Organisms Diversity & Evolution

, Volume 11, Issue 5, pp 331–342 | Cite as

Another example of cryptic diversity in lichen-forming fungi: the new species Parmelia mayi (Ascomycota: Parmeliaceae)

  • M. Carmen Molina
  • Ruth Del-Prado
  • Pradeep Kumar Divakar
  • Daniel Sánchez-Mata
  • Ana Crespo
Original Article

Abstract

In the last decade, a number of cryptic species have been discovered in lichenized fungi, especially in species with a cosmopolitan or disjunctive distribution. Parmelia saxatilis is one of the most common and widely distributed species. Recent molecular studies have detected two species, P. ernstiae and P. serrana, within P. saxatilis s. lat., suggesting the existence of considerable genetic diversity that may not yet be expressed at the phenotypic level. Due to the complexity in the P. saxatilis s. lat. group, we used this as a model to study the species boundary and identify cryptic lineages. We used Phylogenetic (Bayes, ML and MP) and genetic distance approaches to analyze ITS and β-tubulin sequences. Our results confirm the existence of another cryptic lineage within P. saxatilis s. lat. This lineage is described herein as a new species, P. mayi. It forms an independent, strongly supported, monophyletic lineage, distantly related to the morphologically similar species P. ernstiae, P. saxatilis and P. serrana. Morphologically, it is indistinguishable from P. saxatilis but the new species is separated by molecular, bioclimatic, biogeographic and chemical characters. At present, P. mayi appears to have a restricted distribution in the northern Appalachian mountain territories of North America. It is found in climatic conditions ranging from hemiboreal and orotemperate to cryorotemperate ultrahyperhumid bioclimates.

Keywords

Cryptic lineage New species Parmelia saxatilis complex Molecular phylogeny Genetic distance Biogeography Bioclimatology 

Notes

Acknowledgments

We thank Olaf R. P. Bininda-Emonds, Imke Schmitt and two anonymous reviewers for their valuable comments and suggestions, which improved the manuscript This work was supported by the Spanish Ministerio de Ciencia e Innovación (CGL 2010-21646/BOS), and Ramón y Cajal start-up grant (RYC02007-01576) to P.K.D. Sequencing was performed in El Centro de Genómica y Proteómica del Parque Científico de Madrid. We are grateful to Phil Mason and Mr. Edison M. Castro for English revision of this manuscript.

