Multilocus population analysis of Gavia immer (Aves: Gaviidae) mtDNA reveals low genetic diversity and lack of differentiation across the species breeding range

  • Carolina Bartolomé
  • Xulio Maside
  • Kees (C. J.) Camphuysen
  • Martin Heubeck
  • Roberto Bao
Original Article


We analyzed the patterns of nucleotide sequence variation at three mitochondrial DNA loci, the noncoding mitochondrial control region and two genes (cytochrome b and cytochrome oxidase I) of Gavia immer in the largest collection of wintering individuals from Southern Europe to date. The sample consisted of 33 birds, oiled during the 2002/2003 Prestige tanker spill and washed ashore on the Galician coast (NW Iberian Peninsula). The aims of the study were to investigate the levels of standing genetic variation in the species, and to identify the geographic origin of these wintering birds. To do this, all available sequences of these loci, mostly from North American specimens collected from both the Atlantic and Pacific coasts, were retrieved from GenBank and included in the analysis. Overall, only 14 genetic variants were detected in the nearly 2 Kb surveyed, which reflects very low levels of nucleotide site diversity in this species. Interestingly, all variants were found at very low frequencies, and there was no indication of any clear subdivision in the G. immer population. This genetic profile is consistent with G. immer being a single panmictic population of small effective population size as compared with other seabirds. These circumstances preclude identification of the breeding regions of these wintering birds relying solely on genetic data. In the light of these results, possible causes, and the genetic and ecological consequences, of this demographic scenario are discussed.


Gavia immer Mitochondrial DNA Genetic diversity Population genetics Panmixia 



Postmortem examinations of G. immer specimens took place during the impact assessment of the Prestige oil spill organized by SEO/BirdLife in collaboration with the Faculty of Sciences of the Universidade da Coruña. We thank all volunteers who collected corpses on the Galician coast, as well as the volunteer students who kept the laboratory of the Faculty of Sciences working on a daily basis. We also thank the Dirección Xeral de Conservación da Natureza (Xunta de Galicia), and especially Miguel Lorenzo, Vicente Piorno and Marta Prieto, for giving us access to the carcasses deposited in rehabilitation centers, which enhanced our sample size. We are grateful to Allan J. Baker (Department of Natural History, Royal Ontario Museum, University of Toronto, Canada), Joseph W. Brown (Bird Division, Museum of Zoology, University of Michigan, US), Paul Sweet (Department of Ornithology, American Museum of Natural History, US) and Michael Wink (Institute of Pharmacy & Molecular Biotechnology, Heidelberg University, Germany) for providing useful information about the origin of the specimens detailed in Table 1. We also thank James A. Morris-Pocock (Department of Biology, Queens University, Canada) for sharing with us the complete sequence of the MCR duplication in Sula nebouxii, José A. De Souza for supplying information about the G. immer wintering population in Galicia and Olaf Bininda-Emonds (Institute for Biology and Environmental Sciences, Oldenburg University, Germany) and one anonymous reviewer for critical reading and comments on the manuscript.

Supplementary material

13127_2011_52_MOESM1_ESM.pdf (276 kb)
Supplemental Figure 1 Electropherograms from the three nucleotide variants (C, T and Y= C+T) found in the mitochondrial control region. (PDF 276 kb)


