Organisms Diversity & Evolution

, Volume 12, Issue 2, pp 155–165 | Cite as

Phylogeny of Cidaroida (Echinodermata: Echinoidea) based on mitochondrial and nuclear markers

  • Olivier Brosseau
  • Jérôme Murienne
  • Delphine Pichon
  • Nicolas Vidal
  • Marc Eléaume
  • Nadia Ameziane
Original Article


We present the first molecular phylogeny of Cidaroida, one of the most problematic groups within the echinoids. Two genes—the nuclear ribosomal gene 28 S rRNA and the mitochondrial protein-encoding gene COI—were obtained from 21 specimens representing 17 genera and 20 species, among which 13 species belong to Cidaroida. Phylogenetic analyses of the combined molecular data using parsimony and maximum likelihood optimality criteria resulted in a well-resolved phylogeny. Our results are broadly compatible (with the notable exception of Cidaris cidaris) with previous results obtained from morphological data. We find that Cidaroida represent a monophyletic group sister to the non-cidaroid Echinoidea. The family Cidaridae sensu Mortensen (1928) and Fell (1966) is paraphyletic because of the placement of Psychocidaris ohshimai as sister-group to Histocidaris elegans. Inside the Stylocidarina, we show that the two Atlantic species Stylocidaris affinis and Stylocidaris lineata constitute a well-supported clade. However, these two taxa could also represent two morphotypes within a single species showing high morphological variation.


Cidaroida Phylogeny Molecular 28S rRNA COI 



We would like to thank M.-G. Bonhomme who initiated the sequencing project. Sequencing was carried out in the Molecular Systematics Service (MNHN) and the “Milieu et peuplement aquatiques” department (MNHN). Field work was supported by the program Deep Sea Benthos (MNHN/IRD). Some of the analytical work was performed in the lab EDB, part of the Laboratoires d’Excellence (LABEX) TULIP (ANR-10-LABX-41) and CEBA. We would like to thank the team and the cruise manager B. Richer-de-Forge (cruise Salomon 1). A. Ziegler’s comments greatly improved multiple versions of this work. Associate editor O. Bininda-Emonds, A. Smith, and an anonymous reviewer helped improve the quality of the manuscript. Financial support was provided by the French Ministry of Research. J.M. was supported by a Marie Curie International Outgoing Fellowship (grant 221099) within the 7th European Community Framework Program.