References

  1. Acharius, E. (1803). Methodus qua omnes detectos lichenes, Stockholm.Google Scholar
  2. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.CrossRefGoogle Scholar
  3. Argüello, A., del Prado, R., Cubas, P., & Crespo, A. (2007). Parmelia quercina (Parmeliaceae, Lecanorales) includes four phylogenetically supported morpho-species. Biological Journal of the Linnean Society, 91, 455–467.CrossRefGoogle Scholar
  4. Avise, J. C. (2000). Phylogeography. Boston, MA: Harvard University Press.Google Scholar
  5. Baum, D. A., & Shaw, K. L. (1995). Genealogical perspectives on the species problems. In P. C. Hoch & A. G. Stephenson (Eds.), Experimental and Molecular Approaches to Plant Biosystematics (pp. 289–303). St. Louis: Missouri Botanical Garden.Google Scholar
  6. Bickford, D., Lohman, D. J., Sodhi, N. S., Ng, P. K. L., Meier, R., Winker, K., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 3, 148–155.CrossRefGoogle Scholar
  7. Blanco, O., Crespo, A., Divakar, P. K., Elix, J. A., & Lumbsch, H. T. (2005). Molecular phylogeny of parmotremoid lichens (Ascomycota, Parmeliaceae). Mycologia, 97, 150–159.PubMedCrossRefGoogle Scholar
  8. Brodo, I. M., Duran Sharnoff, S., & Sharnoff, S. (2001). Lichens of North America. New Haven: Yale University Press.Google Scholar
  9. Buckley, T. R., Arensburger, P., Simon, C., & Chambers, G. K. (2002). Combined data, Bayesian phylogenetics, and the origin of the New Zealand cicada genera. Systematic Biology, 51, 4–18.PubMedCrossRefGoogle Scholar
  10. Comer, P., Faber-Langendoen, D., Evans, R., Gawler, S., Josse, C., Kittel, G., et al. (2003). Ecological systems of the United States. A working classification of U.S. terrestrial systems. Arlington: Nature Serve Publications.Google Scholar
  11. Crespo, A., & Pérez-Ortega, S. (2009). Cryptic species and species pairs in lichens: a discussion on the relationship between molecular phylogenies and morphological characters. Anales del Jardín Botánico de Madrid, 66, 71–81.CrossRefGoogle Scholar
  12. Crespo, A., Blanco, O., & Hawksworth, D. L. (2001). The potential of mitochondrial DNA for establishing phylogeny and stabilising generic concepts in the parmelioid lichens. Taxon, 50, 807–819.CrossRefGoogle Scholar
  13. Crespo, A., Molina, M. C., Blanco, O., Schroeter, B., Sancho, L. G., & Hawksworth, D. L. (2002). rDNA ITS and β-tubulin gene sequence analyses reveal two monophyletic groups within the cosmopolitan lichen Parmelia saxatilis. Mycological Research, 106, 788–795.CrossRefGoogle Scholar
  14. Crespo, A., Kauff, F., Divakar, P. K., del Prado, R., Pérez-Ortega, S., Amo de Paz, G., et al. (2010). Phylogenetic generic classification of parmelioid lichens (Parmeliaceae, Ascomycota) based on molecular, morphological and chemical evidence. Taxon, 59, 1735–1753.Google Scholar
  15. de Queiroz, A. (1993). For consensus (sometimes). Systematic Biology, 42, 368–372.Google Scholar
  16. de Queiroz, K. (1998). The general lineage concept of species, species criteria, and the process of speciation: a conceptual unification and terminological recommendations. In D. J. Howard & S. H. Berlocher (Eds.), Endless Forms: Species and Speciation (pp. 57–75). New York: Oxford University Press.Google Scholar
  17. de Queiroz, K. (2007). Species concepts and species delimitation. Systematic Biology, 56, 879–886.PubMedCrossRefGoogle Scholar
  18. Del-Prado, R., Cubas, P., Lumbsch, H. T., Divakar, P. K., Blanco, A., de Paz, G., et al. (2010). Genetic distances within and among species in monophyletic lineages. Molecular Phylogenetics and Evolution, 56, 125–133.PubMedCrossRefGoogle Scholar
  19. Dettman, J. R., Jacobson, D. J., & Taylor, J. W. (2003). A multilocus genealogical approach to phylogenetic species recognition in the model eukaryote neurospora. Evolution, 57, 2703–2720.PubMedGoogle Scholar