  1. Abbott, C. L., Double, M. C., Trueman, J. W., Robinson, A., & Cockburn, A. (2005). An unusual source of apparent mitochondrial heteroplasmy: duplicate mitochondrial control regions in Thalassarche albatrosses. Molecular Ecology, 14, 3605–3613.PubMedCrossRefGoogle Scholar
  2. Baker, A. J., Pereira, S. L., Haddrath, O. P., & Edge, K. A. (2006). Multiple gene evidence for expansion of extant penguins out of Antarctica due to global cooling. Proceedings of the Royal Society B Biological Sciences, 273, 11–17.CrossRefGoogle Scholar
  3. Bandelt, H. J., Forster, P., & Rohl, A. (1999). Median-joining networks for inferring intraspecific phylogenies. Molecular and Biological Evolution, 16, 37–48.Google Scholar
  4. Bazin, E., Glemin, S., & Galtier, N. (2006). Population size does not influence mitochondrial genetic diversity in animals. Science, 312, 570–572.PubMedCrossRefGoogle Scholar
  5. Berlin, S., Tomaras, D., & Charlesworth, B. (2007). Low mitochondrial variability in birds may indicate Hill-Robertson effects on the W chromosome. Heredity, 99, 389–396.PubMedCrossRefGoogle Scholar
  6. BirdLife-International. (2004). Birds in Europe: population estimates, trends and conservation status. Cambridge: Birdlife International.Google Scholar
  7. Brown, J. W., Rest, J. S., Garcia-Moreno, J., Sorenson, M. D., & Mindell, D. P. (2008). Strong mitochondrial DNA support for a Cretaceous origin of modern avian lineages. BMC Biology, 6, 6.PubMedGoogle Scholar
  8. Camphuysen, C. J., Bao, R. M. F., Roselaar, C. S., & Heubeck, M. (2010). Post-mortem examination of Great Northern Divers Gavia immer killed in the Prestige oil spill, Galicia, Spain 2002/3. Seabird, 23, 53–65.Google Scholar
  9. Camphuysen, C.J., Bao, R., Nijkamp, H., Heubeck, M., 2007. Handbook on oil impact assessment online edition, version 1.0., Online edition, version 1.0. edn.
  10. Charlesworth, B., Charlesworth, D., (2009). Elements of evolutionary genetics. Greenwood Village, CO: RobertsGoogle Scholar
  11. Clark, P. U., Dyke, A. S., Shakun, J. D., et al. (2009). The last glacial maximum. Science, 325, 710–714.PubMedCrossRefGoogle Scholar
  12. Cramp, S., & Simmons, K. E. L. (1977). The birds of the western Paleartic (vol. I). Oxford: Oxford University Press.Google Scholar
  13. De Souza, J. A., Barros, A., Sandoval, A., & Bao, R. (2010). A review of the status of Great Northern Diver Gavia immer in Galicia, northwest Spain. Seabird, 23, 76–90.Google Scholar
  14. Dhar, A. K., Pokras, M. A., Garcia, D. K., et al. (1997). Analysis of genetic diversity in common loon Gavia immer using RAPD and mitochondrial RFLP techniques. Molecular Ecology, 6, 581–586.CrossRefGoogle Scholar
  15. Dunnet, G. M. (1982). Oil pollution and seabird populations. Philosophical Transactions of the Royal Society B, 297, 413–427.CrossRefGoogle Scholar
  16. Evers, D. C. (2001). Common loon population studies: continental mercury patterns and breeding territory philopatry doctoral dissertation. St. Paul, MN: University of Minnesotta.Google Scholar
  17. Evers, D.C., (2004). Status assessment and conservation plan for the Common Loon (Gavia immer) in North America. US Fish and Wildlife Service, Hadley, MA.Google Scholar
  18. Evers, D.C., Kaplan, J.D., Reaman, P.S., Paruk, J.D., Phifer, P., (2000). Demographic characteristics of the common loon in the Upper Great Lakes. Loons: Old history and New Findings. Proceedings of a Symposium from the 1997 meeting of the American Ornithologists' Union. Minneapolis, MN. North American Loon Fund. Holderness, NH.Google Scholar
  19. Fay, J. C., & Wu, C. I. (1999). A human population bottleneck can account for the discordance between patterns of mitochondrial versus nuclear DNA variation. Molecular and Biological Evolution, 16, 1003–1005.Google Scholar
  20. Ford, R. G., Page, G. W., & Carter, H. R. (1987). Estimating mortality of seabirds from oil spills. Washington D.C.: Proceedings of the 1987 Oil Spill Conference, American Petroleum Institute.Google Scholar
  21. Friesen, V. L., Burg, T. M., & McCoy, K. D. (2007). Mechanisms of population differentiation in seabirds. Molecular Ecology, 16, 1765–1785.PubMedCrossRefGoogle Scholar
  22. Garcia-Moreno, J., Sorenson, M. D., & Mindell, D. P. (2003). Congruent avian phylogenies inferred from mitochondrial and nuclear DNA sequences. Journal of Molecular Evolution, 57, 27–37.PubMedCrossRefGoogle Scholar
