Organisms Diversity & Evolution

, Volume 12, Issue 4, pp 387–402 | Cite as

Species status and population structure of mussels (Mollusca: Bivalvia: Mytilus spp.) in the Wadden Sea of Lower Saxony (Germany)

  • Georg Steinert
  • Thomas Huelsken
  • Gabriele Gerlach
  • Olaf R. P. Bininda-Emonds
Original Article


Three species of mussel (genus Mytilus) occur in Europe: M. edulis (Linnaeus 1758), M. galloprovincialis (Lamarck 1819) and M. trossulus (Gould, Boston Society of Natural History 3: 343–348, 1850). Although these species are indigenous to the North Sea, the Mediterranean and the Baltic Sea, respectively, they form an extended patchy species complex along the coasts of Europe (“the Mytilus edulis complex”) and are able to hybridize where their distributions overlap. Recent studies examining the taxonomic status and genetic composition of Mytilus populations in the Netherlands and the British Isles have revealed introgressive hybridization processes within this species complex, with hints of an invasion of nonindigenous M. galloprovincialis into the North Sea. Furthermore, an extensive international mussel fishery industry in Europe (i.e., Great Britain, the Netherlands, Denmark, and Germany) is also in discussion for a possibly anthropogenically induced bioinvasion of nonindigenous Mytilus traits into the Wadden Sea area. Although it is assumed that the Wadden Sea of Germany comprises M. edulis only, this has never been confirmed in a molecular genetic study. To assess the situation for the Wadden Sea of Lower Saxony, we conducted the first molecular study of the Mytilus genus in the region. Taxonomic identification of 504 mussels from 13 intertidal mussel banks using the nDNA marker Me15/16 revealed a population composition of 99% M. edulis and 1% M. edulis X M. galloprovincialis hybrids. Hence, the Wadden Sea population is unaffected by range expansion of nonindigenous Mytilus traits. The genetic structure of the M. edulis populations was investigated using the phylogenetic and population genetics analyses of the mitochondrial DNA cytochrome-c-oxidase subunit I (COI) and the first variable domain of the control region (VD1), which were sequenced for >120 female individuals. These results showed a heterogeneous, panmictic population due to unrestricted gene flow. This can be attributed to extensive larval dispersal linked to the tidal circulation system in the back barrier basins of the Wadden Sea.


Bioinvasion Haplotype-networks Hybridization Mytilus edulis-complex Panmixia Phylogeny Population structure 



We thank two anonymous reviewers for the improving comments and suggestions. All sampling was undertaken with the consent of the “Nationalparkverwaltung Niedersächsisches Wattenmeer”, for whom we thank for their assistance. In particular, we thank Alexandra Markert, Dr. Marc Herlyn, Dr. Gerald Millat and Dr. Uwe Walter for their advice and support. Additional sampling trips were made possible through the Dr. Achim Wehrmann (Working Group Actuopalaeontology, Senckenberg am Meer) and the “Nationalparkverwaltung Niedersächsisches Wattenmeer” in cooperation with the ICBM-Terramare. Technical support during the sequencing process was kindly provided by Prof. Dr. Hollmann (Department of Biochemistry I - Receptor Biochemistry, Ruhr University Bochum). Funding assistance was provided in part by the EWE-Stiftung.