  20. Divakar, P. K., Upreti, D. K., & Elix, J. A. (2001). New species and new records in the lichen family Parmeliaceae (Ascomycotina) from India. Mycotaxon, 80, 355–362.Google Scholar
  21. Divakar, P. K., Blanco, O., Hawksworth, D. L., & Crespo, A. (2005a). Molecular phylogenetic studies on the Parmotrema reticulatum (syn. Rimelia reticulata) complex, including the confirmation of P. pseudoreticulatum as a distinct species. The Lichenologist, 37, 55–65.CrossRefGoogle Scholar
  22. Divakar, P. K., Molina, M. C., Lumbsch, H. T., & Crespo, A. (2005b). Parmelia barrenoae, a new lichen species related to Parmelia sulcata (Parmeliaceae) based on molecular and morphological data. The Lichenologist, 37, 37–46.CrossRefGoogle Scholar
  23. Divakar, P. K., Figueras, G., Hladun, N. L., & Crespo, A. (2010a). Molecular phylogenetic studies reveal an undescribed species within the North American concept of Melanelixia glabra (Parmeliaceae). Fungal Diversity, 42, 47–55.CrossRefGoogle Scholar
  24. Divakar, P. K., Cubas, P., Blanco, O., Del-Prado, R., Núñez-Zapata, J., Roca-Valiente, B., Lumbsch, H. T & Crespo, A. (2010b). An overview on hidden diversity in lichens: Parmeliaceae. http://imc9.info/prog_sig3_detail_divakar.htm
  25. Divakar, P. K., Lumbsch, H. T., Ferencova, Z., Del Prado, R., & Crespo, A. (2010c). Remototrachyna, a new tropical lineage in hypotrachynoid lichens (Parmeliaceae, Ascomycota) originated in India. American Journal of Botany, 9, 579–590.CrossRefGoogle Scholar
  26. Donoghue, M. J. (1985). A critique of the biological species concept and recommendations for a phylogenetic alternative. Bryologist, 88, 172–181.CrossRefGoogle Scholar
  27. Elix, J. A., & Ernst-Russell, K. D. (1993). A catalogue of standardized thin layer chromatographic data and biosynthetic relationships for lichen substances (2nd ed.). Canberra: Australian National University.Google Scholar
  28. Esslinger, T. L. (2010) A cumulative checklist for the lichen-forming, lichenicolous and allied fungi of the continental United States and Canada. (http://lichens.digitalmycology.com/macrolichens/Parmelia.html)
  29. Feige, G. B., Lumbsch, H. T., Huneck, S., & Elix, J. A. (1993). Identification of lichen substances by a standardized high-performance liquid-chromatographic method. Journal of Chromatography, 646, 417–427.CrossRefGoogle Scholar
  30. Felsenstein, J. (1985). Confidence limits on phylogenies. An approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  31. Gardes, M., & Bruns, T. D. (1993). ITS primers with enhanced specificity for basidiomycetes - application to the identification of mycorrhyzae and rusts. Molecular Ecology, 2, 113–118.PubMedCrossRefGoogle Scholar
  32. Goward, T., & Ahti, T. (1983). Parmelia hygophila, a new lichen species form the pacific northwest of North America. Annales Botanici Fennici, 20, 9–13.Google Scholar
  33. Goward, T., McCune, B., & Meidinger, D. (1994). The Lichens of British Columbia. Illustrated Keys. Part 1 - Foliose and Squamulose Species. Victoria: Ministry of Forests Research Program.Google Scholar
  34. Guindon, S., & Gascuel, O. (2003). PhyML—A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52, 696–704.PubMedCrossRefGoogle Scholar
  35. Gutierrez, G., Blanco, O., Divakar, P. K., Lumbsch, H. T., & Crespo, A. (2007). Patterns of group I intron presence in nuclear SSU rDNA of the lichen family parmeliaceae. Journal of Molecular Evolution, 64, 181–195.PubMedCrossRefGoogle Scholar
  36. Hale, M. E. (1971). Parmelia squarrosa, a new species in section Parmelia. Phytologia, 22, 29.Google Scholar
