Organisms Diversity & Evolution

, Volume 12, Issue 3, pp 241–250 | Cite as

All the better to see you with: a review of odonate color vision with transcriptomic insight into the odonate eye

  • Seth M. Bybee
  • K. Kaihileipihamekeola Johnson
  • Eben J. Gering
  • Michael F. Whiting
  • Keith A. Crandall
Review

Abstract

Although dragonflies and damselflies (Insecta: Odonata) represent some of the most advanced visual systems among insects, odonate visual systems are not as well understood as those of model or more economically important insects. Yet, with their large and complex eyes, aquatic and terrestrial life stages, entirely carnivorous lifestyle, exceptional mating behaviors, diversity in coloration, occupancy of diverse light environments, and adult success that is completely dependent on vision, it would seem studying the visual system of Odonata at the molecular level would yield highly rewarding scientific findings related to predator/prey interactions, the physiological and molecular shifts associated with ecological shifts in light environments, and the role of vision on behavioral ecology. Here, we provide a review of odonate color vision. The first odonate opsin sequences are published using a degenerate PCR approach for both dragonfly and damselfly lineages as well as a transcriptome approach for a single species of damselfly. These genetic data are combined with electrophysiology data from odonates to examine genotype/phenotype relationships in this visual system. Using these data, we present the first insights into the evolution and distribution of the visual pigments (opsins) among odonates. The integration of molecular and behavioral studies of odonate vision will help answer long-standing questions about how sensory systems and coloration may coevolve.

Keywords

Mike May Festschrift Odonata Vision Opsins Color 

Supplementary material

13127_2012_90_MOESM1_ESM.docx (171 kb)
Supplemental Figure S1(DOCX 170 kb)
13127_2012_90_MOESM2_ESM.docx (170 kb)
Supplemental Figure S2(DOCX 170 kb)
13127_2012_90_MOESM3_ESM.doc (37 kb)
Supplemental Figure S3(DOC 37 kb)