  1. Agassiz, A. (1879). Preliminary report of the Echini of the exploring expedition of H.M.S. Challenger. Proceedings of the American Academy of Arts and Sciences, 14, 190–212.CrossRefGoogle Scholar
  2. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped Blast and Psi-Blast: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.PubMedCrossRefGoogle Scholar
  3. Baroin, A., Perasso, R., Qu, L. H., Brugerolle, G., Bachellerie, J. P., & Adoute, A. (1988). Partial phylogeny of the unicellular eukaryotes based on rapid sequencing of a portion of 28 S ribosomal RNA. Proceedings of the National Academy of Sciences USA, 85, 3474–3478.CrossRefGoogle Scholar
  4. Bell, F. J. (1892). Description of a remarkable new sea urchin of the genus Cidaris from Mauritius. Transactions of the Zoological Society of London, 13, 303–304.CrossRefGoogle Scholar
  5. Bonhomme, M.G., (2002). Apport des données moléculaires dans la phylogénie des Cidaridae (Echinodermata, Echinoidea, Cidaroida). Master’s thesis, Muséum national d’Histoire naturelle.Google Scholar
  6. Brosseau, O., (2005). Phylogénie moléculaire et analyse morphométrique des pédicellaires et du test des Cidaroida (Echinodermata, Echinoidea). Ph.D. thesis, Muséum national d’Histoire naturelle.Google Scholar
  7. Cantatore, P., Ritrebo, M., Ridlania, M., Gagaleta, N., & Saccone, C. (1989). The complete nucleotide sequence, the gene organization and the genetic code of the mitochondrial genome of Paracentrotus lividus. Journal of Biological Chemistry, 264, 10965–10975.PubMedGoogle Scholar
  8. Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution, 17, 540–552.PubMedCrossRefGoogle Scholar
  9. Clark, A. H. (1907). Descriptions of new species of recent unstalked crinoids from the North Pacific Ocean. Proceedings of the US National Museum, 33, 69–84.CrossRefGoogle Scholar
  10. Clark, H. L. (1918). Report on the Cidaroidea and Echinoidea collected by the Bahama Expedition from the University of Iowa in 1893. Bulletin of the Laboratory of Natural History State University Iowa, 7, 1–37.Google Scholar
  11. De Giorgi, C., Martiradonna, A., Lanave, C., & Saccone, C. (1996). Complete sequence of the mitochondrial DNA in the sea urchin Arbacia lixula: conserved features of the echinoid mitochondrial genome. Molecular Phylogenetics and Evolution, 5, 323–332.PubMedCrossRefGoogle Scholar
  12. De Meijere, J. C. H. (1904). Die Echinoidea der Siboga-Expedition. Mitteilung der Siboga Expedition, 43, 1–251.Google Scholar
  13. Dörderlein, L. (1901). Diagnosen einiger von der Valdivia–Expedition gesammelten Seeigel-Arten aus dem Indischen Ocean. Zoologische Anzeiger, 23, 19–23.Google Scholar
  14. Düben, M.W.V., Koren, J., (1844). Om Holothuriernas Hudskelet. Kongl. Svenska Vetenskapsakademiens Handlingar 211–228.Google Scholar
  15. Durham, J. W., & Melville, R. V. (1957). A classification of echinoids. Journal of Paleontology, 31, 242–272.Google Scholar
  16. Fell, J.P., (1966). Cidaroids. In: Treatise on invertebrate paleontology. Part U. Echinodermata 3. University of Kansas, Lawrence, pp. U312–U339.Google Scholar
  17. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  18. Féral, J. P., & Derelle, E. (1991). Partial sequence of the 28 S ribosomal RNA and the echinid taxonomy and phylogeny—application to the Antarctic brooding schizasterids. In T. Yanagisawa (Ed.), Biology of Echinodermata: proceedings of the seventh international echinoderm conference, Atami, 9–14 September 1990 (pp. 331–337). Rotterdam: Balkema.Google Scholar
  19. Féral, J. P., Derelle, E., & Philippe, H. (1994). Inferred phylogenetic trees of antarctic brood-protecting schizasterid echinoids from partial 28 S ribosomal RNA sequences. In A. R. Beaumont (Ed.), Genetics and evolution of aquatic organisms (pp. 199–206). London: Chapman and Hall.Google Scholar
  20. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.PubMedGoogle Scholar
  21. Goloboff, P. A., Farris, J. S., & Nixon, K. (2008). TNT, a free program for phylogenetic analysis. Cladistics, 24, 774–786.CrossRefGoogle Scholar
  22. Guindon, S., Dufayard, J. F., Lefort, V., Anisimova, M., Hordijk, W., & Gascuel, O. (2010). New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Systematic Biology, 59, 307–321.PubMedCrossRefGoogle Scholar
  23. Guindon, S., & Gascuel, O. (2003). A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.PubMedCrossRefGoogle Scholar
  24. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  25. Hart, M. W., Abt, C. H. J., & Emlet, R. B. (2011). Molecular phylogeny of echinometrid sea urchins: more species of Heliocidaris with derived modes of reproduction. Invertebrate Biology, 130, 175–185.CrossRefGoogle Scholar