  37. Hale, M. E. (1987). A monograph of the lichen genus Parmelia Acharius sensu stricto (Asocmycotina: Parmeliaceae). Smithsonian Contributions to Botany, 66, 1–55.CrossRefGoogle Scholar
  38. Hall, T. A. (1999). BioEdit: a user friendly biological sequence alignment editor and analysis program of Windows 95/98/NT. Nucleic Acid Symposium Series, 41, 95–98.Google Scholar
  39. Hasegawa, M., Kishino, H., & Yano, T. (1985). Dating of the human-ape splitting by a molecular clock of mitochondrial DNA. Journal of Molecular Evolution, 22, 160–174.PubMedCrossRefGoogle Scholar
  40. Hawksworth, D. L. (1976). Lichen chemotaxonomy. In D. H. Brown, D. L. Hawksworth, & R. H. Bailey (Eds.), Lichenology: Problems and Progress (pp. 139–184). London: Academic.Google Scholar
  41. Hawksworth, D. L., & Rossman, A. Y. (1997). Where are all the undescribed fungi? Phytopathology, 87, 888–891.PubMedCrossRefGoogle Scholar
  42. Hey, J. (2006). On the failure of modern species concepts. Trends in Ecology & Evolution, 21, 447–450.CrossRefGoogle Scholar
  43. Hillis, D. M., & Bull, J. J. (1993). An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analysis. Systematic Biology, 42, 182–192.Google Scholar
  44. Hinds, J. W. (1998). Lichen flora of eastern North America: the genus Parmelia sensu stricto. In M. G. Glenn, R. C. Harris, R. Dirig, & M. S. Cole (Eds.), Lichenographia Thomsoniana: North American Lichenology in Honor of John W. Thomson (pp. 53–69). Ithaca, New York: Mycotaxon.Google Scholar
  45. Hudson, R. R., & Coyne, J. A. (2002). Mathematical consequences of the genealogical species concept. Evolution, 56, 1557–1565.PubMedGoogle Scholar
  46. Huelsenbeck, J. P., & Ronquist, F. (2001). MrBAYES: Bayesian inference of phylogenetic trees. Bioinformatics, 17, 754–755.PubMedCrossRefGoogle Scholar
  47. Kroken, S., & Taylor, J. W. (2001). A gene genealogical approach to recognize phylogentic species boundaries in the lichenized fungus Latharia. Mycologia, 93, 38–53.CrossRefGoogle Scholar
  48. Lohtander, K., Myllys, L., Sundin, R., Källersjö, M., & Tehler, A. (1998). The species pair concept in the lichen Dendrographa leucophaea (Arthoniales): analyses based on ITS sequences. Bryologist, 101, 404–411.Google Scholar
  49. Lumbsch, H. T. (1998). The use of metabolic data in lichenology at the species and subspecific levels. The Lichenologist, 30, 357–367.Google Scholar
  50. Mayr, E. (1970). Populations, Species and Evolution. Boston, MA: Harvard University Press.Google Scholar
  51. Molina, M. C., Crespo, A., Blanco, O., Lumbsch, H. T., & Hawksworth, D. L. (2004). Phylogenetic relationships and species concepts in Parmelia s. str. (Parmeliaceae) inferred from nuclear ITS rDNA and β-tubulin sequences. The Lichenologist, 36, 37–54.CrossRefGoogle Scholar
  52. Myllys, L., Lohtander, K., Källersjö, M., & Tehler, A. (1999). Sequence insertions and ITS data provide congruent information on Roccella canariensis and R. tuberculata (Arthoniales, Euascomycetes) phylogeny. Molecular Phylogenetics and Evolution, 12, 295–309.PubMedCrossRefGoogle Scholar
  53. Myllys, L., Lohtander, K., & Tehler, A. (2001). β-tubulin, ITS and group I intron sequences challenge the species pair concept in Physcia aipolia and P. caesia. Mycologia, 93, 335–343.CrossRefGoogle Scholar
  54. Nylander, J. A. A., Wilgenbusch, J. C., Warren, D. L., & Swofford, D. L. (2007). AWTY (Are we there yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics, 24, 581–583.PubMedCrossRefGoogle Scholar
  55. Page, R. D. M. (1998). Tree View (Win32) 1.5.2. (http://taxonomy.zoology.gla.ac.uk/rod.html).
  56. Posada, D. (2008). jModelTest: Phylogenetic model averaging. Molecular Biology and Evolution, 25, 1253–1256.PubMedCrossRefGoogle Scholar