References

  1. Anderson, C. N., & Grether, G. F. (2009). Interspecific aggression and character displacement of competitor recognition in Hetaerina damselflies. Proceedings of the Royal Society B, 277, 549–555.PubMedCrossRefGoogle Scholar
  2. Armett-Kibel, C., & Menertzhagen, I. A. (1983). Structural organization of the ommatidium in the ventral compound eye of the dragonfly Sympetrum. Journal of Comparative Physiology A, 151, 285–294.CrossRefGoogle Scholar
  3. Briscoe, A. D., & Chittka, L. (2001). The evolution of color vision in insects. Annual Review of Entomology, 46, 471–510.PubMedCrossRefGoogle Scholar
  4. Briscoe, A. D., Bybee, S. M., Bernard, G. D., Yuan, F., Sison-Mangus, M. P., Reed, R. D., et al. (2010). Positive selection of a duplicated ultraviolet-sensitive visual pigment coincides with wing pigment evolution in Heliconius butterflies. Proceedings of the National Academy of Sciences, U.S.A., 107, 3628–3633.CrossRefGoogle Scholar
  5. Bybee, S. M., Ogden, T. H., Branham, M. A., & Whiting, M. F. (2008). Molecules, morphology and fossils: A comprehensive approach to odonate phylogeny and the evolution of the odonate wing. Cladistics, 24, 477–514.CrossRefGoogle Scholar
  6. Bybee, S. M., Yuan, F., Ramstetter, M. D., Llorente-Bousquets, J., Reed, R. D., Osorio, D., et al. (2012). UV photoreceptors and UV-yellow wing pigments in Heliconius butterflies allow a color signal to serve both mimicry and intraspecific communication. The American Naturalist, 179, 38–51.PubMedCrossRefGoogle Scholar
  7. Chang, B. S. W., Crandall, K. A., Carulli, J. P., & Hartl, D. L. (1995). Opsin phylogeny and evolution: A model for blue shifts in wavelength regulation. Molecular Phylogenetics and Evolution, 4, 31–43.PubMedCrossRefGoogle Scholar
  8. Chittka, L. (1997). Bee color vision is optimal for coding flower colors, but flower colors are not optimal for being coded—why? Israeli Journal of Plant Science, 45, 115–127.Google Scholar
  9. Clement, S. L., & Meyer, R. P. (1980). Adult biology and behavior of the dragonfly Tanypteryx hageni (Odonata: Petaluridae). Journal of the Kansas Entomological Society, 53, 711–719.Google Scholar
  10. Cooper, I. A. (2010). Ecology of sexual dimorphism and clinal variation of coloration in a damselfly. The American Naturalist, 176(5), 566–572.PubMedCrossRefGoogle Scholar
  11. Corbet, P. (1999). Dragonflies: Behavior and ecology of Odonata. Ithaca: Cornell University Press.Google Scholar
  12. Cordero, A. (1991). Fecundity of Ischnura graellsii (Rambur) in the laboratory (Odonata: Coenagrionidae). Odonatologica, 20(1), 37–44.Google Scholar
  13. Cronin, T. W., Jarvilehto, M., Weckstrom, M., & Lall, A. B. (2000). Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). Journal of Comparative Physiology A, 186, 1–12.CrossRefGoogle Scholar
  14. Cummings, M. E. (2004). Modelling divergence in luminance and chromatic detection performance across measured divergence in surfperch (Embiotocidae) habitats. Vision Research, 44(11), 1127–1145.PubMedCrossRefGoogle Scholar
  15. Defrize, J., Théry, M., & Casas, J. (2010). Background colour matching by a crab spider in the field: A community sensory ecology perspective. The Journal of Experimental Biology, 213, 1425–1435.PubMedCrossRefGoogle Scholar
  16. Endler, J. A. (1993). The color of light in forests and its implications. Ecological. Monographs, 63, 1–27.CrossRefGoogle Scholar
  17. Fincke, O. M. (1987). Female monogamy in the damselfly Ischnura verticalis Say (Zygoptera: Coenagrionidae). Odonatologica, 16, 129–143.Google Scholar
  18. Fincke, O. M. (2004). Polymorphic signals of harassed female odonates and the males that learn them support a novel frequency-dependent model. Animal Behavior, 67, 833–845.CrossRefGoogle Scholar
  19. Fincke, O. M., Jödicke, R., Paulson, D., & Schultz, D. T. (2005). The evolution and frequency of female color morphs in Holarctic Odonata: Why are male-like morphs typically the minority? International Journal of Odonatology, 8, 183–212.CrossRefGoogle Scholar
  20. Forbes, M. (1994). Tests of hypotheses for female-limited polymorphism in the damselfly, Enallagma boreale Selys. Animal Behaviour, 47, 742–726.CrossRefGoogle Scholar