  23. García, L., Viada, C., Moreno-Opo, R., et al. (2003). Impacto de la marea negra del "Prestige" sobre las aves marinas. Madrid: SEO/BirdLife.Google Scholar
  24. González, J. J., Viñas, L., Franco, M. A., et al. (2006). Spatial and temporal distribution of dissolved/dispersed aromatic hydrocarbons in seawater in the area affected by the Prestige oil spill. Marine Pollution Bulletin, 53, 250–259.PubMedCrossRefGoogle Scholar
  25. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  26. Hebert, P. D., Stoeckle, M. Y., Zemlak, T. S., & Francis, C. M. (2004). Identification of birds through DNA barcodes. PLoS Biology, 2, e312.PubMedCrossRefGoogle Scholar
  27. Heubeck, M., Camphuysen, K., Bao, R., et al. (2003). Assessing the impact of major oil spills on seabird populations. Marine Pollution Bulletin, 46, 900–902.PubMedCrossRefGoogle Scholar
  28. Heubeck, M., Richardson, M. G., Lyster, I. H. J., & McGowan, R. Y. (1993). Post-mortem examination of Great Northern Divers Gavia immer killed by oil pollution in Shetland, 1979. Seabird, 15, 53–59.Google Scholar
  29. Hudson, R. R., Slatkin, M., & Maddison, W. P. (1992). Estimation of levels of gene flow from DNA sequence data. Genetics, 132, 583–589.PubMedGoogle Scholar
  30. Hughes, A. L., & Hughes, M. A. (2007). Coding sequence polymorphism in avian mitochondrial genomes reflects population histories. Molecular Ecology, 16, 1369–1376.PubMedCrossRefGoogle Scholar
  31. Kenow, K. P., Meyer, M. W., Evers, D. C., Douglas, D. C., & Hines, J. (2002). Use of satellite telemetry to identify Common Loon migration routes, staging areas and wintering range. Waterbirds, 25, 449–458.CrossRefGoogle Scholar
  32. Kerlinger, P. (1982). The migration of common loons through eastern New York. Condor, 84, 97–100.CrossRefGoogle Scholar
  33. Kerr, K. C., Stoeckle, M. Y., Dove, C. J., et al. (2007). Comprehensive DNA barcode coverage of North American birds. Molecular Ecology Notes, 7, 535–543.CrossRefGoogle Scholar
  34. Kimura, M. (1983). The neutral theory of molecular evolution. Cambridge: Cambridge University Press.Google Scholar
  35. King, J. G., & Sanger, G. A. (1979). Oil vulnerability index for marine Oriented Birds. In J. C. Bartonek & D. N. Nettleship (Eds.), Conservation of Marine Birds of Northern North America. Wildlife Research Report 11 (pp. 227–239). Washington D.C.: Fish & Wildlife Service.Google Scholar
  36. Kitchener, A. C., & McGowan, R. Y. (2003). Sudden large samples: opportunities and problems. Bull. Brit. Ornithol. Club, 123, 177–185.Google Scholar
  37. Lack, P. C. (1986). The Atlas of Wintering Birds in Britain and Ireland. Berkhamstead: Poyser.Google Scholar
  38. Lambert, D. M., Ritchie, P. A., Millar, C. D., et al. (2002). Rates of evolution in ancient DNA from Adelie penguins. Science, 295, 2270–2273.PubMedCrossRefGoogle Scholar
  39. Librado, P., & Rozas, J. (2009). DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics, 25, 1451–1452.PubMedCrossRefGoogle Scholar
  40. McIntyre, J. W. (1998). The Common Loon: Spirit of the Northern Lakes. Minneapolis, MN: University of Minnesotta Press.Google Scholar
  41. McMillan, A. M., Bagley, M. J., & Evers, D. C. (2004). Characterization of seven polymorphic microsatellite loci in the Common Loon (Gavia immer). Molecular Ecology Notes, 4, 297–299.CrossRefGoogle Scholar
  42. Morgan-Richards, M., Trewick, S. A., Bartosch-Harlid, A., et al. (2008). Bird evolution: testing the Metaves clade with six new mitochondrial genomes. BMC Evolutionary Biology, 8, 20.PubMedCrossRefGoogle Scholar
  43. Morris-Pocock, J. A., Taylor, S. A., Birt, T. P., & Friesen, V. L. (2010). Concerted evolution of duplicated mitochondrial control regions in three related seabird species. BMC Evolutionary Biology, 10, 14.PubMedCrossRefGoogle Scholar
  44. Nabholz, B., Glemin, S., & Galtier, N. (2009). The erratic mitochondrial clock: variations of mutation rate, not population size, affect mtDNA diversity across birds and mammals. BMC Evolutionary Biology, 9, 54.PubMedCrossRefGoogle Scholar
  45. Nei, M., & Gojobori, T. (1986). Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Molecular and Biological Evolution, 3, 418–426.Google Scholar