Supplementary material

13127_2012_75_MOESM1_ESM.pdf (507 kb)
Supplementary Fig. 1 Mismatch distribution (demographic expansion) of the concatenated mtDNA data set (n = 84) for the total sampling area (i.e., Group 1) (PDF 506 kb)
13127_2012_75_MOESM2_ESM.pdf (2.2 mb)
Supplementary Fig. 2 Haplotype network of the concatenated mtDNA haplotype data set (n = 84). For the associated sampling sites of the consecutive numbering of haplotypes see Supplementary Table 6 (PDF 2226 kb)
13127_2012_75_MOESM3_ESM.docx (42 kb)
Supplementary Table 1 Summary for sequence data obtained from GenBank for various outgroup taxa. Status refers to the position of the inferred haplotype relative to the Wadden Sea clade of M. edulis haplotypes: shared = shared haplotype with M. edulis, within = clusters within clade, outside = clusters outside clade, and outgroup = used to root tree. (DOCX 41 kb)
13127_2012_75_MOESM4_ESM.docx (39 kb)
Supplementary Table 2 Frequencies for the COI, VD1, and combined COI&VD1 sequences from each sampling site and for the pooled locations “west”, “center”, and “east” (DOCX 39 kb)
13127_2012_75_MOESM5_ESM.docx (41 kb)
Supplementary Table 3 Population differentiation showing pairwise (Φ ST) values for the COI coding mtDNA region above the diagonal. Φ ST p-values below diagonal. Total of 10100 permutations (DOCX 40 kb)
13127_2012_75_MOESM6_ESM.docx (41 kb)
Supplementary Table 4 Population differentiation showing pairwise (Φ ST) values for the VD1 mtDNA region above the diagonal. Φ ST P-values below diagonal; 10,100 permutations (DOCX 40 kb)
13127_2012_75_MOESM7_ESM.docx (40 kb)
Supplementary Table 5 Population differentiation showing pairwise (Φ ST) values for the COI&VD1 concatenated mtDNA regions above the diagonal. Φ ST P-values below diagonal; 10,100 permutations (DOCX 40 kb)
13127_2012_75_MOESM8_ESM.docx (45 kb)
Supplementary Table 6 Haplotype data set of the concatenated mtDNA loci with consecutive numbering of haplotypes and their associated sampling sites (DOCX 45 kb)


  1. Beaumont, A. R., Hawkins, M. P., Doig, F. L., Davies, I. M., & Snow, M. (2008). Three species of Mytilus and their hybrids identified in a Scottish Loch: Natives, relicts and invaders? Journal of Experimental Marine Biology and Ecology, 367(2), 100–110. doi: 10.1016/j.jembe.2008.08.021.CrossRefGoogle Scholar
  2. Bierne, N., Borsa, P., Daguin, C., Jollivet, D., Viard, F., Bonhomme, F., et al. (2003). Introgression patterns in the mosaic hybrid zone between Mytilus edulis and M-galloprovincialis. Molecular Ecology, 12(2), 447–461. doi: 10.1046/j.1365-294X.2003.01730.x.PubMedCrossRefGoogle Scholar
  3. Bierne, N., David, P., Boudry, P., & Bonhomme, F. (2002). Assortative fertilization and selection at larval stage in the mussels Mytilus edulis and M-galloprovincialis. Evolution, 56(2), 292–298.PubMedGoogle Scholar
  4. Bierne, N., David, P., Langlade, A., & Bonhomme, F. (2002). Can habitat specialisation maintain a mosaic hybrid zone in marine bivalves? Marine Ecology Progress Series, 245, 157–170.CrossRefGoogle Scholar
  5. Bininda-Emonds, O. R. P. (2010). seqCleaner v.1.1. Program distributed by the author. AG Systematik und Evolutionsbiologie, IBU - Fakultät V, Carl von Ossietzky Universität Oldenburg.Google Scholar
