Organisms Diversity & Evolution

, Volume 12, Issue 3, pp 229–240 | Cite as

Non-ecological speciation, niche conservatism and thermal adaptation: how are they connected?

  • Erik I. SvenssonEmail author


During the last decade, the ecological theory of adaptive radiation, and its corollary “ecological speciation”, has been a major research theme in evolutionary biology. Briefly, this theory states that speciation is mainly or largely the result of divergent selection, arising from niche differences between populations or incipient species. Reproductive isolation evolves either as a result of direct selection on mate preferences (e.g. reinforcement), or as a correlated response to divergent selection (“by-product speciation”). Although there are now many tentative examples of ecological speciation, I argue that ecology’s role in speciation might have been overemphasised and that non-ecological and non-adaptive alternatives should be considered more seriously. Specifically, populations and species of many organisms often show strong evidence of niche conservatism, yet are often highly reproductively isolated from each other. This challenges niche-based ecological speciation and reveals partial decoupling between ecology and reproductive isolation. Furthermore, reproductive isolation might often evolve in allopatry before ecological differentiation between taxa or possibly through learning and antagonistic sexual interactions, either in allopatry or sympatry. Here I discuss recent theoretical and empirical work in this area, with some emphasis on odonates (dragonflies and damselflies) and suggest some future avenues of research. A main message from this paper is that the ecology of species differences is not the same as ecological speciation, just like the genetics of species differences does not equate to the genetics of speciation.


Mike May Festschrift Calopteryx Learning Learned mate preferences Niche Sexual conflict By-product speciation IR-camera Thermal imaging Ectotherms Sexual isolation 



I am grateful to Jessica Ware for becoming inviting me to contribute to this special issue of Organisms, Diversity & Evolution. I dedicate this article to Mike May. I also wish to thank Göran Arnqvist, Mats Björklund, Andrew Hendry, Anna Qvarnström and Jon Ågren for discussions about ecological vs nonecological speciation during a visit to the Evolutionary Biology Centre (EBC) at Uppsala University in September 2011, and to John Wiens (SUNY, Stony Brook) for providing critical and constructive comments on the first draft of this manuscript. Although we do not agree on all points, your different viewpoints have helped to clarify my own ideas. Finally, I wish to thank Andrew Hendry for kindly providing the raw figure and material for Fig. 1, which is built partly on his previous publications and a book in progress. Funding for my research has been provided by The Swedish Research Council (VR), Gyllenstiernska Krapperupsstiftelsen and the Entomological Society in Lund (ESIL).


  1. Arnegard, M. E., McIntyre, P. B., Harmon, L. J., Zelditch, M. L., Crampton, W. G. R., Davis, J. K., Sullivan, J. P., Lavoue, S., & Hopkins, C. D. (2010). Sexual signal evolution outpaces ecological divergence during electric fish species radiation. American Naturalist, 176, 335–356.PubMedCrossRefGoogle Scholar
  2. Benkman, C. W. (2003). Divergent selection drives the adaptive radiation of crossbills. Evolution, 57, 1176–1181.PubMedGoogle Scholar
  3. Bolnick, D. I., & Doebeli, M. (2003). Sexual dimorphism and adaptive speciation: two sides of the same ecological coin. Evolution, 57, 2433–2449.PubMedGoogle Scholar