  21. Fuller, R. C., Noa, L. A., & Strellner, R. S. (2010). Teasing apart the many effects of lighting environment on Opsin expression and foraging preference in bluefin killifish. American Naturalist, 176(1), 1–13.PubMedCrossRefGoogle Scholar
  22. Gorb, S. N. (1998). Visual cues in mate recognition by males of the damselfly, Coenagrion puella (L.) (Odonata: Coenagrionidae). Journal of Insect Behavior, 11(1), 73–92.CrossRefGoogle Scholar
  23. Hardie, R. C. (1986). The photoreceptor array of the dipteran retina. Trends in Neuroscience, 9, 419–23.CrossRefGoogle Scholar
  24. Hariyama, T., Ozaki, K., Tokunaga, F., & Tsukahara, Y. (1993). Primary structure of crayfish visual pigment deduced from cDNA. FEBS Letters, 315(3), 287–292.PubMedCrossRefGoogle Scholar
  25. Hisada, M., Tamasige, M., & Suzuki, N. (1965). Control of the flight of the dragonfly Sympetrum darwinianum Selys I. Dorsophotic response. Journal of the Faculty of Science Hokkaido University, Series 6, Zoology, 15, 568–577.Google Scholar
  26. Horridge, G. A. (1969). Unit studies on the retina of dragonflies. Zeitschrift fur Vergleichende Physiologie, 62, 1–37.CrossRefGoogle Scholar
  27. Iserbyt, A., & Van Gossum, H. (2011). Show your true colour: Cues for male mate preference in an intra-specific mimicry system. Ecological Entomology, 36, 544–548.CrossRefGoogle Scholar
  28. Janananda, B. G. (2011). Characterization of changes in Megalagrion opsin genes to detect signatures of selection. Open Access Theses. Paper 259.Google Scholar
  29. Kaiser, H. (1985). Availability of receptive females at the mating place and mating chances of males in the dragonfly Aeschna cyanea. Behavioral Ecology and Sociobiology, 18(1), 1–7.Google Scholar
  30. Kirschfeld, K. (1976). The resolution of lens and compound eyes. In F. Zettler & R. Weiler (Eds.), Neural principles in vision (pp. 354–370). Springer: Berlin.CrossRefGoogle Scholar
  31. Land, M. F. (1981). Optics and vision in invertebrates. In H. Autrum (Ed.), Handbook of sensory physiology, Vol. VII/6B (pp. 471–592). Berlin: Springer.Google Scholar
  32. Land, M. F. (1989). Variations in the structure and design of compound eyes. In D. G. Stavenga & R. C. Hardie (Eds.), Facets of vision (pp. 90–111). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  33. Land, M. F., & Nilsson, D. E. (2002). Animal eyes. Oxford: Oxford University Press.Google Scholar
  34. Laughlin, S. B. (1976). The sensitivities of dragonfly photoreceptors and the voltage gain of transduction. Journal of Comparative Physiology, 111, 221–247.CrossRefGoogle Scholar
  35. Lavoie-Dornik, J., Pilon, J.-G., Gogala, M., & Ali, M. A. (1988). Electrophysiological study of compound eye growth in Enallagma cyathigerum Charpentier and Enallagma clausum Morse Zygotpera Coenagrionidae. Odonatologica, 17(4), 337–356.Google Scholar
  36. Lythgoe, J. N. (1972). The adaptation of visual pigments to the photic environment. In H. Dartnall (Ed.), Handbook of sensory physiology, vol. 7, part 1: Photochemistry of vision (pp. 566–603). Berlin: Springer-Verlag.Google Scholar
  37. Maksimovic, S., Cook, T. A., & Buschbeck, E. K. (2009). Spatial distribution of opsin-encoding mRNAs in the tiered larval retinas of the sunburst diving beetle Thermonectus marmoratus (Coleoptera: Dytiscidae). Journal of Experimental Biology, 212(23), 3781–3794.PubMedCrossRefGoogle Scholar
  38. Maksimovic, S., Layne, J. E., & Buschbeck, E. K. (2011). Spectral sensitivity of the principal eyes of sunburst diving beetle, Thermonectus marmoratus (Coleoptera: Dytiscidae), larvae. Journal of Experimental Biology, 214(21), 3524–3531.PubMedCrossRefGoogle Scholar
  39. Mayer, E. P., & Labhart, T. (1993). Morphological specializations of dorsal rim ommatidia in the compound eye of dragonflies and damselflies (Odonata). Cell & Tissue Research, 272, 17–22.CrossRefGoogle Scholar
  40. Meinertzhagen, I. A., Menzel, R., & Kahle, G. (1983). The identification of spectral receptor types in the retina and lamina of the dragonfly Sympetrum rebicundulum. Journal of Comparative Physiology, 151, 295–310.CrossRefGoogle Scholar