  6. Brandt, G., Wehrmann, A., & Wirtz, K. W. (2008). Rapid invasion of Crassostrea gigas into the German Wadden Sea dominated by larval supply. Journal of Sea Research, 59(4), 279–296. doi: 10.1016/j.seares.2008.03.004.CrossRefGoogle Scholar
  7. Burzynski, A., & Smietanka, B. (2009). Is interlineage recombination responsible for low divergence of mitochondrial nad3 Genes in Mytilus galloprovincialis? Molecular Biology and Evolution, 26(7), 1441–1445. doi: 10.1093/molbev/msp085.PubMedCrossRefGoogle Scholar
  8. Burzynski, A., Zbawicka, M., Skibinski, D. O. F., & Wenne, R. (2003). Evidence for recombination of mtDNA in the marine mussel Mytilus trossulus from the Baltic. Molecular Biology and Evolution, 20(3), 388–392. doi: 10.1093/molbev.msg058.PubMedCrossRefGoogle Scholar
  9. Burzynski, A., Zbawicka, M., Skibinski, D. O. F., & Wenne, R. (2006). Doubly uniparental inheritance is associated with high polymorphism for rearranged and recombinant control region haplotypes in Baltic Mytilus trossulus. Genetics, 174(3), 1081–1094. doi: 10.1534/genetics.106.063180.PubMedCrossRefGoogle Scholar
  10. Buttger, H., Asmus, H., Asmus, R., Buschbaum, C., Dittmann, S., & Nehls, G. (2008). Community dynamics of intertidal soft-bottom mussel beds over two decades. Helgoland Marine Research, 62(1), 23–36. doi: 10.1007/s10152-007-0099-y.CrossRefGoogle Scholar
  11. Cao, L. Q., Kenchington, E., Zouros, E., & Rodakis, G. C. (2004). Evidence that the large noncoding sequence is the main control region of maternally and paternally transmitted mitochondrial genomes of the marine mussel (Mytilus spp.). Genetics, 167(2), 835–850.PubMedCrossRefGoogle Scholar
  12. Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9(10), 1657–1659.PubMedCrossRefGoogle Scholar
  13. Coghlan, B., & Gosling, E. (2007). Genetic structure of hybrid mussel populations in the west of Ireland: Two hypotheses revisited. Marine Biology, 150, 841–852. doi: 10.1007/s00227-006-0408-z.CrossRefGoogle Scholar
  14. Conrad, T. A. (1837). Description of new marine shells from upper California, collected by Thomas Nuttall, Esq. Journal of the Academy of Natural Sciences of Philadelphia, 7, 227–242.Google Scholar
  15. Daguin, C., Bonhomme, F., & Borsa, P. (2001). The zone of sympatry and hybridization of Mytilus edulis and M-galloprovincialis, as described by intron length polymorphism at locus mac-1. Heredity, 86, 342–354. doi: 10.1046/j.1365-2540.2001.00832.x.PubMedCrossRefGoogle Scholar
  16. Excoffier, L., & Lischer, H. E. L. (2010). Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Molecular Ecology Resources, 10(3), 564–567. doi: 10.1111/j.1755-0998.2010.02847.x.PubMedCrossRefGoogle Scholar
  17. Filipowicz, M., Burzynski, A., Smietanka, B., & Wenne, R. (2008). Recombination in mitochondrial DNA of European mussels Mytilus. Journal of Molecular Evolution, 67(4), 377–388. doi: 10.1007/s00239-008-9157-6.PubMedCrossRefGoogle Scholar
  18. Gardner, J. P. A., & Skibinski, D. O. F. (1991). Mitochondrial-DNA and allozyme covariation in a hybrid mussel population. Journal of Experimental Marine Biology and Ecology, 149(1), 45–54.CrossRefGoogle Scholar
  19. Gardner, J. P. A., & Thompson, R. J. (2009). Influence of genotype and geography on shell shape and morphometric trait variation among North Atlantic blue mussel (Mytilus spp.) populations. Biological Journal of the Linnean Society, 96(4), 875–897. doi: 10.1111/j.1095-8312.2008.01166.x.CrossRefGoogle Scholar
