Advertisement

Organisms Diversity & Evolution

, Volume 12, Issue 4, pp 421–432 | Cite as

Contribution to the molecular phylogenetic analysis of extant holocephalan fishes (Holocephali, Chimaeriformes)

  • Martin Licht
  • Katharina Schmuecker
  • Thomas Huelsken
  • Reinhold Hanel
  • Peter Bartsch
  • Martin Paeckert
Original Article

Abstract

Much attention has been paid to the molecular phylogeny of holocephalan fishes during recent years, but sampling was very low and not all genera were examined. This study offers an extended sampling of species from all known genera to clarify their phylogeny and to provide an estimate of the time of origin of extant holocephalan taxa. Three mitochondrial genes (cytochrome b, 12S rRNA, and 16S rRNA) were sequenced and analysed using a variety of phylogenetic methods (Bayes, maximum likelihood, and maximum parsimony). Callorhinchidae diverged from Rhinochimaeridae and Chimaeridae about 187 Ma ago. Chimaeridae and Rhinochimaeridae diverged from each other about 159 Ma ago. Within Rhinochimaeridae, Neoharriotta is the sister genus to the closely related Harriotta and Rhinochimaera. Eight species of the family Chimaeridae, belonging to the genera Hydrolagus and Chimaera, were examined. They probably had a common ancestor about 107 Ma ago and appear paraphyletic. These results indicate that the traditional morphological generic definition of the families Rhinochimaeridae and Chimaeridae has to be reinvestigated.

Keywords

Chondrichthyes Chimaeridae Molecular phylogeny Evolution Neoharriotta pinnata Node time estimation 

Notes

Acknowledgements

We sincerely thank Matthias Schneider (Frankfurt), Axel Zarske (Dresden), Ralf Thiel (Hamburg), Friedhelm Krupp (Frankfurt), and Ulrich Schliewen (Munich) for the donation of tissue material. For help in the collections we thank Dirk Neumann (Munich) and Irina Eidus (Hamburg). This study has benefited greatly from the hearty help of Anja Rauh (Dresden) during the laboratory work. We also thank Peter Last (Sydney), Heiko Stuckas (Dresden), and Nicolas Straube (Munich) for discussions on molecular work methods and approaches, and Michael Buchwitz and Jan Fischer (both Freiberg) for comments on the manuscript and help with the figures. We are grateful to Jason Dunlop, Berlin, for correction of the English language. A portion of this study was supported by the molecular laboratory of Dresden; for this purpose we thank Anna K. Hundsdörfer and Uwe Fritz (both Dresden). Last but not least we want to thank two anonymous reviewers for their helpful comments on the manuscript.

