Advertisement

Organisms Diversity & Evolution

, Volume 12, Issue 4, pp 403–408 | Cite as

A general definition of the term “plastron“ in terrestrial and aquatic arthropods

  • Michael Thomas Marx
  • Benjamin Messner
Forum Paper

Abstract

The term “plastron”, as it applies to terrestrial and aquatic arthropods, has been used in a variety of ways. A generalised and simple definition of this term is provided based on a classification of its structural and functional aspects.

Keywords

Respiration Physical gill Compressible gill Incompressible gill Structural plastron Functional plastron 

Notes

Acknowledgements

The authors are much obliged to Peter Davie from the Queensland Museum in Brisbane, Australia, Anne Bull as well as two reviewers for very valuable comments and extraordinary help with a former version of the manuscript. Thanks are given to Stephan Borensztajn, Marie Luise Bischoff and Daniela Klein for the pictures of different collembolan species and cuticle structures. The work was financed by the Feldbausch foundation and the Postdoctoral Fellowship of the In-house Research Founding Programme of the Johannes Gutenberg-University Mainz.

References

  1. Adis, J. (1986). An “aquatic” millipede from a Central Amazonian inundation forest. Oecologia, 68, 347–349.CrossRefGoogle Scholar
  2. Adis, J., Messner, B., & Groth, I. (1989). Zur Überflutungsresistenz und zum Spinnvermögen von Japygiden (Diplura). Zoologische Jahrbücher Abteilung für Anatomie, 119, 371–382.Google Scholar
  3. Adis, J., Messner, B., & Platnick, N. (1999). Morphological structures and vertical distribution in the soil indicate facultative plastron respiration in Cryptocellus adisi (Arachnida, Ricinulei) from Central Amazonia. Studies on Neotropical Fauna & Environment, 34, 1–9.Google Scholar
  4. Arens, W. (1995). Structure and evolution of spiracular gills in pupae of net-winged midges (Nematocera: Blephariceridae). Part1. Paulianina and Edwardsiana (subfamily: Edwardsininae). Canadian Journal of Zoology, 73, 2318–2342.CrossRefGoogle Scholar
  5. Braun, F. (1931). Beiträge zur Biologie und Atmungsphysiologie der Argyroneta aquatica. Zoologische Jahrbücher Abteilung für Systematik, 62, 175–262.Google Scholar
  6. Brocher, F. (1912a). Recherches sur la respiration des insectes aquatiques adultes. Les Haemonia. Annales de Biologie Lacustre, 5, 1–26.Google Scholar
  7. Brocher, F. (1912b). Recherches sur la respiration des insectes aquatiques adultes. Les Elmides. Annales de Biologie Lacustre, 5, 136–179.Google Scholar
  8. Brocher, F. (1912c). Observations biologiques sur quelques Curculionidés aquatiques. Annales de Biologie Lacustre, 5, 180–186.Google Scholar
  9. Brown, H. P. (1987). Biology of the riffle beetles. Annual Reviews of Entomology, 32, 253–273.CrossRefGoogle Scholar
  10. Bush, J. W. M., Hu, D. L., & Prakash, M. (2008). The integument of water-walking arthropods: Form and function. Advances in Insect Physiology, 34, 117–192.CrossRefGoogle Scholar
  11. Chaui-Berlinck, J. G., Bicudo, J. E., & Monteiro, L. H. (2001). The oxygen gain of diving insects. Respiration Physiology, 128, 229–233.PubMedCrossRefGoogle Scholar
  12. Comstock, J. H. (1887). Note on the respiration of aquatic bugs. American Naturalist, 21, 577–578.CrossRefGoogle Scholar