  4. Calsbeek, R., Gosden, T. P., Kuchta, S. R., & Svensson, E. I. (2012). Fluctuating selection and dynamic Adaptive Landscapes. In E. I. Svensson & R. Calsbeek (Eds.), The adaptive landscape in evolutionary biology. Oxford: Oxford University Press.Google Scholar
  5. Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland, Massachusetts: Sinauer.Google Scholar
  6. Damm, S., Schierwater, B., & Hadrys, H. (2010). An integrative approach to species discovery in odonates: from character-based DNA barcoding to ecology. Molecular Ecology, 19, 3881–3893.PubMedCrossRefGoogle Scholar
  7. Deutsch, C. A., Tewksbury, J. J., Huey, R. B., Sheldon, K. S., Ghalambor, C. K., Haak, D. C., & Martin, P. R. (2008). Impacts of climate warming on terrestrial ectotherms across latitude. Proceedings of the National Academy of Sciences of the United States of America, 105, 6668–6672.PubMedCrossRefGoogle Scholar
  8. Dieckmann, U., & Doebeli, M. (1999). On the origin of species by sympatric speciation. Nature, 400, 354–357.PubMedCrossRefGoogle Scholar
  9. Dieckmann, U., Doebeli, M., Metz, J. A. J., & Tautz, D. (Eds.). (2004). Adaptive speciation. Cambridge: Cambridge University Press.Google Scholar
  10. Doebeli, M., & Dieckmann, U. (2000). Evolutionary branching and sympatric speciation caused by different types of ecological interactions. American Naturalist, 156, S45–S61.CrossRefGoogle Scholar
  11. Dukas, R. (2004). Male fruit flies learn to avoid interspecific courtship. Behavioral Ecology, 15, 695–698.CrossRefGoogle Scholar
  12. Dukas, R. (2005). Learning affects mate choice in female fruit flies. Behavioral Ecology, 16, 800–804.CrossRefGoogle Scholar
  13. Dumont, H. J., Vanfleteren, J. R., De Jonckheere, J. F., & Weekers, P. H. H. (2005). Phylogenetic relationships, divergence time estimation, and global biogeographic patterns of calopterygoid damselflies (odonata, zygoptera) inferred from ribosomal DNA sequences. Systematic Biology, 54, 347–362.PubMedCrossRefGoogle Scholar
  14. Eldredge, N., Thompson, J. N., Brakefield, P. M., Gavrilets, S., Jablonski, D., Jackson, J. B. C., Lenski, R. E., Lieberman, B. S., McPeek, M. A., & Miller, W. (2005). The dynamics of evolutionary stasis. Paleobiology, 31, 133–145.CrossRefGoogle Scholar
  15. Erwin, D. H. (2009). Climate as a driver of evolutionary change. Current Biology, 19, R575–R583.PubMedCrossRefGoogle Scholar
  16. Funk, D. J., Nosil, P., & Etges, W. J. (2006). Ecological divergence exhibits consistently positive associations with reproductive isolation across disparate taxa. Proceedings of the National Academy of Sciences of the United States of America, 103, 3209–3213.PubMedCrossRefGoogle Scholar
  17. Futuyma, D. J. (1987). On the role of species in anagenesis. American Naturalist, 130, 465–473.CrossRefGoogle Scholar
  18. Gavrilets, S. (2004). Fitness landscapes and the origin of species. Princeton: Princeton University Press.Google Scholar
  19. Gosden, T. P., & Svensson, E. I. (2008). Spatial and temporal dynamics in a sexual selection mosaic. Evolution, 62, 845–856.PubMedCrossRefGoogle Scholar
  20. Gosden, T. P., & Svensson, E. I. (2009). Density-dependent male mating harassment, female resistance, and male mimicry. American Naturalist, 173, 709–721.PubMedCrossRefGoogle Scholar
  21. Grant, P. R., & Grant, B. R. (2002). Unpredictable evolution in a 30-year study of Darwin's finches. Science, 296, 707–711.PubMedCrossRefGoogle Scholar
  22. Hansen, T. F. (2012). Adaptive Landscapes and macroevolutionary dynamics. In E. I. Svensson & R. Calsbeek (Eds.), The adaptive landscape in evolutionary biology. Oxford: Oxford University Press.Google Scholar
  23. Hawthorne, D. J., & Via, S. (2001). Genetic linkage of ecological specialization and reproductive isolation in pea aphids. Nature, 412, 904–907.PubMedCrossRefGoogle Scholar
