Organisms Diversity & Evolution

, Volume 12, Issue 4, pp 377–386 | Cite as

Outdated but established?! Conchologically driven species delineations in microgastropods (Carychiidae, Carychium)

  • Alexander M. WeigandEmail author
  • Marie-Carolin Götze
  • Adrienne Jochum
Original Article


Valid taxonomic descriptions are paramount in evolutionary biology. Many date back centuries and are based on ambiguous morphological data. Microgastropods, in particular the taxon Carychiidae (Eupulmonata, Ellobioidea), demonstrate a paucity of informative conchological features. However, as exemplified by Carychium mariae Paulucci, 1878, their taxonomic classification is based almost entirely on these few features. Here we investigated the questionable taxonomic status of Carychium mariae combining DNA barcoding, field-emission scanning electron microscopy and conchological data. This taxon occurs in the Southern Alps, where it shows a sympatric distribution with two widely distributed members of CarychiumC. minimum Müller, 1774 and C. tridentatum (Risso, 1826). Our analyses do not support the species status of C. mariae. In contrast, DNA barcoding reveals a monophyletic grouping of C. minimum and C. mariae specimens with averaged intraspecific variability less than 3.2% (barcoding gap for Carychiidae). Hence, C. mariae is treated and should be regarded as a synonym of C. minimum, just representing a different morphotype. The differentiation and monophyletic status of C. tridentatum can be validated by showing an averaged interspecific variability of 5.9% to C. minimum. In general, we are critical of the sole use of conchological characters for microgastropod taxonomy and strongly recommend the implementation of molecular data (e.g., DNA barcoding) to reevaluate established species designations.


Microgastropod taxonomy Species descriptions Ellobioidea Carychium mariae 



We thank the Malacological Society of London and the BiK-F Biodiversity and Climate Research Center of the research-funding programme ‘LOEWE—Landes-Offensive zur Entwicklung Wissenschaftlich-ökonomischer Exzellenz’ of Hesse’s Ministry of Higher Education, Research, and the Arts for their financial support. We also thank Jana Valentinčič, Frank Hardie and Rajko Slapnik for their collecting efforts as well as Manfred Ruppel and Yaron Malkowsky for their support in preparing the FE-SEM photographs. We are grateful to Annette Klussmann-Kolb, Hannah Schweyen and Eugenia Zarza, who provided valuable insights on the conceptual design of this study. Special gratitude goes to Ronald Janssen (Senckenberg Forschungsinstitut und Naturmuseum) and Bruno Dell'Angello for their insights and help in locating the type specimens of C. mariae. We especially wish to thank Simone Cianfanelli (Museo di Storia Naturale dell'Università di Firenze, Sezione di Zoologia de "La Specola") for kindly photographing the syntypes as well as for constructive help in accessing the collection of Marianna Paulucci. We also thank the anonymous reviewers and editors, who provided valuable input on an earlier version of the manuscript.