  13. Coulson, S. J., Hodkinson, I. D., Webb, N. R., & Harrison, J. A. (2002). Survival of terrestrial soil-dwelling arthropods on and in seawater: implications for trans-oceanic dispersal. Functional Ecology, 16, 353–356.CrossRefGoogle Scholar
  14. Crisp, D. J., & Thorpe, W. H. (1948). The water-protecting properties of insect hairs. Discussions of the Faraday Society, 3, 210–220.CrossRefGoogle Scholar
  15. Crowe, J. H., & Magnus, K. A. (1974). Studies on Acarine cuticles -II. Plastron respiration and levitation in a water mite. Comparative Biochemistry and Physiology, 49A, 301–309.Google Scholar
  16. Dutrochet, R. J. H. (1833). Mémoires sur les organes aérifères de végétaux, et sur l’usage de l’air que contiennent ces organes. Annales des Sciences Naturelles, XXV, 242–259.Google Scholar
  17. Dutrochet, R. J. H. (1837). Du mécanisme de la respiration des insectes. Mémoires pour servir à l’histoire anatomie et physiologie de végétaux et des animaux, 1, 486–491.Google Scholar
  18. Ege, R. (1918). On the respiratory function of the air stores carried by some aquatic insects. Zeitschrift für Allgemeine Physiologie, 17, 81–124.Google Scholar
  19. Eisenbeis, G., & Wichard, W. (1985). Atlas zur Biologie der Bodenarthropoden. Stuttgart: Verlag G. Fischer.Google Scholar
  20. Fielden, L. J., Knolhoff, L. M., Villarreal, S. M., & Ryan, P. (2011). Underwater survival in the dog tick Dermacentor variabilis (Acari: Ixodidae). Journal of Insect Physiology, 57, 21–26.PubMedCrossRefGoogle Scholar
  21. Flynn, M. R., & Bush, J. W. M. (2008). Underwater breathing: The mechanics of plastron respiratrion. Journal of Fluid Mechanics, 608, 275–296.CrossRefGoogle Scholar
  22. Ghiradella, H., & Radigan, W. (1974). Collembolan cuticle: Wax layer and anti-wetting properties. Journal of Insect Physiology, 20, 301–306.PubMedCrossRefGoogle Scholar
  23. Hawes, T. C., Worland, M. R., Bale, J. S., & Convey, P. (2008). Rafting in Antarctic Collembola. Journal of Zoology, 274, 44–50.Google Scholar
  24. Hebets, E. A., & Chapman, R. F. (2000). Surviving the flood: Plastron respiration in the nontracheate arthropod Phrynus marginemaculatus (Amblypygi: Arachnida). Journal of Insect Physiology, 46, 13–19.PubMedCrossRefGoogle Scholar
  25. Heckman, C. W. (1983). Comparative morphology of arthropod exterior surfaces with the capability of binding a film of air underwater. Internationale Revue der gesamten Hydrobiologie und Hydrogeographie, 68, 715–736.CrossRefGoogle Scholar
  26. Hinton, H. E. (1967). Structure of the plastron in Lipsothrix, and the polyphyletic origin of plastron respiration in Tipulidae. Proceedings of the Royal Entomological Society of London A, 42, 35–38.CrossRefGoogle Scholar
  27. Hinton, H. E. (1971). Plastron respiration in the mite, Platyseius italicus. Journal of Insect Physiology, 17, 1185–1199.CrossRefGoogle Scholar
  28. Hinton, H. E. (1976). Plastron respiration in bugs and beetles. Journal of Insect Physiology, 22, 1529–1550.CrossRefGoogle Scholar
  29. Hinton, H. E., & Jarman, G. M. (1976). A diffusion equation for tapered plastrons. Journal of Insect Physiology, 22, 1263–1265.CrossRefGoogle Scholar
  30. Hopkin, S. P. (1997). Biology of the springtails (1st ed.). London: Oxford University Press.Google Scholar
