups. Chromosome counts were conducted to establish the ploidy level of the accessions. The banding patterns resulting from RAPD analysis were evaluated with Canonical Analysis of Principal Coordinates, Permanova and neighbour-joining. A strong geographic component was found in the structure of the group. Taxa considered species or subspecies based on morphology often formed coherent groups. The data are interpreted to reflect at least two cycles of diversification: the first one from Madagascar and the second one most likely from the East African–Arabian region, reaching Madagascar again. In mainland Africa, polyploidisation has occurred several times.

Keywords

CAP Madagascar Old World Neighbour-joining Permanova Chromosome numbers Ploidy level Species concept 

Notes

Acknowledgements

The present work was conducted over a period of more than 20 years, when our interest was turned to ‘Sarcostemma’ in 1988, during the 20th IOS conference in Harare, Zimbabwe. SLS thanks all the people who have shared field trips in various parts of the large distribution area in those days long gone: Steven Hammer, Sphaeroid Institute, Vista, CA; L. E. Newton, Kenyatta University, Nairobi; and Jim D Conrad, Yucátan, México. We also thank all the many people who have contributed plants from their own collections, in particular F. Albers, Univ. Münster; D. Cumming, Port Alfred, South Africa; P.I. Forster, Indooropilly; J. Lavranos, Loule; B. Mies, Düsseldorf; R. D. Mangelsdorff, Univ. Frankfurt; M. Ricanek and P. Hanacek, Brno.

Supplementary material

13127_2012_99_MOESM1_ESM.doc (84 kb)
ESM 1 (DOC 83.5 kb)
13127_2012_99_MOESM2_ESM.doc (83 kb)
ESM 2 (DOC 83.0 kb)
13127_2012_99_MOESM3_ESM.doc (66 kb)
ESM 3 (DOC 65.5 kb)