  1. Bank, R. A., & Gittenberger, E. (1985). Notes on Azorean and European Carychium species (Gastropoda Basommatophora: Ellobiidae). Basteria, 49, 85–100.Google Scholar
  2. Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology and Evolution, 22, 148–155.PubMedCrossRefGoogle Scholar
  3. Bole, J. (1974). Rod Zospeum Bourguignat 1856 (Gastropoda, Ellobiidae) v Jugoslaviji. Razprave/Slovenska akademija znanosti in umetnosti Razred za naravoslovne vede, 17, 249–291.Google Scholar
  4. Bucklin, A., Steinke, D., & Blanco-Bercial, L. (2011). DNA Barcoding of Marine Metazoa. Annual Review of Marine Science, 3, 471–508.PubMedCrossRefGoogle Scholar
  5. Bulman, K. (1990). Shell variability in Carychium tridentatum (Risso, 1826) and its importance for infraspecific taxonomy (Gastropoda, Pulmonata: Ellobiidae). Malakologische Abhandlungen Staatliches Museum für Tierkunde Dresden, 15, 37–50.Google Scholar
  6. Burch, J. B., & Van Devender, A. S. (1980). Identification of eastern North American land snails. The Prosobranchia, Opisthobranchia and Pulmonata (Actophila). Walkerana, 1, 60–80.Google Scholar
  7. Cossignani, T., & Cossignani, V. (1995). Atlante delle conchiglie terrestri e dulciacquicole italiane, first ed. L´Informatore Piceno, Mostra Mondiale Malacologia. Ancona: Cupra Marittima (AP).Google Scholar
  8. Culver, C. D., & Pipan, T. (2009). The Biology of Caves and Other Subterranean Habitats. Oxford University Press.Google Scholar
  9. Dayrat, B. (2011). A warning for ecologists and conservation biologists using species checklists: How the European marine fauna ‘lost’ all of its 16 Discodoris species (Mollusca: Gastropoda). Organisms Diversity and Evolution, 11, 75–82.CrossRefGoogle Scholar
  10. de Frias Martins, A. M. (1996). Relationships within the Ellobiidae. In J. Taylor (Ed.), Origin and Evolutionary Radiation of the Mollusca (pp. 285–294). London: Oxford University Press, The Malacological Society of London.Google Scholar
  11. de Frias Martins, A. M. (2007). Morphological and anatomical diversity within the Ellobiidae (Gastropoda, Pulmonata, Archaeopulmonata). Vita Malacologica, 4, 1–28.Google Scholar
  12. Folmer, O., Black, M., Hoeh, W., Lutz, R., & Vrijenhoek, R. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.PubMedGoogle Scholar
  13. Freyer, C. (1855). Über neu entdeckte Conchylien aus den Geschlechtern Carychium und Pterocera. Sitzungsberichte der Akademie der Wissenschaften in Wien, Mathematisch-Naturwissenschaftliche Klasse, 15, 18–23.Google Scholar
  14. Giusti, F., & Manganelli, G. (1992). The problem of the species in malacology after clear evidence of the limits of morphological systematic, in: Gittenberger, E., Goud, J. (Eds.), Proceedings of the 9th International Malacological Congress. Edinburgh, pp. 153–172.Google Scholar
  15. Hajibabaei, M., Janzen, D. H., Burns, J. M., Hallwachs, W., & Hebert, P. D. N. (2006). DNA barcodes distinguish species of tropical Lepidoptera. Proceedings of the National Academy of Sciences of the United States of America, 103, 968–971.PubMedCrossRefGoogle Scholar
  16. Hajibabaei, M., Singer, G. A. C., Hebert, P. D. N., & Hickey, D. A. (2007). DNA barcoding: how it complements taxonomy, molecular phylogenetics and population genetics. Trends in Genetics, 23, 167–172.PubMedCrossRefGoogle Scholar
  17. Harry, H. W. (1998). Carychium exiguum (Say) of Lower Michigan; morphology, ecology, variation and life history (Gastropoda, Pulmonata). Walkerana, 9, 1–104.Google Scholar
  18. Haszprunar, G. (2011). Species delimitations – not ‘only descriptive’. Organisms Diversity and Evolution, 11, 249–252.CrossRefGoogle Scholar
  19. Hebert, P. D. N., Penton, E. H., Burns, J. M., Janzen, D. H., & Hallwachs, W. (2004). Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences of the United States of America, 101, 14812–14817.PubMedCrossRefGoogle Scholar
  20. Johnson, S. B., Waren, A., & Vrijenhoek, R. (2008). DNA Barcoding of Lepetodrilus limpets reveals cryptic species. The Journal of Shellfish Research, 27, 43–51.CrossRefGoogle Scholar
  21. Jordaens, K., Pinceel, J., Van Houtte, N., Breugelmans, K., & Backeljau, T. (2010). Arion transsylvanus (Mollusca, Pulmonata, Arionidae): rediscovery of a cryptic species. Zoologica Scripta, 39, 343–362.CrossRefGoogle Scholar
  22. Kerney, M. P., Cameron, R. A. D., & Jungbluth, J. H. (1979). Die Landschnecken Nord- und Mitteleuropas. Hamburg und Berlin: Paul Parey Verlag.Google Scholar
  23. Lozek, V. (1957). Die Tschechoslowakischen Arten der Gattung Carychium (Mollusca, Basommatophora). Acta Societatis Zoologicae Bohemoslovenicae, 21, 225–232.Google Scholar
  24. Maassen, W. J. M. (1987). Carychium mariae Paulucci in Jugoslawien. Basteria, 51, 2.Google Scholar
  25. Martens, J., Sun, Y.-H., Wei, L., & Päckert, M. (2008). Intraspecific differentiation of Sino-Himalayan bush-dwelling Phylloscopus leaf warblers, with description of two new taxa (P. fuscatus, P. fuligiventer, P. affinis, P. armandii, P. subaffinis). Vertebrate Zoology, 58, 233–266.Google Scholar
  26. Morton, J. E. (1955a). The evolution of the Ellobiidae with a discussion on the origin of the Pulmonata. Proceedings of the Zoological Society of London, 125, 127–168.CrossRefGoogle Scholar
  27. Morton, J. E. (1955b). Notes on the ecology and annual cycle of Carychium tridentatum at Box Hill. Proceedings of the Malacological Society London, 31, 31.Google Scholar