  31. Jordan, H. J. (1929). Allgemeine vergleichende Physiologie der Tiere. University of Michigan: Walter de Gruyter.Google Scholar
  32. Kölsch, G., & Kubiak, M. (2011). The aquatic leaf beetle species Macroplea mutica and M. appendiculata (Coleoptera, Chrysomelidae, Donaciinae) differ in their use of Myriophyllum spicatum as host plant. Aquatic Insects, 33, 13–26.CrossRefGoogle Scholar
  33. Krisper, G., Pfingstl, T., & Ebermann, E. (2008). SEM-investigations on the exochorion of scutoverticid eggs. Soil Organisms, 80, 217–221.Google Scholar
  34. Lawrence, P. N., & Massoud, Z. (1973). Cuticle structures in the Collembola (Insecta). Revue d’Écologie et de Biologie du Sol, 10, 77–101.Google Scholar
  35. Lessel, T., Marx, M. T., & Eisenbeis, G. (2011). Effects of ecological flooding on the temporal and spatial dynamics of carabid beetles (Coleoptera: Carabidae) and springtails (Collembola) in a polder habitat. ZooKeys, 100, 421–446.PubMedCrossRefGoogle Scholar
  36. Messner, B. (1965). Bemerkungen zur Biologie von Agriotypus armatus (Hymenoptera, Agriotypidae). Zoologischer Anzeiger, 174, 354–362.Google Scholar
  37. Messner, B. (1988). Vorschlag für die Neufassung des Begriffes „Plastron“ bei den Arthropoden. Deutsche Entomologische Zeitschrift (NF), 35, 379–381.CrossRefGoogle Scholar
  38. Messner, B., & Adis, J. (1988). Die Plastronstrukturen der bisher einzigen submers lebenden Diplopodenart Gonographis adisi Hoffman, 1985 (Pyrgodesmidae, Diplopoda). Zoologische Jahrbücher Abteilung für Anatomie, 117, 277–290.Google Scholar
  39. Messner, B., & Adis, J. (1992). Kutikuläre Wachsausscheidungen als plastronhaltende Strukturen bei Larven von Schaum- und Singzikaden (Auchenorrhyncha: Cercopidae und Cicadinae). Revue Suisse de Zoologie, 99, 713–720.Google Scholar
  40. Messner, B., & Adis, J. (1994). Funktionsmorphologische Untersuchungen an den Plastronstrukturen der Arthropoden. Verhandlungen Westdeutscher Entomologentag, 1993, 51–56.Google Scholar
  41. Messner, B., & Adis, J. (2000). Morphologische Strukturen und vergleichende Biologie plastronatmender Arthropoden. Drosera, 2000, 113–124.Google Scholar
  42. Messner, B., Groth, I., Messner, U., & Geisel, T. (1987). Die Plastronstrukturen der Larve, der Puppe und der submers lebenden Weibchen von Acentria nivea (Olivier, 1791) (Lepidoptera, Pyralidae). Zoologische Jahrbücher Abteilung für Anatomie, 115, 163–180.Google Scholar
  43. Messner, B., Adis, J., & Ribeiro, E. F. (1992). Eine vergleichende Untersuchung über die Plastronstrukturen bei Milben (Acari). Deutsche Entomologische Zeitschrift (NF), 39, 159–176.CrossRefGoogle Scholar
  44. Messner, B., Adis, J., & Zulka, P. (1996). Stigmale Plastronstrukturen, die einigen Diplopoden-Arten eine submerse Lebensweise in kaltem und in fließendem Wasser ermöglichen. Revue Suisse de Zoologie, 103, 613–621.Google Scholar
  45. Messner, B., Trei, H., & Rabenstein, F. (1998). Ist die Seehundlaus ein Plastronatmer?—Zur Atmung der Seehundlaus Echinophthirius horridus (Olfers, 1816) (Echinophthiriidae, Anoplura). Drosera, 1998, 11–18.Google Scholar
  46. Moore, P. D. (2002). Biogeography: Springboards for springtails. Nature, 418, 381.PubMedCrossRefGoogle Scholar
  47. Noble-Nesbitt, J. (1963). Transpiration in Podura aquatica L. (Collembola, Isotomidae) and the wetting properties of its cuticle. Journal of Experimental Biology, 40, 681–700.Google Scholar