  24. Hebets, E. A. (2003). Subadult experience influences adult mate choice in an arthropod: exposed female wolf spiders prefer males of a familiar phenotype. Proceedings of the National Academy of Sciences of the United States of America, 100, 13390–13395.PubMedCrossRefGoogle Scholar
  25. Hendry, A. P. (2001). Adaptive divergence and the evolution of reproductive isolation in the wild: an empirical demonstration using introduced sockeye salmon. Genetica, 112, 515–534.PubMedCrossRefGoogle Scholar
  26. Hendry, A. P., Nosil, P., & Rieseberg, L. H. (2007). The speed of ecological speciation. Functional Ecology, 21, 455–464.PubMedCrossRefGoogle Scholar
  27. Hubbell, S. P. (2001). The neutral theory of biodiversity. Princeton: Princeton University Press.Google Scholar
  28. Huey, R. B., & Ward, P. D. (2005). Hypoxia, global warming, and terrestrial Late Permian extinctions. Science, 308, 398–401.PubMedCrossRefGoogle Scholar
  29. Imada, Y., Kawakita, A., & Kato, M. (2011). Allopatric distribution and diversification without niche shift in a bryophyte-feeding basal moth lineage (Lepidoptera: Micropterigidae). Proceedings of the Royal Society B-Biological Sciences, 278, 3026–3033.CrossRefGoogle Scholar
  30. Jiggins, C. D., Naisbit, R. E., Coe, R. L., & Mallet, J. (2001). Reproductive isolation caused by colour pattern mimicry. Nature, 411, 302–305.PubMedCrossRefGoogle Scholar
  31. Keller, I., & Seehausen, O. (2012). Thermal adaptation and ecological speciation. Molecular Ecology, 21, 782–799.PubMedCrossRefGoogle Scholar
  32. Kozak, K. H., & Wiens, J. J. (2006). Does niche conservatism promote speciation? A case study in North American salamanders. Evolution, 60, 2604–2621.PubMedGoogle Scholar
  33. Kozak, K. H., & Wiens, J. J. (2007). Climatic zonation drives latitudinal variation in speciation mechanisms. Proceedings of the Royal Society of London B, 274, 2995–3003.CrossRefGoogle Scholar
  34. Kozak, K. H., & Wiens, J. J. (2010a). Accelerated rates of climatic-niche evolution underly rapid species diversification. Ecology Letters, 13, 1378–1389.PubMedCrossRefGoogle Scholar
  35. Kozak, K. H., & Wiens, J. J. (2010b). Niche conservatism drives elevational diversity patterns in Appalachian salamanders. American Naturalist, 176, 40–54.PubMedCrossRefGoogle Scholar
  36. Kuhn, T. (1962). The Structure of Scientific Revolutions. Chicago: University of Chicago Press.Google Scholar
  37. Kwan, L., & Rundle, H. D. (2010). Adaptation to desiccation fails to generate pre- and postmating isolation in replicate Drosophila melanogaster laboratory populations. Evolution, 64, 710–723.PubMedCrossRefGoogle Scholar
  38. Lachlan, R. F., & Servedio, M. R. (2004). Song learning accelerates allopatric speciation. Evolution, 58, 2049–2063.PubMedGoogle Scholar
  39. Lande, R. (1981). Models of speciation by sexual selection on polygenic traits. Proceedings of the National Academy of Sciences, USA, 78, 3721–3725.CrossRefGoogle Scholar
  40. Langerhans, R. B., Gifford, M. E., & Joseph, E. O. (2007). Ecological speciation in Gambusia fishes. Evolution, 61, 2056–2074.PubMedCrossRefGoogle Scholar
  41. Losos, J. B. (2008a). Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecology Letters, 11, 995–1003.PubMedCrossRefGoogle Scholar
  42. Losos, J. B. (2008b). Rejoinder to Wiens (2008): Phylogenetic niche conservatism, its occurrence and importance. Ecology Letters, 11, 1005–1007.CrossRefGoogle Scholar
  43. Magurran, A. E., & Ramnarine, I. W. (2004). Learned mate recognition and reproductive isolation in guppies. Animal Behaviour, 67, 1077–1082.CrossRefGoogle Scholar