  28. Müller, O. F. (1774). Vermivm terrestrium et fluviatilium, seu animalium infusoriorum, helminthicorum, et testaceorum, non marinorum, succincta historia. Volumen alterum. Havniæ & Lipsiæ. (Heineck & Faber).Google Scholar
  29. Nekola, J. C., & Barthel, M. (2002). Morphometric analysis of the genus Carychium in the Great Lakes region. Journal of Concholology, 37, 515–531.Google Scholar
  30. Pauls, S. U., Blahnik, J. R., Zhou, X., Wardwell, C. T., & Holzenthal, R. W. (2010). DNA barcode data confirm new species and reveal cryptic diversity in Chilean Smicridea (Smicridea) (Trichoptera: Hydropsychidae). Journal of the North American Benthological Society, 29, 1058–1074.CrossRefGoogle Scholar
  31. Paulucci, M. (1878). Matériaux pour servir à l'étude de la faune malacologique terrestre et fluviatile de l'Italie et de ses îles. Paris. (Savy).Google Scholar
  32. Pfenninger, M., Cordellier, M., & Streit, B. (2006). Comparing the efficacy of morphologic and DNA-based taxonomy in the freshwater gastropod genus Radix (Basommatophora, Pulmonata). BMC Evolutionary Biology, 6, 1–14.CrossRefGoogle Scholar
  33. Pfenninger, M., Steinke, D., Nowak, C., Kley, C., & Streit, B. (2007). Utility of DNA-taxonomy and barcoding for the inference of larval community structure in morphologically cryptic Chironomus (Diptera) species. Molecular Ecology, 16, 1957–1968.PubMedCrossRefGoogle Scholar
  34. Pilsbry, H. A. (1939–1948). Land Mollusca of North America (North of Mexico). Academy of Natural Sciences of Philadelphia, Monographs Number 3.Google Scholar
  35. Pinceel, J., Jordaens, K., Van Houtte, N., De Winter, A. J., & Backeljau, T. (2004). Molecular and morphological data reveal cryptic taxonomic diversity in the terrestrial slug complex Arion subfuscus/fuscus (Mollusca, Pulmonata, Arionidae) in continental northwest Europe. Biological Journal of the Linnean Society, 83, 23–38.CrossRefGoogle Scholar
  36. Pintér, L. (1967). A revision of the genus Carychium O. F. Müller, 1774, in Hungary (Mollusca, Basommatophora). Annales historico-naturales Musei nationalis hungarici, 59, 399–407.Google Scholar
  37. Radulovici, A. E., Sainte-Marie, B., & Dufresne, F. (2009). DNA barcoding of marine crustaceans from the Estuary and Gulf of St Lawrence: a regional-scale approach. Molecular Ecology Resources, 9, 181–187.PubMedCrossRefGoogle Scholar
  38. Ratnasingham, S., Hebert, P. D. N., 2007. BOLD: the barcode of life data system ( Molecular Ecology Notes, 7, 355–364.
  39. Risso, A. (1826). Histoire naturelle des principales productions de l'Europe méridionale et particulièrement de celles des environs de Nice et des Alpes Maritimes. Paris: Tome quatrième. Levrault.Google Scholar
  40. Schütt, H. (2010). Turkish land snails. Solingen: Verlag Natur & Wissenschaft.Google Scholar
  41. Simon, A. T. C., Weigand, A. M., & Klussmann-Kolb, A. (2010). Comparative phylogeography of two (micro-) sympatric Carychium species in Europe (Gastropoda, Pulmonata, Ellobioidea). Tropical Natural History, Suppl. 3, 291.Google Scholar
  42. Slapnik, R. (1991). Localities of Carychium tridentatum (Risso 1826) and C. minimum O. F. Müller 1774 in Slovenia and the distribution of C. mariae Paulucci, 1878 (Gastropoda: Carychiidae) in Yugoslavia. Biološki vestnik, 39, 45–62.Google Scholar
  43. Smith, M., Rodriguez, J., Whitfield, J., Deans, A. R., Janzen, D. H., Hallwachs, W., et al. (2008). Extreme diversity of tropical parasitoid wasps exposed by iterative integration of natural history, DNA barcoding, morphology, and collections. Proceedings of the National Academy of Sciences of the United States of America, 105, 12359–12364.PubMedCrossRefGoogle Scholar
  44. Steinke, D., Zemlak, T. S., & Hebert, P. D. N. (2009). Barcoding Nemo: DNA-based identifications for the ornamental fish trade. PLoS ONE, 4, e6300.PubMedCrossRefGoogle Scholar
  45. Strauch, F. (1977). Die Entwicklung der europäischen Vertreter der Gattung Carychium O. F. Müller seit dem Miozän. Archiv für Molluskenkunde, 107, 149–193.Google Scholar
  46. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., & Kumar, S. (2011). MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution. doi: 10.1093/molbev/msr121.
  47. Watson, H., & Verdcourt, B. J. (1953). The two British species of Carychium. Journal of Conchology, 23, 306–324.Google Scholar
  48. Weigand, A. M., Jochum, A., Pfenninger, M., Steinke, D., & Klussmann-Kolb, A. (2011). A new approach to an old conundrum—DNA barcoding sheds new light on phenotypic plasticity and morphological stasis in microsnails (Gastropoda, Pulmonata, Carychiidae). Molecular Ecology Resources, 11, 255–265.PubMedCrossRefGoogle Scholar
  49. Winslow, M. L. (1922). Notes on the internal lamellae of Carychium. Occasional papers of the Museum of Zoology University of Michigan, 128, 1–17.Google Scholar
  50. Zimmermann, F. (1925). Untersuchungen über die Variabilität einiger Arten des Genus Carychium Müller. Molecular and General Genetics, 37, 291–342.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2012

Authors and Affiliations

  • Alexander M. Weigand
    • 1
    Email author
  • Marie-Carolin Götze
    • 1
  • Adrienne Jochum
    • 1
  1. 1.Institute for Ecology, Evolution and DiversityGoethe UniversityFrankfurt am MainGermany

Personalised recommendations