References

  1. Allis, E. P., Jr. (1917). The prechordal portion of the chondrocranium of Chimaera colliei. Proceedings of the Zoological Society of London, 1917, 105–143.Google Scholar
  2. Allis, E. P., Jr. (1926). On the homologies of the prechordal portion of the skull of the holocephali. Journal of Anatomy, 60, 335–340.PubMedGoogle Scholar
  3. Arnason, U., Gullberg, A., & Janke, A. (2001). Molecular phylogenetics of gnathostomous (jawed) fishes: Old bones, new cartilage. Zoologica scripta, 30(4), 249–255.CrossRefGoogle Scholar
  4. Benton, M. J., & Donoghue, P. C. J. (2007). Paleontological evidence to date the tree of life. Molecular Biology and Evolution, 24, 26–53.PubMedCrossRefGoogle Scholar
  5. Benton, M. J., Donoghue, P. C. J., & Asher, R. J. (2009). Calibrating and constraining molecular clocks. In: S. B. Hedges & S. Kumar (eds.), The time tree of life (pp. 35–86). Oxford University Press.Google Scholar
  6. Bigelow, H. B., & Schroeder, W. C. (1951). Three new skates and a new chimaeroid fish from the Gulf of Mexico. Journal of the Washington Academy of Science, 41, 390.Google Scholar
  7. Bleeker, P. (1854). Nieuwe nalezingen op de ichthyologie van Japan. Verhandelingen van het Bataviaasch Genootschap van Kunsten en Wetenschappen, 26, 1–132.Google Scholar
  8. Botella, H., Valenzuela-Ríos, J. I., & Martínez-Pérez, C. (2009). Tooth replacement rates in early chondrichthyans: A qualitative approach. Lethaia, 42, 365–376.Google Scholar
  9. Broili, F. (1933). Weitere Fische aus den Hunsrückschiefern. Sitzungsberichten der Bayerischen Akademie der Wissenschaften, 1933, 269–313.Google Scholar
  10. Cole, F. J. (1896a). The cranial nerves of Chimaera monstrosa. Proceedings of the Royal Society of Edingburgh, 21, 49–56.Google Scholar
  11. Cole, F. J. (1896b). On the sensory and ampullary canals of chimaera. Anatomischer Anzeiger, 12, 172–182.Google Scholar
  12. Cole, F. J. (1896c). On the cranial nerves of Chimaera monstrosa (Linn. 1754); with a discussion of the lateral line system, and of the morphology of the chorda tympani. Transactions of the Royal Society of Endingburgh, 38, 631–680.Google Scholar
  13. De Beer, G. R., & Moy-Thomas, J. A. (1935). On the Skull of Holocephali. Philosophical Transactions of the Royal Society B, Biological Sciences, 224, 287–312.CrossRefGoogle Scholar
  14. Bory de Saint, J. B. (1823). Dictionaire classique d`histoire naturelle, vol. 3. Paris, p. 62.Google Scholar
  15. Dean, B. (1906). Chimaeroid fishes and their development. Carnegie Institution of Washington, 32.Google Scholar
  16. Dean, B. (1909). Studies on fossil fishes (Sharks, Chimaeroids and Arthrodires). Memoirs of the American Museum of Natural History, 9, 211–287.Google Scholar
  17. Didier, D. A. (1987). Myology of the pectoral, branchial, and jaw regions of the ratfish Hydrolagus colliei (Holocephali). Senior honor Thesis, Biology Department, Illinois Wesleyan University. pp. 40. Google Scholar
  18. Didier, D. A. (1995). Phylogenetic systematics of extant chimaeroid fishes (Holocephali, Chimaeroidei). American Museum Novitates, 3119, 1–86.Google Scholar
  19. Didier, D. A. (2004). Phylogeny and classification of extant holocephali. In J. C. Carrier, J. A. Musick, & M. R. Heithanus (Eds.), Biology of sharks and their relatives (pp. 115–135). London, UK: CRC Press.CrossRefGoogle Scholar
  20. Didier, D. A., & Rosenberger, L. J. (2002). The Spotted Ratfish, Hydrolagus colliei: Notes on its Biology with a Redescription of the species (Holocephali: Chimaeridae). California Fish and Game, 88, 112–125.Google Scholar
  21. Didier, D. A., Last, P. R., & White, W. T. (2008). Three new species of the genus Chimaera Linnaeus (Chimaeriformes: Chimaeridae) from Australia. CSIRO Marine and Atmospheric Research Paper, 22, 327–340.Google Scholar