  26. Hoggett, A. K., & Rowe, F. W. E. (1986). South-west Pacific cidarid echinoids (Echinodermata) including two new species. Indo-Malayan Zoology, 3, 1–13.Google Scholar
  27. Ikeda, H. (1935). Preliminary report on a new cidarid sea-urchin from the Western Pacific. Proceedings of the Imperial Academy of Japan, 11, 386–388.Google Scholar
  28. Ikeda, H. (1936). Preliminary note on the new family of the Cidaroidea. Annotationes Zoologicae Japonenses, 15, 486–493.Google Scholar
  29. Janies, D. A., Voight, J. R., & Daly, M. (2011). Echinoderm phylogeny including Xyloplax, a progenetic asteroid. Systematic Biology, 60, 420–438.PubMedCrossRefGoogle Scholar
  30. Jeffery, C. H., Emlet, R. B., & Littlewood, D. T. (2003). Phylogeny and evolution of development in temnopleurid echinoids. Molecular Phylogenetics and Evolution, 28, 99–118.PubMedCrossRefGoogle Scholar
  31. Katoh, K., Katoh, K., Kuma, Ki, Toh, H., & Miyata, T. (2005). MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research, 33, 511–518.PubMedCrossRefGoogle Scholar
  32. Katoh, K., Misawa, K., Kuma, Ki, & Miyata, T. (2002). MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research, 30, 3059–3066.PubMedCrossRefGoogle Scholar
  33. Katoh, K., & Toh, H. (2008). Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics, 9, 286–298.PubMedCrossRefGoogle Scholar
  34. Knott, K. E., & Wray, G. A. (2000). Controversy and consensus in asteroid systematics: new insights to ordinal and familial relationships. American Zoologist, 40, 382–392.CrossRefGoogle Scholar
  35. Kroh, A., Mooi, R., (2011). World Echinoidea Database. Available online at Accessed 20 January 2012.
  36. Kroh, A., & Smith, A. B. (2010). The phylogeny and classification of post-Palaeozoic echinoids. Journal of Systematic Palaeontology, 8, 147–212.CrossRefGoogle Scholar
  37. Lamarck, J.B., (1816). Histoire naturelle des animaux sans vertèbres, vol 2. Verdière, Paris.Google Scholar
  38. Lee, Y. H. (2003). Molecular phylogenies and divergence times of sea urchin species of Strongylocentrotidae, Echinoida. Molecular Biology and Evolution, 20, 1211–1221.PubMedCrossRefGoogle Scholar
  39. Lessios, H. A., Kessing, B. D., & Pearse, J. S. (2001). Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution, 55, 955–975.PubMedCrossRefGoogle Scholar
  40. Lessios, H. A., Kessing, B. D., Robertson, D. R., & Paulay, G. (1999). Phylogeography of the pantropical sea urchin Eucidaris in relation to land barriers and ocean currents. Evolution, 53, 806–817.CrossRefGoogle Scholar
  41. Linnaeus, C. (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species cum characteribus, differentiis, synonymis, locis. Editio Decima, Reformata. Stockholm: Laurentius Salvius.Google Scholar
  42. Linnaeus, C. (1767). Systema naturae. Editio Duodecima Reformata, Tomus I, Pars II. Stockholm: Laurentius Salvius.Google Scholar
  43. Littlewood, D. T. J., & Smith, A. B. (1995). A combined morphological and molecular phylogeny for sea urchins (Echinoidea: Echinodermata). Philosophical Transactions of the Royal Society, London, Series B, 347, 213–234.CrossRefGoogle Scholar
  44. Marshall, C. R., & Swift, H. (1992). DNA–DNA hybridization phylogeny of sand dollars and highly reproducible extent of hybridation values. Journal of Molecular Evolution, 34, 31–44.PubMedCrossRefGoogle Scholar
  45. Matsuoka, N. (1993). Review molecular approaches to the systematics of echinoderms. Reports of Fukushima Marine Biology Laboratory, 14, 5–16.Google Scholar
  46. Matsuoka, N., & Inamori, M. (1999). Phylogenetic relationships among four echinoids of the family Cidaridae (Cidaroida) based on allozymes. Zoological Science, 16, 529–534.CrossRefGoogle Scholar
  47. Mortensen, T. (1903). The Danish Ingolf Expedition, IV (1). Echinoidea. Copenhagen: H. Hagerup.Google Scholar
  48. Mortensen, T., (1910). The Echinoidea of the Swedish South polar expedition. In: Wissenschaftliche Ergebnisse der Schwedischen Südpolar Expedition. Vol. 6. Stockholm, Sweden, pp. 1–114.Google Scholar
  49. Mortensen, T. (1927). Report on the Echinoidea collected by the United States Fisheries Steamer “Albatross” during the Philippine expedition, 1907–1910, Part I: The Cidaridae. United States National Museums Bulletin, 6, 241–312.Google Scholar
  50. Mortensen, T. (1928). A Monograph of the Echinoidea. I, Cidaroidea. Copenhagen: Reitzel.Google Scholar
  51. Mortensen, T. (1932). New contributions to the knowledge of the cidarids. Kongeliga Danske Videnskabernes Selskabs Skrifter, 4, 146–152.Google Scholar
  52. Mortensen, T. (1939). Report on the Echinoidea of the Murray expedition, I. Scientific Reports on the John Murray Expedition, 6, 1–28.Google Scholar
  53. Mortensen, T. (1951). A monograph of the Echinoidea. V. 2. Spatangoida. II. Amphisternata. II. Spatangidæ, Loveniidæ, Pericosmidæ, Schizasteridæ, Brissidæ. Copenhagen: Reitzel.Google Scholar