  20. Gerard, K., Bierne, N., Borsa, P., Chenuil, A., & Feral, J.-P. (2008). Pleistocene separation of mitochondrial lineages of Mytilus spp. mussels from Northern and Southern Hemispheres and strong genetic differentiation among southern populations. Molecular Phylogenetics and Evolution, 49(1), 84–91. doi: 10.1016/j.ympev.2008.07.006.PubMedCrossRefGoogle Scholar
  21. Gilg, M. R., O'Connor, M., Norris, R., & Hilbish, T. J. (2009). Maintenance of parental populations bordering a blue mussel hybrid zone by post-settlement selection. Journal of Molluscan Studies, 75, 207–214. doi: 10.1093/mollus/eyp016.CrossRefGoogle Scholar
  22. Gosling, E. M. (1992). The mussel Mytilus: Ecology, physiology, genetics and culture. Amsterdam: Elsevier.Google Scholar
  23. Gosling, E. M., Doherty, S., & Howley, N. (2008). Genetic characterization of hybrid mussel (Mytilus) populations on Irish coasts. Journal of the Marine Biological Association of the United Kingdom, 88(2), 341–346. doi: 10.1017/s002531408000957.CrossRefGoogle Scholar
  24. Gould, A. A. (1850). Shells from the United States Exploring Expedition. Boston Society of Natural History, 3, 343–348.Google Scholar
  25. Gould, A. A. (1861). Descriptions of shells collected by the North Pacific Exploring Expedition. Proceedings of the Boston Society of Natural History, 8, 14–40.Google Scholar
  26. Hall, T. (1999). BioEdit: A user friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  27. Herlyn, M., Millat, G., & Petersen, B. (2008). Documentation of sites of intertidal blue mussel (Mytilus edulis L.) beds of the Lower Saxonian Wadden Sea, southern North Sea (as of 2003) and the role of their structure for spatfall settlement. Helgoland Marine Research, 62(2), 177–188. doi: 10.1007/s10152-008-0106-y.CrossRefGoogle Scholar
  28. Hilbish, T. J., Carson, E. W., Plante, J. R., Weaver, L. A., & Gilg, M. R. (2002). Distribution of Mytilus edulis, M-galloprovincialis, and their hybrids in open-coast populations of mussels in southwestern England. Marine Biology, 140(1), 137–142. doi: 10.1007/s002270100631.CrossRefGoogle Scholar
  29. Hilbish, T. J., Mullinax, A., Dolven, S. I., Meyer, A., Koehn, R. K., & Rawson, P. D. (2000). Origin of the antitropical distribution pattern in marine mussels (Mytilus spp.): Routes and timing of transequatorial migration. Marine Biology, 136(1), 69–77. doi: 10.1007/s002270050010.CrossRefGoogle Scholar
  30. Inoue, K., Waite, J. H., Matsuoka, M., Odo, S., & Harayama, S. (1995). Interspecific variations in adhesive protein sequences of Mytilus edulis, M-galloprovincialis, and M-trossulus. The Biological Bulletin, 189(3), 370–375.PubMedCrossRefGoogle Scholar
  31. Kijewski, T., Wijsman, J. W. M., Hummel, H., & Wenne, R. (2009). Genetic composition of cultured and wild mussels Mytilus from The Netherlands and transfers from Ireland and Great Britain. Aquaculture, 287(3–4), 292–296. doi: 10.1016/j.aquaculture.2008.10.048.CrossRefGoogle Scholar
  32. Lamarck, J. B. P. A. de M. (1819). Histoire naturelle des animaux sans vertèbres présentant les caractères généraux et particuliers de ces animaux, leur distribution, leurs genres, et la citation des principales espèces qui s'y rapportent: Précédée d'une introduction offrant la détermination des caractères essentiels de l'animal, sa distinction du végétal et des autres corps naturels: Enfin, l'exposition des principes fondamentaux de la zoologie, 6(1), i-vi, 1–343. Paris, Chez l'Auteur, au Jardin du Roi.Google Scholar
