Organisms Diversity & Evolution

, Volume 12, Issue 1, pp 71–80 | Cite as

Mitochondrial DNA sequences suggest unexpected phylogenetic position of Corso-Sardinian grass snakes (Natrix cetti) and do not support their species status, with notes on phylogeography and subspecies delineation of grass snakes

  • Uwe FritzEmail author
  • Claudia Corti
  • Martin Päckert
Original Article


We supplement a previously published mitochondrial DNA data set of grass snake sequences (ND1, ND2, ND4, cyt b, in total 3,806 bp) with sequences of Corso-Sardinian and Tuscan specimens and infer their phylogeny using Bayesian, maximum likelihood and maximum parsimony methods. In addition, we estimate divergence times of grass snake clades using a relaxed molecular clock calibrated with fossil evidence, and, in a second approach, the post-Messinian reopening of the Strait of Gibraltar. Recently it was suggested that Corso-Sardinian grass snakes represent a distinct species: Natrix cetti. All tree-building methods revealed well-supported branching patterns and deep divergences among grass snakes. However, sequences of N. natrix were consistently paraphyletic with respect to Corso-Sardinian sequences. The sister group of Corso-Sardinian grass snakes is a clade embracing N. n. helvetica and N. n. lanzai. Extensive gene flow between N. n. helvetica and a more distantly related subspecies (N. n. natrix) is well known, which is why we conclude that the status of Corso-Sardinian grass snakes as subspecies of N. natrix should be reinstated. Many currently recognized grass snake subspecies conflict with mitochondrial clades, suggestive of inappropriate morphological taxon delineation and mitochondrial introgression. Divergences among grass snakes are old, and the results of the two independent dating approaches are largely congruent. Accordingly, the Alpine orogenesis seems to have caused the origin of the oldest clade, corresponding to Iberian N. n. astreptophora. The formation of Corso-Sardinian grass snakes was dated to the Early Pliocene and could result from post-Messinian flooding of the Mediterranean Basin. Another deeply divergent clade of approximately the same age, endemic in central and northern Europe, suggests the Pleistocene survival of grass snakes north of the Alps. At least one glacial refuge in which old lineages survived Pleistocene cold periods was located on each of the three major southern European peninsulas and in Anatolia. Due to pronounced sequence divergences among Italian and southern Swiss grass snakes, we hypothesize multiple refugia south of the Alps and in the Apennine Peninsula, and there is evidence for two refuges on the Balkan Peninsula.


Reptilia Squamata Serpentes Natrix natrix 



Annamaria Nistri allowed sampling of grass snakes from the collection of the Museo di Storia Naturale dell’Università di Firenze. Laboratory work was done by Anke Müller.