  22. Donovan, E. (1808). The natural history of British fishes, including scientific and general descriptions of the most interesting species, and an extensive selection of accurately finished coloured plates. London: 1-516.Google Scholar
  23. Douady, C. J., Dosay, M., Shivji, M. S., & Stanhope, M. J. (2003). Molecular phylogenetic evidence refuting the hypothesis of Batoidea (rays and skates) as derived sharks. Molecular Phylogenetic and Evolution, 26, 215–221.CrossRefGoogle Scholar
  24. Drummond, A. J., & Rambaut, A. (2007). beast: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology, 7, 214.PubMedCrossRefGoogle Scholar
  25. Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4(5), e88. doi: 10.1371/journal.pbio.0040088.
  26. Duffin, C. J. (2001). A chimaerid (Holocephali, Chimaeriformes) vomerine toothplate from the Upper Cretaceous of Belgium. Palaeontology, 44(6), 1179–1188.CrossRefGoogle Scholar
  27. Duméril, A. H. A. (1865). Histoire naturelle des poissons ou ichthyologie générale. Tome Premier. Elasmobranchés. Plagiostomes et Holocéphales ou Chimères. Librairie Encyclopédique de Roret, Paris. 720 pp.Google Scholar
  28. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  29. Fowler, H. W. (1910). Notes on chimaeroid and ganoid fishes. Proceedings of the Academy of Natural Sciences of Philadelphia, 62, 603–612.Google Scholar
  30. Gilchrist, J. D. F. (1922). Deep-sea fishes procured by the S.S. Pickle. Part 1. Report Fisheries and Marine Biological Survey, Union of South Africa 2, special report 3, 41-79.Google Scholar
  31. Gill, T. (1898). Families and subfamilies of fishes. National Academy of Sciences Memoirs, 6, 127–138.Google Scholar
  32. Goode, G. B., & Bean, T. H. (1895). On Harriotta, a new type of chimaeroid fish from the deeper waters of the northwestern Atlantic. Proceedings of the United States National Museum, 17(1014), 471–473.CrossRefGoogle Scholar
  33. Grogan, E. D., Lund, R., & Didier, D. A. (1999). Description of the chimaerid jaw and its phylogenetic origins. Journal of Morphology, 239, 45–59.CrossRefGoogle Scholar
  34. Heinicke, M. P., Naylor, G. J. P., & Hedges, S. B. (2009). Cartilaginous fishes (Chondrichthyes). In S. B. Hedges & S. Kumar (Eds.), The timetree of life (pp. 320–327). New York, NY: Oxford University Press.Google Scholar
  35. Helfman, G. S., Collette, B. B., Facey, D. E., & Bowen, B. W. (2009). The diversity of fishes (2nd ed.). Oxford, UK: Wiley-Blackwell.Google Scholar
  36. Ho, S. Y. W., & Larson, G. (2006). Molecular clocks: When times are a-changin´. Trends in Genetics, 22, 79–83.PubMedCrossRefGoogle Scholar
  37. Holmgren, N. (1942). Studies on the head of fishes. Part III. The phylogeny of Elasmobranch fishes. Acta Zoologica, 23, 129–261.CrossRefGoogle Scholar
  38. Hubrecht, A. A. W. (1877). Beitrag zur Kenntniss des Kopfskeletes der Holocephalen. Niederländisches Archiv für Zoologie, 3, 255–276.Google Scholar
  39. Huelsenbeck, J. P., & Ronquist, F. (2001). MrBayes: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.PubMedCrossRefGoogle Scholar
  40. Inoue, J. G., Miya, M., Lam, K., Tay, B. H., Danks, J. A., Bell, J., Walker, T. I., & Venkatesh, B. (2010). Evolutionary origin and phylogeny of the modern holocephalans (Chondrichthyes: Chimaeriformes): A mitogenomic perspective. Molecular Biology and Evolution, 27(11), 2576–2586.PubMedCrossRefGoogle Scholar
  41. Jordan, D. S., & Snyder, J. O. (1900). A list of fishes collected in Japan by Keinosuke Otaki, and by the United States Fish Commission steamer “Albatross”, with description of fourteen new species. Proceedings of the United States National Museum, 23, 335–380.CrossRefGoogle Scholar