  33. Ladoukakis, E. D., Theologidis, I., Rodakis, G. C., & Zouros, E. (2011). Homologous recombination between highly diverged mitochondrial sequences: Examples from maternally and paternally transmitted genomes. Molecular Biology and Evolution, 28(6), 1847–1859. doi: 10.1093/molbev/msr007.PubMedCrossRefGoogle Scholar
  34. Ladoukakis, E. D., & Zouros, E. (2001). Direct evidence for homologous recombination in mussel (Mytilus galloprovincialis) mitochondrial DNA. Molecular Biology and Evolution, 18(7), 1168–1175.PubMedCrossRefGoogle Scholar
  35. Librado, P., & Rozas, J. (2009). DnaSP v5: A software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25(11), 1451–1452. doi: 10.1093/bioinformatics/btp187.PubMedCrossRefGoogle Scholar
  36. Linnaeus, C. (1758). Systema naturae per regna tria naturae, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. pp. [1–4], 1–824. Holmiae. (Salvius).Google Scholar
  37. Loewe, P., Becker, G., Brockmann, U., Dick, S., Frohse, A., Herrmann, J., et al. (2004). Nordseezustand. Bundesamt für Seeschifffahrt und Hydrographie (BSH), 40.Google Scholar
  38. Lowe, S., Browne, M., Boudjelas, S., De Poorter, M. (2000). 100 of the world's worst invasive alien species. A selection from the Global Invasive Species Database (IUCN). Hollands Printing, Auckland.Google Scholar
  39. Luttikhuizen, P. C., Koolhaas, A., Bol, A., & Piersma, T. (2002). Mytilus galloprovincialis-type foot-protein-1 alleles occur at low frequency among mussels in the Dutch Wadden Sea. Journal of Sea Research, 48(3), 241–245.CrossRefGoogle Scholar
  40. Mantel, N. (1967). Detection of disease clustering and a generalized regression approach. Cancer Research, 27(2P1), 209.PubMedGoogle Scholar
  41. Martin, D. P., Lemey, P., Lott, M., Moulton, V., Posada, D., & Lefeuvre, P. (2010). RDP3: A flexible and fast computer program for analyzing recombination. Bioinformatics, 26(19), 2462–2463. doi: 10.1093/bioinformatics/btq467.PubMedCrossRefGoogle Scholar
  42. Nehls, G., Witte, S., Buttger, H., Dankers, N., Jansen, J., Millat, G., et al. (2009). Beds of blue mussels and Pacific oysters. Thematic report N. 11. Quality status report 2009. WaddenSea Ecosystem No. 25. Wilhelmshaven: Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group.Google Scholar
  43. Nehring, S., Reise, K., Dankers, N., & Kristensen, P. S. (2009). Alien species. Thematic report no. 7. Quality status report 2009. WaddenSea Ecosystem No. 25. Wilhelmshaven: Common Wadden Sea Secretariat, Trilateral Monitoring and Assessment Group.Google Scholar
  44. Pleines, T., Jakob, S. S., & Blattner, F. R. (2009). Application of non-coding DNA regions in intraspecific analyses. Plant Systematics and Evolution, 282(3–4), 281–294. doi: 10.1007/s00606-008-0036-9.CrossRefGoogle Scholar
  45. Quesada, H., Wenne, R., & Skibinski, D. O. F. (1999). Interspecies transfer of female mitochondrial DNA is coupled with role-reversals and departure from neutrality in the mussel Mytilus trossulus. Molecular Biology and Evolution, 16(5), 655–665.PubMedCrossRefGoogle Scholar
  46. Rawson, P. D. (2005). Nonhomologous recombination between the large unassigned region of the male and female mitochondrial genomes in the mussel, Mytilus trossulus. Journal of Molecular Evolution, 61(6), 717–732. doi: 10.1007/s00239-004-0035-6.PubMedCrossRefGoogle Scholar