  1. Arnold, E. N., & Burton, J. A. (1978). Reptiles and Amphibians of Britain and Europe. London: Collins.Google Scholar
  2. Benton, M. J., Donoghue, P. C. J., & Asher, R. J. (2009). Calibrating and constraining molecular clocks. In S. B. Hedges & S. Kumar (Eds.), The Time Tree of Life (pp. 35–86). Oxford: Oxford University Press.Google Scholar
  3. Blosat, B. (2008). Population status, threats and protection of the grass snake, Natrix natrix cypriaca (Hecht, 1930) on Cyprus. Mertensiella, 17, 246–271.Google Scholar
  4. Böhme, M. U., Fritz, U., Kotenko, T., Džukić, G., Ljubisavljević, K., Tzankov, N., & Berendonk, T. U. (2007). Phylogeography and cryptic variation within the Lacerta viridis complex. Zoologica Scripta, 36, 119–131.CrossRefGoogle Scholar
  5. Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1660.PubMedCrossRefGoogle Scholar
  6. Coyne, J. A., & Orr, H. A. (2004). Speciation. Sunderland: Sinauer Associates.Google Scholar
  7. de Queiroz, A., Lawson, R., & Lemos-Espinal, J. A. (2002). Phylogenetic relationships of North American garter snakes (Thamnophis) based on four mitochondrial genes: how much DNA sequence is enough? Molecular Phylogenetics and Evolution, 22, 315–329.PubMedCrossRefGoogle Scholar
  8. Delfino, M., Bailon, S., & Pitruzella, G. (2011). The Late Pliocene amphibians and reptiles from “Capo Mannu D1 Local Fauna” (Mandriola, Sardinia, Italy). Geodiversitas, 33, 357–382.CrossRefGoogle Scholar
  9. Drummond, A. J., & Rambaut, A. (2007). BEAST: Bayesian Evolutionary Analysis by Sampling Trees. BMC Evolutionary Biology, 7, 214.PubMedCrossRefGoogle Scholar
  10. Drummond, A. J., Ho, S. Y. W., Phillips, M. J., & Rambaut, A. (2006). Relaxed phylogenetics and dating with confidence. PLoS Biology, 4, e88.PubMedCrossRefGoogle Scholar
  11. Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  12. Fritz, U., Guicking, D., Kami, H., Arakelyan, M., Auer, M., Ayaz, D., Ayres Fernández, C., Bakiev, A. G., Celani, A., Džukić, G., Fahd, S., Havaš, P., Joger, U., Khabibullin, V. F., Mazanaeva, L. F., Široký, P., Tripepi, S., Valdeón Vélez, A., Velo Antón, G., & Wink, M. (2007). Mitochondrial phylogeography of European pond turtles (Emys orbicularis, Emys trinacris)—an update. Amphibia-Reptilia, 28, 418–426.CrossRefGoogle Scholar
  13. Fritz, U., Ayaz, D., Hundsdörfer, A. K., Kotenko, T., Guicking, D., Wink, M., Tok, C. V., Çiçek, K., & Buschbom, J. (2009). Mitochondrial diversity of European pond turtles (Emys orbicularis) in Anatolia and the Ponto-Caspian Region: Multiple old refuges, hotspot of extant diversification and critically endangered endemics. Organisms, Diversity and Evolution, 9, 100–114.CrossRefGoogle Scholar
  14. García-Castellanos, D., Estrada, F., Jiménez-Munt, I., Gorini, C., Fernández, M., Vergés, J., & De Vicente, R. (2009). Catastrophic flood of the Mediterranean after the Messinian salinity crisis. Nature, 462, 778–781.PubMedCrossRefGoogle Scholar
  15. Gené, J. (1839). Synopsis Reptilium Sardiniae indigenorum. Memorie della Reale Accademia delle Scienze di Torino, 1 (1838), 257–286 + 5 pls.Google Scholar
  16. Gruber, U. (1989). Die Schlangen Europas und rund ums Mittelmeer. Stuttgart: Kosmos.Google Scholar
  17. Guicking, D. (2004). Molecular phylogeography and evolution of western Palaearctic water snakes (genus Natrix, Reptilia). Dissertation, Heidelberg University: Combined Faculties for the Natural Sciences and Mathematics.Google Scholar
  18. Guicking, D., Lawson, R., Joger, U., & Wink, M. (2006). Evolution and phylogeny of the genus Natrix (Serpentes: Colubridae). Biological Journal of the Linnean Society, 87, 127–143.CrossRefGoogle Scholar
  19. Guicking, D., Joger, U., & Wink, M. (2008). Molekulare Phylogenie und Evolutionsgeschichte der Gattung Natrix, mit Bemerkungen zur innerartlichen Gliederung von N. natrix. Mertensiella, 17, 16–30.Google Scholar
  20. Gustincich, S., Manfioletti, G., del Sal, G., Schneider, C., & Carninci, C. (1991). A fast method for high-quality genomic DNA extraction from whole human blood. Bio Techniques, 11, 298–302.Google Scholar
  21. Hecht, G. (1930). Systematik, Ausbreitungsgeschichte und Ökologie der europäischen Arten der Gattung Tropidonotus (Kuhl) H. Boie. Mitteilungen aus dem Zoologischen Museum Berlin, 16, 244–393.Google Scholar
  22. Hewitt, G. (2000). The genetic legacy of the Quaternary ice ages. Nature, 405, 907–913.PubMedCrossRefGoogle Scholar
  23. Hille, A. (1997). Biochemical variation between populations of the western and eastern grass snake (Natrix natrix) from the transition zone in Nordrhein-Westfalen, Germany. In W. Böhme, W. Bischoff, & T. Ziegler (Eds.), Herpetologia Bonnensis (pp. 177–184). Bonn: Societas Herpetologica Europaea.Google Scholar
  24. Joger, U., Fritz, U., Guicking, D., Kalyabina-Hauf, S., Nagy, Z. T., & Wink, M. (2007). Phylogeography of western Palaearctic reptiles—Spatial and temporal speciation patterns. Zoologischer Anzeiger, 246, 293–313.CrossRefGoogle Scholar
  25. Kabisch, K. (1999). Natrix natrix (Linnaeus, 1758)—Ringelnatter. In W. Böhme (Ed.), Handbuch der Reptilien und Amphibien Europas, Band 3/IIA, Schlangen II (pp. 513–580). Wiebelsheim: Aula.Google Scholar