References

  1. Albers, F., & Meve, U. (2001). A karyological survey of Asclepiadoideae, Periplocoideae and Secamonoideae, and evolutionary considerations in Apocynaceae s.l. In: Endress M. E. & Stevens, W. D. (eds) Proceedings of the International Botanical Congress (IBC, St. Louis 1999). Annals of the Missouri Botanical Gardens, 88, 624–656.Google Scholar
  2. Anderson, M. J., Gorley, R. N., & Clarke, K. R. (2008). PERMANOVA + for PRIMER: Guide to Software and Statistical Methods. Plymouth: Primer-E.Google Scholar
  3. Bonin, A., Ehrich, D. & Manel, S. (2007). Statistical analysis of amplified fragment length polymorphism data: a toolbox for molecular ecologists and evolutionists. Molecular Ecology, 16, 3737–3758.Google Scholar
  4. Bosser, J., & Marais, W. (2005). 122. Asclepiadacées. In: Autrey, J. C., Bosser, J., & Ferguson, I. K. (eds) Flore des Mascareignes (pp. 1–36). Paris: IRD.Google Scholar
  5. Brown, R. (1811). On the Asclepiaeae, a natural order of plants separated from the Apocinae of Jussieu. Memoirs of the Wernerian Natural History Society, 1, 12–78.Google Scholar
  6. Bruyns, P. V. (2003). Three new succulent species of Apocynaceae (Asclepiadoideae) from southern Africa. Kew Bulletin, 58, 427–435.CrossRefGoogle Scholar
  7. Bruyns, P. V. (2011). A new species of Sarcostemma (Apocynaceae-Asclepiadoideae-Asclepiadeae) from Yemen. South African Journal of Botany, 77, 801–804.CrossRefGoogle Scholar
  8. Clarke, K. R., & Gorley, R. N. (2006). Primer v6: User Manual/Tutorial (pp 1–91). Plymouth: Primer-E.Google Scholar
  9. Dowling, T. E., Moritz, C., Palmer, J. D., & Rieseberg, L. H. (1996). Nucleic Acids IV Analysis of Fragments and Restriction Sites. In D. M. Hillis & C. Moritz (Eds.), Molecular Systematics (2nd ed., pp. 249–320). Sunderland: Sinauer Associates Inc.Google Scholar
  10. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochemical Bulletin, 19, 11–15.Google Scholar
  11. Forster, P. I. (1992). A taxonomic revision of Sarcostemma R.Br. subgenus Sarcostemma (Asclepiadaceae: Asclepiadeae) in Australia. Australian Systematic Botany, 5, 53–70.Google Scholar
  12. Forster, P. I., Liddle, D. J., & Nicholas, A. (1996). Asclepiadaceae. In A. Wilson (Ed.), Flora of Australia ((Gentianales, Vol. 28, pp. 197–283). Canberra: CSIRO.Google Scholar
  13. Goyder, D. J. (2008, publ. 2009). Nomenclatural changes resulting from the transfer of tropical African Sarcostemma to Cynanchum (Apocynaceae: Asclepiadoideae). Kew Bulletin, 63, 471–472.Google Scholar
  14. Harris, S. A. (1995). Systematics and randomly amplified polymorphic DNA in the genus Leucaena (Leguminosae, Mimosoideae). Plant Systematics and Evolution, 197, 195–208.CrossRefGoogle Scholar
  15. Hess, P. N., & De Moraes Russo, C. A. (2007). An empirical test of the midpoint rooting method. Biological Journal of the Linnean Society, 92, 669–674.CrossRefGoogle Scholar
  16. Holm, R. W. (1950). The American species of Sarcostemma R.Br. (Asclepiadaceae). Annals of the Missouri Botanical Garden, 37, 477–560.CrossRefGoogle Scholar
  17. Jaccard, P. (1908). Nouvelles recherches sur la distribution florale. Bulletin de la Société vaudoise des sciences naturelles, 44, 223–270.Google Scholar
  18. Jürgens, A., Dötterl, S., Liede-Schumann, S., & Meve, U. (2008). Chemical diversity of floral volatiles in Asclepiadoideae-Asclepiadeae (Apocynaceae). Biochemical Systematics and Ecology, 36, 842–852.CrossRefGoogle Scholar
  19. Liede, S., & Adams, B. R. (1991). How to collect Sarcostemma (Asclepiadaceae). Plant Life, 5, 20–21.Google Scholar
  20. Liede, S., & Kunze, H. (1993). A descriptive system for corona analysis in Asclepiadaceae and Periplocaceae. Plant Systematics and Evolution, 185, 275–284.CrossRefGoogle Scholar
  21. Liede, S., & Kunze, H. (2002). Cynanchum and the Cynanchinae (Apocynaceae - Asclepiadoideae) – a molecular, anatomical and latex triterpenoid study. Organisms, Diversity and Evolution, 2, 239–269.CrossRefGoogle Scholar
  22. Liede, S., & Meve, U. (1989). Sarcostemma pearsonii N. E. Br. – a neglected species from southern Africa. Bradleya, 7, 69–72.Google Scholar
  23. Liede, S., & Meve, U. (1992). A new species of Sarcostemma (Asclepiadaceae) from Malawi. Novon, 2, 223–226.CrossRefGoogle Scholar
  24. Liede, S., & Meve, U. (1993). Towards an understanding of the Sarcostemma viminale (Asclepiadaceae) complex. Botanical Journal of the Linnean Society, 112, 1–15.CrossRefGoogle Scholar