  42. Klug, S. (2010). Monophyly, phylogeny and systematic position of the Synechdontiformes (Chondrichthyes, Neoselachii). Zoologica Scripta, 39(1), 37–49.CrossRefGoogle Scholar
  43. Kumar, S., Tamura, K., & Nei, M. (2004). MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Briefings in Bioinformatics, 5, 150–163.PubMedCrossRefGoogle Scholar
  44. Lay, G. T., & Bennett, E. T. (1839). Fishes. In J. Richardson, N. A. Vigors, G. T. Lay, W. Buckland, & G. B. Soerby (Eds.), The zoology of Captain Beechey`s voyage (pp. 41–75). London: Henry G. Bohn.Google Scholar
  45. Le, H. L. V., Lecointre, G., & Perasso, R. (1993). A 28S rRna-based phylogeny of the Gnathostomes: First steps in the analysis of conflict and congruence with morphological based cladograms. Molecular Phylogenetics and Evolution, 2(1), 31–51.PubMedCrossRefGoogle Scholar
  46. Letsch, H. O., & Kjer, K. M. (2011). Potential pitfalls of modelling ribosomal RNA data in phylogenetic tree reconstruction: Evidence from case studies in metazoa. BMC Evolutionary Biology, 11, 146.PubMedCrossRefGoogle Scholar
  47. Letsch, H. O., Kück, P., Stocsits, R. R., & Misof, B. (2010). The impact of rRNA secondary structure consideration in alignment and tree reconstruction: simulated data and a case study on the phylogeny of hexapods. Molecular Biology and Evolution, 27(11), 2507–2521.PubMedCrossRefGoogle Scholar
  48. Leydig, F. (1851). Anatomie und Histologie der Chimaera monstrosa. Müller`s Archiv, 241-271.Google Scholar
  49. Licht, M. (2008). Cranial morphology of Hydrolagus colliei and its bearing on holocephalan phylogeny. Unpublished Diploma-Thesis. University of Göttingen. 57 pp.Google Scholar
  50. Licht, M., & Bartsch, P. (2009). Phylogenetic information from cranium and cranial nerves of chimaeroid fishes. In: Abstractband - VII. Tagung der Gesellschaft für Ichthyologie e.V. (GFI): 1.-3. Oktober 2009 in Hamburg. p.15.Google Scholar
  51. Linnaeus, C. (1758). Systema naturae per regna tria naturæ, secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Tomus I. Editio decima, reformata. [1-4], 1-824. Holmae. (Salvius).Google Scholar
  52. Liu, Z. (2001). Phylogenetic relationships of the living chimaeroid fishes based on characters of the brain and cranial nerves. The New Mexico Journal of Science, 41(1), 1–24.Google Scholar
  53. Lund, R., & Grogan, E. D. (1997). Relationships of the Chimaeriformes and the basal radiation of the Chondrichthyes. Reviews in Fish Biology and Fisheries, 7, 65–123.CrossRefGoogle Scholar
  54. Maisey, J. G. (1986). Heads and tails: A cordate phylogeny. Cladistics, 2, 201–256.CrossRefGoogle Scholar
  55. Mitsukurii, K. (1895). On a new species of the chimaeroid group Harriotta. Zoological Magazine (Tokio), 7, 97–98.Google Scholar
  56. Müller, J., & Henle, F. G. J. (1841). Systematische Beschreibung der Plagiostomen (pp. 1–200). Veit: Berlin.CrossRefGoogle Scholar
  57. Nylander, J. A. A. (2004). MrModeltest 2. Program distributed by the author. Evolutionary Biology Centre, Uppsala University.Google Scholar
  58. Ørvig, T. (1960). New Finds of Acanthodians, Arthrodires, Crossopterygians, Ganoids and Dipnoans in the Upper Middle Devonian Calcareous Flags (Oberer Plattenkalk) of the Bergisch Gladbach-Paffrath Trough. Paläontologische Zeitschrift, 34, 295–335.Google Scholar
  59. Ørvig, T. (1962). Y a-t-il une relation directe entre les arthrodires ptyctodontides et les holocephales? Colloquim International C.N.R.S, 104, 49–61.Google Scholar
  60. Patterson, C. (1965). The Phylogeny of the Chimaeroids. Philosophical Transactions of the Royal Society B, Biological Sciences, 249, 101–219.CrossRefGoogle Scholar