  44. May, M. L. (1976). Thermoregulation and adaptation to temperature in dragonflies (Odonata-Anisoptera). Ecological Monographs, 46, 1–32.CrossRefGoogle Scholar
  45. May, M. L. (1977). Thermoregulation and reproductive activity in tropical dragonflies of genus Micrathyria. Ecology, 58, 787–798.CrossRefGoogle Scholar
  46. May, M. L. (1979). Energy-metabolism of dragonflies (Odonata, Anisoptera) at rest and during endothermic warm-up. Journal of Experimental Biology, 83, 79–94.Google Scholar
  47. Mayhew, P. J., Jenkins, G. B., & Benton, T. G. (2008). A long-term association between global temperature and biodiversity, origination and extinction in the fossil record. Proceedings of the Royal Society B–Biological. Sciences, 275, 47–53.Google Scholar
  48. McPeek, M. A., & Brown, J. M. (2000). Building a regional species pool: diversification of the Enallagma damselflies in Eastern North America. Ecology, 421, 904–920.Google Scholar
  49. McPeek, M. A., & Gavrilets, S. (2006). The evolution of female mating preferences: Differentiation from species with promiscuous males can promote speciation. Evolution, 60, 1967–1980.PubMedGoogle Scholar
  50. McPeek, M. A., Shen, L., Torrey, J. Z., & Farid, H. (2008). The tempo and mode of three-dimensional morphological evolution in male reproductive structures. American Naturalist, 171, E158–E178.PubMedCrossRefGoogle Scholar
  51. Nosil, P. (2004). Reproductive isolation caused by visual predation on migrants between divergent environments. Proceedings of the Royal Society of London Series B–Biological. Sciences, 271, 1521–1528.Google Scholar
  52. Nosil, P. (2008). Speciation with gene flow could be common. Molecular Ecology, 17, 2103–2106.PubMedCrossRefGoogle Scholar
  53. Nosil, P. (2009). Adaptive population divergence in cryptic color-pattern following a reduction in gene flow. Evolution, 63, 1902–1912.PubMedCrossRefGoogle Scholar
  54. Nosil, P., & Crespi, B. J. (2004). Does gene flow constrain adaptive divergence or vice versa? A test using ecomorphology and sexual isolation in Timema cristinae walking-sticks. Evolution, 58, 102–112.PubMedGoogle Scholar
  55. Nosil, P., & Flaxman, S. M. (2011). Conditions for mutation-order speciation. Proceedings of the Royal Society B–Biological. Sciences, 278, 399–407.Google Scholar
  56. Nosil, P. & Sandoval, C. P. (2008). Ecological niche dimensionality and the evolutionary diversification of stick insects. PLoS ONE 3.Google Scholar
  57. Nosil, P., Crespi, B. J., & Sandoval, C. P. (2002). Host-plant adaptation drives the parallel evolution of reproductive isolation. Nature, 417, 440–443.PubMedCrossRefGoogle Scholar
  58. Nosil, P., Crespi, B. J., & Sandoval, C. P. (2003). Reproductive isolation driven by the combined effects of ecological adaptation and reinforcement. Proceedings of the Royal Society of London Series B–Biological. Sciences, 270, 1911–1918.Google Scholar
  59. Nosil, P., Vines, T. H., & Funk, D. J. (2005). Perspective: Reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution, 59, 705–719.PubMedGoogle Scholar
  60. Nosil, P., Egan, S. P., & Funk, D. J. (2008). Heterogeneous genomic differentiation between walking-stick ecotypes: "Isolation by adaptation" and multiple roles for divergent selection. Evolution, 62, 316–336.PubMedCrossRefGoogle Scholar
  61. Nyman, T., Vikberg, V., Smith, D.R. & Boevé, J-L. (2010). How common is ecological speciation in plant-feeding insects? A ‘Higher’ Nematinae perspective. BMC Evolutionary Biology 266: doi: 10.1186/1471-2148-10-266
  62. Peterson, A. T., Soberón, J., Pearson, R. G., Anderson, R. P., Martinez-Meyer, E., Nakamura, M., & Araújo, M. B. (2011). Ecological niches and geographic distributions. Princeton: Princeton University Press.Google Scholar