  41. Morehouse, N. I., & Rutowski, R. L. (2010). In the eyes of the beholders: Female choice and avian predation risk associated with an exaggerated male butterfly color. American Naturalist, 176, 768–784.PubMedCrossRefGoogle Scholar
  42. Nilsson, D.-E. (1989). Optics and evolution of the compound eye. In D. G. Stavenga & R. Hardie (Eds.), Facets of vision. Berlin: Springer.Google Scholar
  43. Nilsson, D.-E., & Kelber, A. (2007). A functional analysis of compound eye evolution. Arthropod Structure & Development, 36, 373–385.CrossRefGoogle Scholar
  44. Olberg, R. M., Worthington, A. H., & Venator, K. R. (2000). Prey pursuit and interception in dragonflies. Journal of Comparative Physiology A, 186, 155–162.CrossRefGoogle Scholar
  45. Olberg, R. M., Worthington, A. H., Fox, J. L., Bessette, C. E., & Loosemore, M. P. (2005). Prey size selection and distance estimation in foraging adult dragonflies. Journal of Comparative Physiology A, 191, 791–797.CrossRefGoogle Scholar
  46. Olberg, R. M., Seaman, R. C., Coats, M. I., & Henry, A. F. (2007). Eye movements and target fixation during dragonfly prey-interception flights. Journal of Comparative Physiology A, 193, 685–693.CrossRefGoogle Scholar
  47. Osorio, D., & Vorobyev, M. (2008). A review of the evolution of animal colour vision and visual communication signals. Vision Research, 48, 2042–2051.PubMedCrossRefGoogle Scholar
  48. Paulson, D. R. (1966). The dragonflies (Odonata: Anisoptera) of southern Florida. Dissertation, University of Miami, Florida.Google Scholar
  49. Peitsch, D., Feitz, A., Hertel, H., de Souza, J., Ventura, D. F., & Menzel, R. (1992). The spectral input systems of hymenopteran insects and their receptor-based colour vision. Journal of Comparative Physiology A, 170, 23–40.CrossRefGoogle Scholar
  50. Pritchard, G. (1966). On the morphology of the compound eyes of dragonflies (Odonata; Anisoptera). Proceedings of the Royal Entomological Society of London A, 43, 333–336.Google Scholar
  51. Rebora, M., & Piersanti, S. (2010). The antennal sensory function in the oldest pterygote insects: An ultrastructural overview. In D. J. Mendez-Vilas (Ed.), Microscopy: Science, technology, applications and education. Badajoz: Formatex Research Center.Google Scholar
  52. Roberts, N. W., Porter, M. L., & Cronin, T. W. (2011). The molecular basis of mechanisms underlying polarization vision. Philosophical Transactions of the Royal Society B, 366, 627–637.CrossRefGoogle Scholar
  53. Robertson, H. M. (1985). Female dimorphism and mating behaviour in a damselfly, Ischnura ramburii: Females mimicking males. Animal Behavior, 33, 805–809.CrossRefGoogle Scholar
  54. Schaller, F. (1960). Ètude du développement postembryonnaire d’Aeschna cyanea Müll. Annales des Sciences Naturelles-Zoologie et Biologie Animale, 2, 751–868.Google Scholar
  55. Schultz, T. D., Anderson, C. N., & Symes, L. B. (2008). The conspicuousness of colour cues in male pond damselflies depends on ambient light and visual system. Animal Behaviour, 76, 1357–1364.CrossRefGoogle Scholar
  56. Seki, T., Fujishita, S., & Obana, S. (1989). Composition and distribution of retinal and 3-hydroxyretinal in the compound eye of the dragonfly. Experimental Biology, 48, 65–75.PubMedGoogle Scholar
  57. Shaw, K. L., & Mullen, S. P. (2011). Genes versus phenotypes in the study of speciation. Genetica, 139(5), 649–661.PubMedCrossRefGoogle Scholar
  58. Sherk, T. E. (1978a). Development of the compound eyes of dragonflies (Odonata) II. Development of the larval compound eyes. Journal of Experimental Zoology, 203, 183–200.PubMedCrossRefGoogle Scholar
  59. Sherk, T. E. (1978b). Development of the compound eyes of dragonflies (Odonata) III. Adult compound eyes. Journal of Experimental Zoology, 203, 61–80.PubMedCrossRefGoogle Scholar
  60. Sherk, T. E. (1978c). Development of the compound eyes of dragonflies (Odonata) IV. Development of the adult compound eyes. Journal of Experimental Zoology, 203, 183–200.PubMedCrossRefGoogle Scholar