  46. Paterson, A.M., (1997). Las aves marinas de España y Portugal. Península Ibérica, Islas Baleares, Canarias, Azores y Madeira. Barcelona: Lynx.Google Scholar
  47. Piatt, J. F., Lensink, C. J., Butler, W., Kendziorek, M., & Nysewander, D. R. (1990). Immediate impact of the 'Exxon Valdez' oil spill on marine birds. The Auk, 107, 387–397.Google Scholar
  48. Riffaut, L., McCoy, K. D., Tirard, C., Friesen, V. L., & Boulinier, T. (2005). Population genetics of the common guillemot Uria aalge in the North Atlantic: geographic impact of oill spills. Marine Ecology Progress Series, 291, 263–273.CrossRefGoogle Scholar
  49. Sandoval, A., & De Souza, J. A. (2005). Colimbo Grande, Gavia immer. In A. Madroño, C. González, & J. C. Atienza (Eds.), Libro Rojo de las Aves de España (pp. 33–34). Madrid: Dirección General para la Biodiversidad—SEO/BirdLife.Google Scholar
  50. Slack, K. E., Jones, C. M., Ando, T., et al. (2006). Early penguin fossils, plus mitochondrial genomes, calibrate avian evolution. Molecular and Biological Evolution, 23, 1144–1155.CrossRefGoogle Scholar
  51. Slade, G. (1996). Nearshore winter seabird survey of South West England. Exeter: RSPB-SWRO.Google Scholar
  52. Stanley, S. E., & Harrison, R. G. (1999). Cytochrome b evolution in birds and mammals: an evaluation of the avian constraint hypothesis. Molecular and Biological Evolution, 16, 1575–1585.Google Scholar
  53. Storer, R. W. (1988). Variation in the Common Loon (Gavia immer). In P. V. Strong (Ed.), Papers from the 1987 Conference on Loon Research and Management (pp. 54–65). Gifford, NH: North American Loon Fund.Google Scholar
  54. Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics, 123, 585–595.PubMedGoogle Scholar
  55. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Molecular and Biological Evolution, 24, 1596–1599.CrossRefGoogle Scholar
  56. Votier, S. C., Hatchwell, B. J., Beckerman, A., et al. (2005). Oil pollution and climate have wide-scale impacts on seabird demographics. Ecology Letters, 8, 1157–1164.PubMedCrossRefGoogle Scholar
  57. Watanabe, M., Nikaido, M., Tsuda, T. T., et al. (2006). New candidate species most closely related to penguins. Gene, 378, 65–73.PubMedCrossRefGoogle Scholar
  58. Watterson, G. A. (1975). On the number of segregating sites in genetical models without recombination. Theoretical Population Biology, 7, 256–276.PubMedCrossRefGoogle Scholar
  59. Weir, D. N., McGowan, R. Y., Kitchener, S., McOrist, S., & Heubeck, M. (1996). Effects of oil spills and shooting on Great Northern Divers which winter in Scotland. Dan. Ornithol. Foren. Tidsskr., 90, 29–33.Google Scholar
  60. Wetlands-International. (2006). Waterbird Population Estimates (4th ed.). The Netherlands: Wageningen.Google Scholar
  61. Whitlock, M. C. (2000). Fixation of new alleles and the extinction of small populations: drift load, beneficial alleles, and sexual selection. Evolution, 54, 1855–1861.PubMedGoogle Scholar
  62. Wiese, F. K. (2003). Sinking rates of dead birds: improving estimates of seabird mortality due to oiling. Marine Ornithology, 31, 65–70.Google Scholar
  63. Williams, J. M., Tasker, M. L., Carter, I. C., & Webb, A. (1995). A method of assessing seabird vulnerability to surface pollutants. Ibis, 137, S147–S152.CrossRefGoogle Scholar
  64. Wink, M. (2006). Use of DNA markers to study bird migration. Journal of Ornithology, 147, 234–244.CrossRefGoogle Scholar
  65. Wink, M., Kuhn, M., Sauer-Gïrth, H., & Witt, H. H. (2002). Ein Eistaucher (Gavia immer) bei Düren—Fundgeschichte und erste genetische Herkunftsuntersuchungen. Charadrius, 38, 239–245.Google Scholar
  66. Yoo, H. S., Eah, J. Y., Kim, J. S., et al. (2006). DNA barcoding Korean birds. Molecules and Cells, 22, 323–327.PubMedGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2011

Authors and Affiliations

  • Carolina Bartolomé
    • 1
  • Xulio Maside
    • 1
  • Kees (C. J.) Camphuysen
    • 2
  • Martin Heubeck
    • 3
  • Roberto Bao
    • 4
  1. 1.Departamento de Anatomía Patolóxica e Ciencias Forenses, Grupo de Medicina XenómicaFacultade de Medicina, Universidade de Santiago de CompostelaSantiago de CompostelaSpain
  2. 2.Netherlands Institute for Sea ResearchDen BurgThe Netherlands
  3. 3.Shetland Oil Terminal Environmental Advisory Group (SOTEAG)University of AberdeenVirkieUK
  4. 4.Facultade de Ciencias, Universidade da CoruñaCoruñaSpain

Personalised recommendations