  63. Price, T. (2008). Speciation in birds. Denver, CO: Roberts.Google Scholar
  64. Price, T. D. (2010). The roles of time and ecology in the continental radiation of the Old World leaf warblers (Phylloscopus and Seicercus). Philosophical Transactions of the Royal Society B–Biological. Sciences, 365, 1749–1762.Google Scholar
  65. Ramsey, J., Bradshaw, H. D., & Schemske, D. W. (2003). Components of reproductive isolation between the monkeyflowers Mimulus lewisii and M. cardinalis (Phrymaceae). Evolution, 57, 1520–1534.PubMedGoogle Scholar
  66. Rice, W. R., & Hostert, E. (1993). Laboratory experiments on speciation: what have we learned in 40 years? Evolution, 47, 1637–1653.CrossRefGoogle Scholar
  67. Richman, A. D., & Price, T. (1992). Evolution of ecological differences in the Old World leaf warblers. Nature, 355, 817–821.PubMedCrossRefGoogle Scholar
  68. Rundell, R. J., & Price, T. D. (2009). Adaptive radiation, nonadaptive radiation, ecological speciation and nonecological speciation. Trends in Ecology & Evolution, 24, 394–399.CrossRefGoogle Scholar
  69. Rundle, H. D. (2003). Divergent environments and population bottlenecks fail to generate premating isolation in Drosophila pseudoobscura. Evolution, 57, 2557–2565.PubMedGoogle Scholar
  70. Rundle, H. D., & Nosil, P. (2005). Ecological speciation. Ecology Letters, 8, 336–352.CrossRefGoogle Scholar
  71. Rundle, H. D., Nagel, L., Boughman, J. W., & Schluter, D. (2000). Natural selection and parallel speciation in sympatric sticklebacks. Science, 287, 306–308.PubMedCrossRefGoogle Scholar
  72. Saastamoinen, M., & Hanski, I. (2008). Genotypic and environmental effects on flight activity and oviposition in the Glanville fritillary butterfly. American Naturalist, 171, E701–E712.CrossRefGoogle Scholar
  73. Saetre, G. P., & Saether, S. A. (2010). Ecology and genetics of speciation in Ficedula flycatchers. Molecular Ecology, 19, 1091–1106.PubMedCrossRefGoogle Scholar
  74. Schluter, D. (2000). The Ecology of Adaptive Radiation. Oxford: Oxford University Press.Google Scholar
  75. Schluter, D. (2009). Evidence for Ecological Speciation and Its Alternative. Science, 323, 737–741.PubMedCrossRefGoogle Scholar
  76. Servedio, M. R., & Noor, M. A. F. (2003). The role of reinforcement in speciation: Theory and data. Annual Review of Ecology, Evolution, and Systematics, 34, 339–364.CrossRefGoogle Scholar
  77. Servedio, M. R., Saether, S. A., & Saethre, G. P. (2009). Reinforcement and learning. Evolutionary Ecology, 23, 109–123.CrossRefGoogle Scholar
  78. Siepielski, A. M., DiBattista, J. D., & Carlson, S. M. (2009). It's about time: the temporal dynamics of phenotypic selection in the wild. Ecology Letters, 12, 1261–1276.PubMedCrossRefGoogle Scholar
  79. Siepielski, A. M., Hung, K.-L., Bein, E. E. B., & McPeek, M. A. (2010). Experimental evidence for neutral community dynamics governing an insect assemblage. Ecology, 91, 847–857.PubMedCrossRefGoogle Scholar
  80. Sobel, J. M., Chen, G. F., Watt, L. R., & Schemske, D. W. (2010). The biology of speciation. Evolution, 64, 295–315.PubMedCrossRefGoogle Scholar
  81. Struwe, L., Smouse, P. E., Heiberg, E., Haag, S., & Lathrop, R. G. (2011). Spatial and ecological vicariance analysis (SEEVA), a novel approach to biogeography and speciation research, with an example from Brazilian Gentianaceae. Journal of Biogeography, 38, 1841–1854.CrossRefGoogle Scholar
  82. Svensson, E. I., Eroukhmanoff, F., & Friberg, M. (2006). Effects of natural and sexual selection on adaptive population divergence and premating isolation in a damselfly. Evolution, 60, 1242–1253.PubMedGoogle Scholar