  48. Rahn, H., & Paganelli, C. V. (1968). Gas exchange in gas gills of diving insects. Respiration Physiology, 5, 145–164.PubMedCrossRefGoogle Scholar
  49. Rounsevell, D. E., & Greenslade, P. (1988). Cuticle structure and habitat in the Nanorchestidae (Acari: Prostigmata). Hydrobiologia, 165, 209–212.CrossRefGoogle Scholar
  50. Schaefer, M., & Tischler, W. (1983). Wörterbücher der Biologie. Ökologie (2nd ed.). Jena: Fischer.Google Scholar
  51. Schmidt-Nielsen, K. (1997). Animal Physiology (5th ed.). Cambridge: Cambridge University Press.Google Scholar
  52. Shirtcliffe, N. J., McHale, G., Newton, M. I., Perry, C. C., & Pyatt, F. B. (2006). Plastron properties of a superhydrophobic surface. Applied Physics Letters, 89, 104106.CrossRefGoogle Scholar
  53. Stride, G. O. (1953). The respiration bubble of the aquatic beetle, Potamodytes tuberosus, Hinton. Nature, 171, 885–886.PubMedCrossRefGoogle Scholar
  54. Stride, G. O. (1955). On the respiration of an aquatic african beetle Potamodytes tuberosus, Hinton. Annals of the Entomological Society of America, 48, 344–351.Google Scholar
  55. Stride, G. O. (1958). The application of a Bernoulli equation to problems of insect respiration. Proceedings of the 10th International Congress of Entomology, 2, 335–336.Google Scholar
  56. Thorpe, W. H. (1950). Plastron respiration in aquatic insects. Biological Reviews, 25, 344–388.CrossRefGoogle Scholar
  57. Thorpe, W. H., & Crisp, D. J. (1947a). Studies on plastron respiration. I. The biology of Aphelocheirus (Hemiptera, Aphelocheiridae (Naucoridae)) and the mechanism of plastron retention. Journal of Experimental Biology, 24, 227–269.Google Scholar
  58. Thorpe, W. H., & Crisp, D. J. (1947b). Studies on plastron respiration. II. The respiratory efficiency of the plastron in Aphelocheirus (Hemiptera, Aphelocheiridae (Naucoridae)). Journal of Experimental Biology, 24, 270–303.Google Scholar
  59. Thorpe, W. H., & Crisp, D. J. (1947c). Studies on plastron respiration. III. The orientation responses of Aphelocheirus (Hemiptera, Aphelocheiridae (Naucoridae)) together with an account of specialized pressure receptors in aquatic insects. Journal of Experimental Biology, 24, 310–328.Google Scholar
  60. Thorpe, W. H., & Crisp, D. J. (1949). Studies on plastron respiration. IV. Plastron respiration in the Coleoptera. Journal of Experimental Biology, 26, 219–260.PubMedGoogle Scholar
  61. Webb, J. E. (1946). Spiracle structure as a guide to the phylogenetic relationships of the Anoplura, with notes on the affinities of mammalian hosts. Proceedings of the Zoological Society of London, 116, 49–119.CrossRefGoogle Scholar
  62. Wesenberg-Lund, C. (1943). Biologie der Süßwasserinsekten. Berlin: Springer.Google Scholar
  63. Wolvekamp, H. P. (1955). Die physikalische Kieme der Wasserinsekten. Experientia, 11, 294–301.CrossRefGoogle Scholar
  64. Yule, C., & Jardel, J.-P. (1985). Observations on the eggs of species of Dinotoperla (Plecoptera: Gripopterygidae). Aquatic Insects, 7, 77–85.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2012

Authors and Affiliations

  1. 1.Johannes Gutenberg-University MainzInstitute of ZoologyMainzGermany
  2. 2.GreifswaldGermany

Personalised recommendations