  25. Liede, S., & Meve, U. (1995). The genus Sarcostemma R. Br. (Asclepiadaceae) in Madagascar. Botanical Journal of the Linnean Society, 118, 37–51.Google Scholar
  26. Liede, S., & Meve, U. (2001). New combinations and new names in Malagasy Asclepiadoideae (Apocynaceae). Adansonia, sér, 3(23), 347–351.Google Scholar
  27. Liede, S., & Täuber, A. (2000). Sarcostemma R. Br. (Apocynaceae - Asclepiadoideae) – a controversial generic circumscription reconsidered: Evidence from trnL-F spacers. Plant Systematics and Evolution, 225, 133–140.CrossRefGoogle Scholar
  28. Liede, S., & Whitehead, V. B. (1991). Studies in the pollination biology of Sarcostemma viminale R.Br. sensu lato. South African Journal of Botany, 57, 115–122.Google Scholar
  29. Liede-Schumann, S., & Meve, U. (2005). Notes on succulent Cynanchum (Apocynaceae, Asclepiadoideae) in East Africa. Novon, 15, 320–323.Google Scholar
  30. Link, W., Dixkens, C., Singh, M., Schwall, M., & Melchinger, A. E. (1995). Genetic diversity in European and Mediterranean faba bean germ plasm revealed by RAPD markers. Theoretical and Applied Genetics, 90, 27–32.CrossRefGoogle Scholar
  31. Mahmood, T., Muhammad, S., & Shinwari, Z. K. (2010). Molecular and morphological characterization of Caralluma species. Pakistan Journal of Botany, 42, 1163–1172.Google Scholar
  32. Meve, U., & Liede, S. (1996). Sarcostemma R. Br. (Asclepiadaceae) in East Africa and Arabia. Botanical Journal of the Linnean Society, 120, 21–38.Google Scholar
  33. Meve, U., & Liede, S. (1997). A new species of Sarcostemma (Asclepiadaceae) from northern Madagascar. Kew Bulletin, 52, 491–493.CrossRefGoogle Scholar
  34. Meve, U., & Liede, S. (2002). Floristic exchange between mainland Africa and Madagascar: A case study of Apocynaceae-Asclepiadoideae. Journal of Biogeography, 29, 865–873.CrossRefGoogle Scholar
  35. Meve, U., & Liede, S. (2004). Subtribal division of Ceropegieae (Apocynaceae-Asclepiadoideae). Taxon, 53, 61–72.CrossRefGoogle Scholar
  36. Meve, U., & Liede-Schumann, S. (in press). Taxonomic dissolution of Sarcostemma R. Br.(Apocynaceae-Asclepiadoideae). Kew Bulletin, 67. Google Scholar
  37. Meve, U., Masinde, P. S., Sentner, U., & Liede, S. (2001). RAPD analysis and taxonomic reconsideration of the Ceropegia aristolochioides complex (Apocynaceae-Ceropegieae). Plant Biology, 3, 622–628.CrossRefGoogle Scholar
  38. Nair, S., & Keshavachandran, R. (2006). Molecular diversity in chakkarakolli (Gymnema sylvestre R. Br.) assessed through isozyme and RAPD analysis. Journal of Tropical Agriculture, 44, 31–36.Google Scholar
  39. Parani, M., & Parida, A. (1997). Allozyme and RAPD polymorphism in Tylophora indica (Burm. f.) Merr. Journal of Plant Biochemistry and Biotechnology, 6, 29–33.CrossRefGoogle Scholar
  40. Pompanon, F., Bonin, A., Bellemain, E., & Taberlet, P. (2005). Genotyping errors: causes, consequences and solutions. Nature Reviews Genetics, 6, 847–859.PubMedCrossRefGoogle Scholar
  41. Straub, S. C. K., Fishbein, M., Livshultz, T., Foster, Z., Parks, M., Weitemier, K., Cronn, R. C., & Liston, A. (2011). Building a model: developing genomic resources for common milkweed (Asclepias syriaca) with low coverage genome sequencing. BMC Genomics,12,: 1–22.Google Scholar
  42. Van de Peer, Y., & De Wachter, R. (1997). Construction of evolutionary distance trees with TREECON for Windows: accounting for variation in nucleotide substitution rate among sites. Computer Applications in Biosciences, 13, 227–230.Google Scholar
  43. Weising, K., Nybom, H., Wolff, K., & Meyer, W. (2005). DNA Fingerprinting in Plants and Funghi (2nd ed.). Boca Raton: CRC Press.CrossRefGoogle Scholar
  44. Wolfe, A., & Liston, A. (1998). Contributions of PCR-based Methods to Plant Systematics and Evolutionary Biology. In. In Soltis, D. E., Soltis, P. S., & Doyle, J. J. (eds) Molecular Systematics of Plants II: DNA Sequencing (pp. 43–86). Boston, MA: Kluwer Academic Publishers.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2012

Authors and Affiliations

  • Sigrid Liede-Schumann
    • 1
    Email author
  • Stefan Dötterl
    • 1
  • Margit Gebauer
    • 1
  • Ulrich Meve
    • 1
  1. 1.Department of Plant SystematicsUniversity of BayreuthBayreuthGermany

Personalised recommendations