  61. Sirot, L. K., Brockmann, H. J., Marinis, C., & Muschett, G. (2003). Maintenance of a female-limited polymorphism in Ischnura ramburi (Zygoptera:Coenagrionidae). Animal Behavior, 66, 763–775.CrossRefGoogle Scholar
  62. Snyder, A. W., Menzel, R., & Laughlin, S. B. (1973). Structure and function of the fused rhabdom. Journal of Comparative Physiology., 87, 99–135.CrossRefGoogle Scholar
  63. Stavenga, D. G. (2002). Colour in the eyes of insects. Journal of Comparative Physiology A- Neuroethology Sensory Neural and Behavioral Physiology, 188(5), 337–348.CrossRefGoogle Scholar
  64. Svensson, E. I., Abbott, J., & Härdling, R. (2005). Female polymorphism, frequency dependence, and rapid evolutionary dynamics in natural populations. American Naturalist, 165, 567–576.PubMedCrossRefGoogle Scholar
  65. Svensson, E. I., Karlsson, K., Friberg, M., & Eroukhmanoff, F. (2007). Gender differences in species recognition and the evolution of asymmetric sexual isolation. Current Biology, 17, 1943–1947. doi:10.1016/j.cub.2007.09.038.PubMedCrossRefGoogle Scholar
  66. Takahashi, Y., Yoshimura, J., Morita, S., & Watanabe, M. (2010). Negative frequency-dependent selection in female color polymorphism of a damselfly. Evolution, 64, 3620–3628. doi:10.1111/j.1558-5646.2010.01083.PubMedCrossRefGoogle Scholar
  67. Tynkkynen, K., Rantala, M. J., & Suhonen, J. (2004). Interspecific aggression and character displacement in the damselfly Calopteryx splendens. Journal of Experimental Biology, 17, 759–767. doi:10.1111/j.1420-9101.2004.00733.x.Google Scholar
  68. Ueda, T. (1989). Sexual maturation, body colour changes and increase of body weight in a summer diapause population of the damselfly Lestes sponsa (Hansemann) (Zygoptera: Lestidae). Odonatologica, 18, 75–87.Google Scholar
  69. Van Gossum, H., Sherratt, T. N., & Cordero Rivera, A. (2008). The evolution of sex-limited colour polymorphism. In A. Córdoba-Aguilar (Ed.), Dragonflies: Model organisms for ecological and evolutionary research (pp. 219–229). Oxford: Oxford University Press.Google Scholar
  70. Van Gossum, H., Bots, J., Van Heusden, J., Hammers, M., Huyghe, K., & Morehouse, N. I. (2010). Reflectance spectra and mating patterns support intraspecific mimicry in the colour polymorphic damselfly Ischnura elegans. Evolutionary Ecology, 25, 139–154.CrossRefGoogle Scholar
  71. Waage, J. K. (1979). Dual function of the damselfly penis: Sperm removal and transfer. Science, 203, 916–918.PubMedCrossRefGoogle Scholar
  72. Wakakuwa, M., Stavenga, D. G., & Arikawa, K. (2007). Spectral organization of ommatidia in flower-visiting insects. Phytochemical and Photobiology, 83, 27–34.CrossRefGoogle Scholar
  73. Warrant, E. J., & Nilsson, D.-E. (1995). The absorption of white light by photoreceptors. Vision Research, 38, 195–207.CrossRefGoogle Scholar
  74. Wehner, R. (1981). Spatial vision in arthropods. In H. Autrum (Ed.), Handbook of sensory physiology, Vol. VII/6C (pp. 287–616). Berlin: Springer.Google Scholar
  75. Williams, C. E. (1976). Neurocordulia (Platycordulia) xanthosoma (Williamson) in Texas (Odonata: Libellulidae: Corduliinae). Great Lakes Entomologist, 9, 63–73.Google Scholar
  76. Yamamoto, Y. (1968). A note on a gynandromorphic specimen of the dragonfly, Lyriothemis pachygastra Selys. New Entomologist, 17(2), 17–21.Google Scholar
  77. Yang, E.-C., & Osorio, D. (1991). Spectral sensitivities of photoreceptors and lamina monopolar cells in the dragonfly, Hemicordulia tau. Journal of Comparative Physiology A, 169, 663–669.CrossRefGoogle Scholar
  78. Yuan, F., Bernard, G. D., Le, J., & Briscoe, A. D. (2010). Contrasting modes of evolution of the visual pigments in Heliconius butterflies. Molecular Biology and Evolution, 27, 2392–2405.PubMedCrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2012

Authors and Affiliations

  • Seth M. Bybee
    • 1
  • K. Kaihileipihamekeola Johnson
    • 1
  • Eben J. Gering
    • 2
  • Michael F. Whiting
    • 1
    • 3
  • Keith A. Crandall
    • 1
    • 3
  1. 1.Department of BiologyBrigham Young UniversityProvoUSA
  2. 2.Integrative BiologyUniversity of Texas at AustinAustinUSA
  3. 3.Monte L. Bean Life Science MuseumBrigham Young UniversityProvoUSA

Personalised recommendations