  54. Paradis, E., Claude, J., & Strimmer, K. (2004). APE: analyses of phylogenetics and evolution in R language. Bioinformatics, 20, 289–290.PubMedCrossRefGoogle Scholar
  55. Phelan, T. (1970). A field guide to the cidaroid echinoids of the Northwestern Atlantic Ocean, Gulf of Mexico, and the Caribbean Sea. Smithsonian Contributions to Zoology, 40, 1–67.CrossRefGoogle Scholar
  56. Philip, G. M. (1964). The Tertiary echinoids of southeastern Australia. II, Cidaridae (2). Proceedings of the Royal Society of Victoria, 77, 433–477.Google Scholar
  57. Philippi, R.A., (1845). Verzeichniss der in der Gegend von Magdeburg bei Osterweddingen und Westeregeln vorkommenden Tertiär-Versteinerungen. Jahrbuch für Mineralogie, Geognosie, Geologie und Petrefakten-Kunde, 447–451.Google Scholar
  58. Pisani, D., Feuda, R., Peterson, K. J., & Smith, A. B. (2012). Resolving phylogenetic signal from noise when divergence is rapid: a new look at the old problem of echinoderm class relationships. Molecular Phylogenetics and Evolution, 62, 27–34.PubMedCrossRefGoogle Scholar
  59. Ratto, A., & Christen, R. (1990). Phylogénie moléculaire des échinodermes déduite des séquences partielles des ARN ribosomiques. Comptes Rendus de l'Académie des Sciences Series III–Sciences de la Vie, 310, 169–174.Google Scholar
  60. Schliep, K. P. (2010). Phangorn: phylogenetic analysis in R. Bioinformatics, 27, 592–593.PubMedCrossRefGoogle Scholar
  61. Scouras, A., & Smith, M. J. (2001). A novel mitochondrial gene order in the crinoid echinoderm Florometra serratissima. Molecular Biology and Evolution, 18, 61–73.PubMedCrossRefGoogle Scholar
  62. Shimodaira, H., & Hasegawa, M. (1999). Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Molecular Biology and Evolution, 16, 1114–1116.CrossRefGoogle Scholar
  63. Smith, A.B., (2005). The echinoid directory. World Wide Web electronic publication. [last accessed January 2012].
  64. Smith, A. B., Lafay, B., & Christen, R. (1992). Comparative variation of morphological and molecular evolution through geologic time: 28 S rRNA versus morphology in echinoids. Philosophical Transactions of the Royal Society B, 338, 365–382.CrossRefGoogle Scholar
  65. Smith, A. B., Pisani, D., Mackensis-Dodds, J. A. B. S., Webster, B. L., & Littlewood, D. T. J. (2006). Testing the molecular clock: molecular and paleontological estimates of divergence times in the Echinoidea (Echinodermata). Molecular Biology and Evolution, 23, 1832–1851.PubMedCrossRefGoogle Scholar
  66. Smith, A. B., & Wright, C. W. (1989). British cretaceaous echinoids. Part 1. General introduction and Cidaroida. Palaeontographical Society Monographs, 141, 1–101.Google Scholar
  67. Smith, M. J., Arndt, A., Gorski, S., & Fajber, E. (1993). The phylogeny of echinoderm classes based on mitochondrial gene arrangements. Journal of Molecular Evolution, 36, 545–554.PubMedCrossRefGoogle Scholar
  68. Stockley, B., Smith, A. B., Littlewood, T., Lessios, H. A., & Mackensis-Dodds, J. A. (2005). Phylogenetic relationships of spatangoid sea urchins (Echinoidea): taxon sampling density and congruence between morphological and molecular estimates. Zoologica Scripta, 34, 447–468.CrossRefGoogle Scholar
  69. Suzuki, N., & Yoshino, K. (1992). The relationship between amino acid sequences of sperm activating peptides and the taxonomy of echinoids. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 102B, 690.Google Scholar
  70. Suzuki, N., Yoshino, K., Kurita, M., Yamaguchi, M., & Amemiya, S. (1988). Taxonomical significance of respiratory stimulation of sea urchin spermatozoa by egg associated substances. In R. D. Burke, P. V. Mladenov, P. Lambert, & R. L. Parsley (Eds.), Echinoderm biology (pp. 213–218). Rotterdam: Balkema.Google Scholar
  71. Winchell, C. J., Sullivan, J., Cameron, C. B., Swalla, B. J., & Mallatt, J. (2002). Evaluating hypotheses of deuterostome phylogeny and chordate evolution with new LSU and SSU ribosomal DNA data. Molecular Biology and Evolution, 19, 762–776.PubMedCrossRefGoogle Scholar
  72. Zigler, K. S., & Lessios, H. A. (2003). Evolution of bindin in the pantropical sea urchin Tripneustes: comparisons to bindin of other genera. Molecular Biology and Evolution, 20, 220–231.PubMedCrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2012

Authors and Affiliations

  • Olivier Brosseau
    • 1
  • Jérôme Murienne
    • 2
  • Delphine Pichon
    • 1
  • Nicolas Vidal
    • 3
  • Marc Eléaume
    • 1
  • Nadia Ameziane
    • 1
  1. 1.Muséum national d’Histoire naturelleParisFrance
  2. 2.CNRS, Université Paul Sabatier, ENFAToulouseFrance
  3. 3.Muséum national d’Histoire naturelleParisFrance

Personalised recommendations