  47. Rawson, P. D., & Hilbish, T. J. (1998). Asymmetric introgression of mitochondrial DNA among European populations of blue mussels (Mytilus spp.). Evolution, 52(1), 100–108.CrossRefGoogle Scholar
  48. Riginos, C., & Cunningham, C. W. (2005). Local adaptation and species segregation in two mussel (Mytilus edulis x Mytilus trossulus) hybrid zones. Molecular Ecology, 14(2), 381–400. doi: 10.1111/j.1365-294X.2004.02379.x.PubMedCrossRefGoogle Scholar
  49. Riginos, C., & Henzler, C. M. (2008). Patterns of mtDNA diversity in North Atlantic populations of the mussel Mytilus edulis. Marine Biology, 155(4), 399–412. doi: 10.1007/s00227-008-1038-4.CrossRefGoogle Scholar
  50. Robinson, T. B., Griffiths, C. L., McQuaid, C., & Rius, M. (2005). Marine alien species of South Africa—status and impacts. African Journal of Marine Science, 27(1), 297–306.CrossRefGoogle Scholar
  51. Rogers, A. R., & Harpending, H. (1992). Population-growth makes waves in the distribution of pairwise genetic-differences. Molecular Biology and Evolution, 9(3), 552–569.PubMedGoogle Scholar
  52. Slatkin, M., & Hudson, R. R. (1991). Pairwise comparisons of mitochondrial-dna sequences in stable and exponentially growing populations. Genetics, 129(2), 555–562.PubMedGoogle Scholar
  53. Smaal, A. C. (2002). European mussel cultivation along the Atlantic coast: Production status, problems and perspectives. Hydrobiologia, 484(1–3), 89–98.CrossRefGoogle Scholar
  54. Smietanka, B., Burzynski, A., & Wenne, R. (2009). Molecular population genetics of male and female mitochondrial genomes in European mussels Mytilus. Marine Biology, 156(5), 913–925. doi: 10.1007/s00227-009-1137-x.CrossRefGoogle Scholar
  55. Smietanka, B., Burzynski, A., & Wenne, R. (2010). Comparative genomics of marine mussels (Mytilus spp.) gender associated mtDNA: Rapidly evolving atp8. Journal of Molecular Evolution, 71(5–6), 385–400. doi: 10.1007/s00239-010-9393-4.PubMedCrossRefGoogle Scholar
  56. Smietanka, B., Zbawicka, M., Wolowicz, M., & Wenne, R. (2004). Mitochondrial DNA lineages in the European populations of mussels (Mytilus spp.). Marine Biology, 146(1), 79–92. doi: 10.1007/s00227-004-1418-3.CrossRefGoogle Scholar
  57. Stamatakis, A., Ludwig, T., & Meier, H. (2005). RAxML-III: A fast program for maximum likelihood-based inference of large phylogenetic trees. Bioinformatics, 21(4), 456–463. doi: 10.1093/bioinformatics/bti191.PubMedCrossRefGoogle Scholar
  58. Stamatakis, A., Hoover, P., & Rougemont, J. (2008). A rapid bootstrap algorithm for the RAxML Web servers. Systematic Biology, 57, 758–771. doi: 10.1080/10635150802429642 Google Scholar
  59. Stanev, E. V., Grayek, S., & Staneva, J. (2009). Temporal and spatial circulation patterns in the East Frisian Wadden Sea. Ocean Dynamics, 59(2), 167–181. doi: 10.1007/s10236-008-0159-0.CrossRefGoogle Scholar
  60. Staneva, J., Stanev, E. V., Wolff, J. O., Badewien, T. H., Reuter, R., Flemming, B., et al. (2009). Hydroynamics and sediment dynamics in the German Bight. A focus on observations and numerical modelling in the East Frisian Wadden Sea. Continental Shelf Research, 29(1), 302–319. doi: 10.1016/j.csr.2008.01.006.CrossRefGoogle Scholar