  83. Svensson, E. I., Eroukhmanoff, F., Karlsson, K., Runemark, A., & Brodin, A. (2010). A role for learning in population divergence of mate preferences. Evolution, 64, 3101–3113.PubMedCrossRefGoogle Scholar
  84. Svensson, E. I., & Friberg, M. (2007). Selective predation on wing morphology in sympatric damselflies. American Naturalist, 170, 101–112.PubMedCrossRefGoogle Scholar
  85. Svensson, E. I., Karlsson, K., Friberg, M., & Eroukhmanoff, F. (2007). Gender differences in species recognition and the evolution of asymmetric sexual isolation. Current Biology, 22, 1943–1947.CrossRefGoogle Scholar
  86. Svensson, E. I., Kristoffersen, L., Oskarsson, K., & Bensch, S. (2004). Molecular population divergence and sexual selection on morphology in the banded demoiselle (Calopteryx splendens). Heredity, 93, 423–433.PubMedCrossRefGoogle Scholar
  87. Uyeda, J. C., Hansen, T. F., Arnold, S. J., & Pienaar, J. (2011). The million-year wait for macroevolutionary bursts. Proceedings of the National Academy of Sciences of the United States of America, 108, 15908–15913.PubMedCrossRefGoogle Scholar
  88. Vallin, N. (2011). Competition, Coexistence and Character Displacement in a Young Avian Hybrid Zone. PhD thesis, Uppsala University.Google Scholar
  89. Verzijden, M. N., & ten Cate, C. (2007). Early learning influences species assortative mating preferences in Lake Victoria cichlid fish. Biology Letters, 3, 134–136.PubMedCrossRefGoogle Scholar
  90. Verzijden, M. N., Lachlan, R. F., & Servedio, M. R. (2005). Female mate-choice behavior and sympatric speciation. Evolution, 59, 2097–2108.PubMedGoogle Scholar
  91. Wade, M. J., Johnson, N. A., & Toquenaga, Y. (1999). Temperature effects and genotype-by-environment interactions in hybrids: Haldane’s Rule in flour beetles. Evolution, 53, 855–865.CrossRefGoogle Scholar
  92. Wellenreuther, M., Syms, C., & Clements, K. D. (2008). Body size and ecological diversification in a sister species pair of triplefin fishes. Evolutionary Ecology, 22, 575–592.CrossRefGoogle Scholar
  93. Wellenreuther, M., Tynkkynen, K., & Svensson, E. I. (2009). Simulating range expansion: male mate choice and loss of premating isolation in damselflies. Evolution, 64, 242–252.PubMedCrossRefGoogle Scholar
  94. Wellenreuther, M., Larson, K. W., & Svensson, E. I. (2012). Climatic niche divergence or conservatism? Environmental niches and range limits in ecologically similar damselflies. Ecology. doi: 10.1890/11-1181.1.
  95. Wiens, J. J. (2004). Speciation and ecology revisited: Phylogenetic niche conservatism and the origin of species. Evolution, 58, 193–197.PubMedGoogle Scholar
  96. Wiens, J. J. (2008). Commentary on Losos (2008): Niche conservatism deja vu. Ecology Letters, 11, 1004–1005.PubMedCrossRefGoogle Scholar
  97. Wiens, J. J., Ackerly, D. D., Allen, A. P., Anacker, B. L., Buckley, L. B., Cornell, H. V., Damschen, E. I., Davies, T. J., Grytnes, J. A., Harrison, S. P., Hawkins, B. A., Holt, R. D., Mccain, C. M., & Stephens, P. R. (2010). Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 13, 1310–1324.PubMedCrossRefGoogle Scholar
  98. Wiens, J. J., Pyron, R. A., & Moen, D. S. (2011). Phylogenetic origins of local-scale diversity patterns and the causes of Amazonian megadiversity. Ecology Letters, 14, 643–652.PubMedCrossRefGoogle Scholar
  99. Wiley, C., Fogelberg, N., Saether, S. A., Veen, T., Svedin, N., Kehlenbeck, J. V., & Qvarnstrom, A. (2007). Direct benefits and costs for hybridizing Ficedula flycatchers. Journal of Evolutionary Biology, 20, 854–864.PubMedCrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2012

Authors and Affiliations

  1. 1.Department of Biology, Evolutionary Ecology Unit, Ecology BuildingLund UniversityLundSweden

Personalised recommendations