  26. Kramer, E. (1970). Revalidierte und neue Rassen der europäischen Schlangenfauna. Lavori della Società Italiana di Biogeografia, 1, 667–676.Google Scholar
  27. Kreiner, G. (2007). Schlangen Europas. Frankfurt/M.: Chimaira.Google Scholar
  28. Lacepède, B.-G.-É. (1789). Histoire naturelle des quadrupèdes ovipares et des serpens, vol. 2 (Histoire naturelle des serpens). Paris: Hôtel de Thou.Google Scholar
  29. Lambeck, K., Antonioli, F., Purcell, A., & Silenzi, S. (2004). Sea-level change along the Italian coast for the past 10,000 yr. Quaternary Science Reviews, 23, 1567–1598.CrossRefGoogle Scholar
  30. Lanza, B. (1988). Hypothèses sur les origines de la faune herpétologique Corse. Bulletin d’Ecologie, 19, 163–170.Google Scholar
  31. Laurenti, J. N. (1768). Specimen Medicum, Exhibens Synopsin Reptilium Emendatam cum Experimentis circa Venena et Antidota Reptilium Austriacorum. Vienna: Trattnern.CrossRefGoogle Scholar
  32. Lawson, R., Slowinski, J. B., Crother, B. I., & Burbrink, F. T. (2005). Phylogeny of the Colubroidea (Serpentes): new evidence from mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 37, 581–601.PubMedCrossRefGoogle Scholar
  33. Linnaeus, C. (1758). Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Tomus I. Regnum Animale. Editio Decima. Stockholm: Laurentius Salvius.Google Scholar
  34. Linnaeus, C. (1766). Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Tomus I. Regnum Animale. Editio Duodecima. Stockholm: Laurentius Salvius.Google Scholar
  35. Mayr, E. (1942). Systematics and the Origin of Species from the Viewpoint of a Zoologist. New York: Columbia University Press.Google Scholar
  36. Musilová, R., Zavadil, V., Marková, S., & Kotlík, P. (2010). Relics of the Europe’s warm past: Phylogeography of the Aesculapian snake. Molecular Phylogenetics and Evolution, 57, 1245–1252.PubMedCrossRefGoogle Scholar
  37. Nylander, J. A. A. (2004). MrMODELTEST, v2. Uppsala: Evolutionary Biology Centre, Uppsala University, [accessed 29 January 2011].
  38. Pallas, P. S. (1771). Reise durch verschiedene Provinzen des Rußischen Reichs. Erster Theil. St. Petersburg: Kayserliche Academie der Wissenschaften.Google Scholar
  39. Pallas, P. S. (1814). Zoographia Rosso-Asiatica, sistens Omnium Animalium in Extenso Imperio Rossico et Adjacentibus Maribus Observatorum Recensionem, Domicilia, Mores et Descriptiones, Anatomen atque Icones Plurimorum. Volumen Tertium. Petropolis: Caesarea Academia Scientiarum.Google Scholar
  40. Pedall, I., Fritz, U., Stuckas, H., Valdéon, A., & Wink, M. (2011). Gene flow across secondary contact zones of the Emys orbicularis complex in the Western Mediterranean and evidence for extinction and re-introduction of pond turtles on Corsica and Sardinia (Testudines: Emydidae). Journal of Zoological Systematics and Evolutionary Research, 49, 44–57.CrossRefGoogle Scholar
  41. Rambaut, A., & Drummond, A. J. (2007). TRACER v1.4. Auckland: Bioinformatics Institute, University of Auckland, [accessed 1 February 2011].
  42. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 12, 1572–1574.CrossRefGoogle Scholar
  43. Sabaj Pérez, M. H. (2010). Standard symbolic codes for institutional resource collections in herpetology and ichthyology: an Online Reference. Version 1.5 (4 Oct 2010). Washington, DC: American Society of Ichthyologists and Herpetologists, [accessed 15 July 2011].
  44. Schmitt, T. (2007). Molecular biogeography of Europe: Pleistocene cycles and postglacial trends. Frontiers in Zoology, 4, 11.PubMedCrossRefGoogle Scholar
  45. Seoane, V. L. (1884). Identidad de Lacerta schreiberi (Bedriaga) y Lacerta viridis var. gadovi (Boulenger) e investigaciones herpetológicas de Galicia. Coruña: Vicente Abad.Google Scholar
  46. Silvestro, D., & Michalak, I. (2011). raxmlGUI: a graphical front-end for RAxML. Organisms, Diversity and Evolution. doi: 10.1007/s13127-011-0056-0.
  47. Stamatakis, A. (2006). RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688–2690.PubMedCrossRefGoogle Scholar
  48. Swofford, D. L. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods), ver. 4. Sunderland: Sinauer Associates.Google Scholar
  49. Taberlet, P., Fumagalli, L., Wust-Saucy, A.-G., & Cosson, J.-F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453–464.PubMedCrossRefGoogle Scholar
  50. Thorpe, R. S. (1979). Multivariate analysis of the population systematics of the ringed snake, Natrix natrix (L). Proceedings of the Royal Society of Edinburgh, 78B, 1–62.Google Scholar
  51. Vanni, S., & Cimmaruta, R. (2010). Natrix cetti Gené, 1839. In C. Corti, M. Capula, L. Luiselli, E. Razzetti, & R. Sindaco (Eds.), Fauna d’Italia, Reptilia (pp. 541–547). Bologna: Calderoni.Google Scholar
  52. Zardoya, R., & Doadrio, I. (1999). Molecular evidence on the evolutionary and biogeographical patterns of European cyprinids. Journal of Molecular Evolution, 49, 227–237.PubMedCrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2012

Authors and Affiliations

  1. 1.Museum of Zoology (Museum für Tierkunde)Senckenberg DresdenDresdenGermany
  2. 2.Museo di Storia Naturale dell’Università di FirenzeSezione di Zoologia “La Specola”FlorenceItaly

Personalised recommendations