  61. Stewart, D. T., Saavedra, C., Stanwood, R. R., Ball, A. O., & Zouros, E. (1995). Male and female mitochondrial-DNA lineages in the blue mussel (Mytilus-edulis) species group. Molecular Biology and Evolution, 12(5), 735–747.PubMedGoogle Scholar
  62. Stuckas, H., Stoof, K., Quesada, H., & Tiedemann, R. (2009). Evolutionary implications of discordant clines across the Baltic Mytilus hybrid zone (Mytilus edulis and Mytilus trossulus). Heredity, 103(2), 146–156. doi: 10.1038/hdy.2009.37.PubMedCrossRefGoogle Scholar
  63. Swofford, D. (2002). PAUP*. Phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates.Google Scholar
  64. Thunberg, C. P. (1793). Tekning och Beskrifning på en stor Ostronsort ifrån Japan. Kongliga Vetenskaps Academiens Nya Handlingar, 14(4–6), 140–142.Google Scholar
  65. Väinölä, R., & Hvilsom, M. M. (1991). Genetic-divergence and a hybrid zone between Baltic and North-Sea Mytilus populations (Mytilidae, Mollusca). Biological Journal of the Linnean Society, 43(2), 127–148. doi: 10.1111/j.1095-8312.1991.tb00589.x.CrossRefGoogle Scholar
  66. Väinölä, R., & Strelkov, P. (2011). Mytilus trossulus in Northern Europe. Marine Biology, 1–17. doi: 10.1007/s00227-010-1609-z.
  67. Wares, J. P., & Cunningham, C. W. (2001). Phylogeography and historical ecology of the North Atlantic intertidal. Evolution, 55(12), 2455–2469.PubMedGoogle Scholar
  68. Westfall, K. M., Wimberger, P. H., & Gardner, J. P. A. (2010). An RFLP assay to determine if Mytilus galloprovincialis Lmk. (Mytilidae; Bivalvia) is of Northern or Southern hemisphere origin. Molecular Ecology Resources, 10, 573–575. doi: 10.1111/j.1755-0998.2009.02779.x
  69. Widdows, J. (1991). Physiological ecology of mussel larvae. Aquaculture, 94(2–3), 147–163.CrossRefGoogle Scholar
  70. Wijsman, J. W. M., & Smaal, A. C. (2006). Risk analysis of mussel transfer, Wageningen IMARES. (Rapport nr C044/06).Google Scholar
  71. Zachos, F. E. (2009). Gene trees and species trees—mutual influences and interdependences of population genetics and systematics. Journal of Zoological Systematics and Evolutionary Research, 47(3), 209–218. doi: 10.1111/j.1439-0469.2009.00541.x.CrossRefGoogle Scholar
  72. Zbawicka, M., Burzynski, A., & Wenne, R. (2007). Complete sequences of mitochondrial genomes from the Baltic mussel Mytilus trossulus. Gene, 406(1–2), 191–198. doi: 10.1016/j.gene.2007.10.003.PubMedCrossRefGoogle Scholar
  73. Zouros, E. (2000). The exceptional mitochondrial DNA system of the mussel family Mytilidae. Genes & Genetic Systems, 75(6), 313–318.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2012

Authors and Affiliations

  • Georg Steinert
    • 1
    • 5
  • Thomas Huelsken
    • 2
    • 4
  • Gabriele Gerlach
    • 3
  • Olaf R. P. Bininda-Emonds
    • 1
  1. 1.Faculty V, Institute for Biology and Environmental Sciences (IBU), AG Systematics and Evolutionary BiologyCarl von Ossietzky University OldenburgOldenburgGermany
  2. 2.Department of Biochemistry I—Receptor BiochemistryRuhr University BochumBochumGermany
  3. 3.Faculty V, Institute for Biology and Environmental Sciences (IBU), AG Animal Biodiversity and Evolutionary BiologyCarl von Ossietzky University OldenburgOldenburgGermany
  4. 4.School of Biological SciencesThe University of QueenslandBrisbaneAustralia
  5. 5.ICBM Terramare, Jade InnovationsZentrum, Environmental BiochemistryCarl von Ossietzky University OldenburgWilhelmshavenGermany

Personalised recommendations