  57. Pringle, A., Baker, D. M., Platt, J. L., Wares, J. P., Latge, J. P., & Taylor, J. W. (2005). Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus Aspergillus fumigatus. Evolution, 59, 1886–1899.PubMedGoogle Scholar
  58. Rivas-Martínez, S. & Rivas Sáenz, S. (2011). Global Bioclimatics website: http://www.globalbioclimatics.org/. Accessed April, 2011.
  59. Rivas-Martínez, S., Sánchez-Mata, D., & Costa, M. (1999). North American boreal and western temperate forest vegetation (syntaxonomical synopsis of the potential natural plant communities of North America, II). Itinera Geobotanica, 12, 5–316.Google Scholar
  60. Sayre, R., Comer, P., Warner, H. & Cress. J. (2009). A new map of standardized terrestrial ecosystems of the conterminous United States. U.S. Geological Survey Professional Paper 1768, Reston: USGS.Google Scholar
  61. Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6, 461–464.CrossRefGoogle Scholar
  62. Strimmer, K., & von Haeseler, A. (1997). Puzzle. Maximum Likelihood Analysis forNucleotide, Amino Acid, and two-state Data. Version 4.0. Munich: University of Munich.Google Scholar
  63. Swofford, D. L. (2003). PAUP*. Phylogenetic Analysis Using Parsimony (*and Other Methods). Sunderland, MA: Sinauer Associates.Google Scholar
  64. Tavaré, S. (1986). Some probabilistic and statistical problems in the analysis of DNA sequences. American Mathematical Society: Lectures on Mathematics in the Life Sciences, 17, 57–86.Google Scholar
  65. Taylor, T. (1836). Lichens. In J. T. Mackay. Flora Hibernica, 279 pp., Dublin.Google Scholar
  66. Taylor, J. W., Jacobson, D. J., Kroken, S., Kasuga, T., Geiser, D. M., Hibbett, D. S., et al. (2000). Phylogenetic species recognition and species concepts in fungi. Fungal Genetics and Biology, 31, 21–32.PubMedCrossRefGoogle Scholar
  67. Thell, A., Elix, J. A., Feuerer, T., Hansen, E. S., Karnefelt, I., Schuler, N., et al. (2008). Notes on the systematic, chemistry and distribution of European Parmelia and Punctelia species (lichenized ascomycetes). Sauteria, 15, 545–559.Google Scholar
  68. Thompson, J. D., Higgins, D. G., & Gibson, T. J. (1994). Clustal W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673–4680.PubMedCrossRefGoogle Scholar
  69. Vondrák, J., Říha, P., Arup, U., & Søchting, U. (2009). The taxonomy of the Caloplaca citrina group (Teloschistaceae) in the Black Sea region; with contributions to the cryptic species concept in lichenolgy. The Lichenologist, 41, 571–604.CrossRefGoogle Scholar
  70. White, T. H., Bruns, T. D., Lee, S., & Taylor, J. (1990). Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In M. A. Innis, D. H. Gelfand, J. Sninsky, & T. J. White (Eds.), PCR protocols: a Guide to Methods and Applications (pp. 315–322). San Diego: Academic.Google Scholar
  71. Wilson, F. R. M. (1900). Lichenes Kerguelenses a Roberto Hall anno 1898 prope Royal Sound in Kerguelen Insula lecti, et in herbario nationali melbourniensi depositi. Mémoires de l'Herbier Boissier, 18, 87–88.Google Scholar
  72. Wirtz, N., Printzen, C. & Lumbsch, H. T. (2011) Using haplotype networks, estimation of gene flow and phenotypic characters to understand species delimitation in fungi of a predominantly Antarctic Usnea group (Ascomycota, Parmeliaceae). Molecular Phylogenetics and Evolution, (in press)Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2011

Authors and Affiliations

  • M. Carmen Molina
    • 1
  • Ruth Del-Prado
    • 2
  • Pradeep Kumar Divakar
    • 2
  • Daniel Sánchez-Mata
    • 2
  • Ana Crespo
    • 2
  1. 1.Departamento de Biología y Geología (Área de Biodiversidad y Conservación), ESCETUniversidad Rey Juan CarlosMóstolesSpain
  2. 2.Departamento de Biología Vegetal II, Facultad de FarmaciaUniversidad Complutense de MadridMadridSpain

Personalised recommendations