  61. Pereira, S. L., & Baker, A. J. (2006). A molecular timescale for galliform birds accounting for uncertainty in time estimates and heterogeneity of rates of DNA substitutions across lineages and sites. Molecular Phylogenetics and Evolution, 38, 499–509.PubMedCrossRefGoogle Scholar
  62. Rambaut, A., & Drummond, A. J. (2007). Tracer v1.4. available from http://beast.bio.ed.ac.uk/Tracer.
  63. Rasmussen, A. S., & Arnason, U. (1999). Phylogenetic studies of complete mitochondrial DNA molecules place cartilaginous fishes within the tree of bony fishes. Journal of Molecular Evolution, 48, 118–123.PubMedCrossRefGoogle Scholar
  64. Reuter, J. S., & Mathews, D. H. (2010). RNAstructure: Software for RNA secondary structure prediction and analysis. BMC Bioinformatics, 11, 129.PubMedCrossRefGoogle Scholar
  65. Schaeffer, B. (1981). The xenacanth shark neurocranium with comments on elasmobranch phylogeny. Bullettin of the American Museum of Natural History, 169, 3–66.Google Scholar
  66. Schaeffer, B., & Williams, M. (1977). Relationships of fossil and living elasmobranches. American Zoologist, 17, 293–302.Google Scholar
  67. Silvestro, D., & Michalak, I. (2011). raxmlGUI: a graphical front-end for RAxML. Organisms, Diversity and Evolution. doi: 10.1007/s13127-011-0056-0.
  68. Stahl, B. J. (1967). Morphology and Relationships of the Holocephali with special Reference to the Venous System. Bulletin of the Museum of Comparative Zoology, 135, 141–213.Google Scholar
  69. Stahl, B. J. (1999). Chondrichthyes III Holocephali. In H.-P. Schultze (Ed.), Handbook of Paleoichthyology, Vol. 4 (p. 164). Munich: Verlag Dr. Friedrich Pfeil.Google Scholar
  70. Stamatakis, A. (2006). RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.PubMedCrossRefGoogle Scholar
  71. Swofford, D. L. (2002). “Paup*: Phylogenetic analysis using parsimony (and other methods)”, version 4.0b10. Sinauer Associates, Sunderland/Massachusetts.Google Scholar
  72. von Schnakenbeck, W. (1929). Über einige Meeresfische aus Südwestafrika. Mitteilungen des Zoologischen Staatsinstituts und Zoologisches Museum Hamburg, 44, 38–45.Google Scholar
  73. Ward, D. J., & Duffin, C. J. (1989). Mesozoic chimaeroids. 1. A new chimaeroid from the Early Jurassic of Gloucestershire, England. Mesozoic Research, 2, 45–51.Google Scholar
  74. Ward, R. D., Zemlak, T. S., Innes, B. H., Last, P. R., & Hebert, P. D. N. (2005). DNA barcoding Australia`s fish species. Philosophical Transactions of the Royal Society B, Biological Sciences, 360, 1847–1857.PubMedCrossRefGoogle Scholar
  75. Ward, R. D., Holmes, B. H., White, W. T., & Last, P. R. (2008). DNA barcoding Australasian chondrichthyans: Results and potential uses in conservation. Marine and Freshwater Research, 59, 57–71.CrossRefGoogle Scholar
  76. Whiteley, G. P. (1939). Taxonomic notes on sharks and rays. Australian Zoologist, 60, 227–262.Google Scholar
  77. Zangerl, R. (1981). Handbook of paleoichthyology, vol. 3A Chondrichthyes I. Palaeozoic Elasmobranchii. New York: Gustav Fischer Verlag.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2012

Authors and Affiliations

  • Martin Licht
    • 1
    • 2
  • Katharina Schmuecker
    • 3
  • Thomas Huelsken
    • 4
  • Reinhold Hanel
    • 5
  • Peter Bartsch
    • 6
  • Martin Paeckert
    • 2
  1. 1.Geologisches Institut, TU Bergakademie FreibergFreiberg/SachsenGermany
  2. 2.Senckenberg Naturhistorische Sammlungen DresdenDresdenGermany
  3. 3.Department of Historical Anthropology and Human Ecology, Johann-Friedrich-Blumenbach-Institute for Zoology and AnthropologyUniversity of GöttingenGöttingenGermany
  4. 4.School of Biological SciencesThe University of QueenslandSt LuciaAustralia
  5. 5.vTI-Institute of Fisheries EcologyHamburgGermany
  6. 6.Museum für Naturkunde BerlinBerlinGermany

Personalised recommendations