Organisms Diversity & Evolution

, Volume 11, Issue 3, pp 201–236 | Cite as

Interactive 3D anatomy and affinities of the Hyalogyrinidae, basal Heterobranchia (Gastropoda) with a rhipidoglossate radula

  • Gerhard HaszprunarEmail author
  • Erika Speimann
  • Andreas Hawe
  • Martin Heß
Original Article


Whereas Hyalogyrina Marshall, 1988 was originally considered a skeneid vetigastropod, the family Hyalogyrinidae Warén & Bouchet, 1993 has later been classified as basal Heterobranchia despite their rhipidoglossate radula. In order to evaluate this placement and to shed more light on the origin of all higher Gastropoda, we investigated five representatives of all three nominal hyalogyrinid genera by means of semithin serial sectioning and computer-aided 3D reconstruction of the respective anatomy, which we present in an interactive way. In general the morphological features (shell, external morphology, anatomy) fully confirm the placement of Hyalogyrinidae in the Heterobranchia, but in particular the conditions of the genital system vary substantially within the family. The ectobranch gill of Hyalogyrinidae is shared with Valvatidae, Cornirostridae, and Xylodisculidae; consequently all these families are united in Ectobranchia Fischer, 1884. The rhipidoglossate hyalogyrinid radula suggests independent acquisition of taenioglossate radulae in the Caenogastropoda and other Ectobranchia. Therefore, the origin of the Heterobranchia—and thus of all higher gastropods—looks to have taken place already on the rhipidoglossate, i.e. the ‘archaeogastropod’, level of evolution. Ectobranchia are considered the first extant offshoot of the Heterobranchia; implications for the stem species of the latter are outlined.


Gastropoda Ectobranchia Hyalogyrinidae Interactive 3D anatomy Systematics Phylogeny Heterobranchia 



We are very grateful to all colleagues who added material and data to the present study: the specimens of Xenoskenea pellucida were collected by Dr. Serge Gofas (Universidad de Malaga, Spain) during “Mission Algarve”, a workshop in southern Portugal organised by Dr. Philippe Bouchet (Museum National d’Histoire Naturelle, Paris). Bruce A. Marshall (Museum of New Zealand, Te Papa Tongarewa) kindly provided the specimens of Hyalogyrina glabra and Hyalogyra expansa. Dr. Kazunori Hasegawa (National Museum of Nature and Science, Tsukuba City, Japan) kindly made specimens of Hyalogyrina depressa available to us. Dr. Anders Warén (Naturhistoriska Riksmuseet, Stockholm) sent us material of Hyalogyrina grasslei, provided SEM photos of various hyalogyrinids, and added (as did two anonymous referees) much helpful advice to the draft of this paper. We also acknowledge technical support from Ms. Eva Lodde (ZSM) and Heidemarie Gensler (LMU Munich). Last but not least we thank Dr. Masanori Taru (Toho University, Japan) for providing his beautiful live photo of a new Xenoskenea species.

Supplementary material

13127_2011_48_MOESM1_ESM.pdf (4.5 mb)
Figure 2 3D Reconstruction of Xenoskenea pellucida and interactive 3D Model. (PDF 4645 kb)
13127_2011_48_MOESM2_ESM.pdf (5.9 mb)
Figure 7 The interactive 3D-model of Hyaloyrina depressa can be accessed by clicking into Fig. 7 (Adobe Reader Version 7 or higher required). Rotate model by dragging with left mouse button pressed, shift model: same action + ctrl, zoom: use mouse wheel (or change default action for left mouse button). Select or deselect (or change transparency of) components in the model tree, switch between prefab views or change surface visualization (e.g. lightning, render mode, crop etc.). (PDF 6051 kb)
13127_2011_48_MOESM3_ESM.pdf (4.4 mb)
Figure 14 The interactive 3D-model of Hyaloyrina grasslei can be accessed by clicking into Fig. 14 (Adobe Reader Version 7 or higher required). Rotate model by dragging with left mouse button pressed, shift model: same action + ctrl, zoom: use mouse wheel (or change default action for left mouse button). Select or deselect (or change transparency of) components in the model tree, switch between prefab views or change surface visualization (e.g. lightning, render mode, crop etc.). (PDF 4466 kb)
13127_2011_48_MOESM4_ESM.pdf (4.9 mb)
Figure 18 3D Reconstruction of Hyalogyrina glabra and interactive 3D Model. (PDF 5052 kb)


  1. Aktipis, S. H., Giribet, G., Lindberg, D. R., & Ponder, W. F. (2008). Gastropoda. In W. F. Ponder & D. R. Lindberg (Eds.), Phylogeny and evolution of the Mollusca (pp. 199–236). Berkeley: University of California Press.Google Scholar
  2. Bandel, K. (1982). Morphologie und Bildung der frühontogenetischen Gehäuse bei conchiferen Mollusken. Facies (Erlangen), 7, 1–198. pls. 1–22.CrossRefGoogle Scholar
  3. Bandel, K. (1991). Gastropods from brackish and fresh water of the Jurassic-Cretaceous transition (a systematic reevaluation). Berliner Geowissenschaftliche Abhandlungen, (A), 134, 9–55.Google Scholar
  4. Bandel, K. (1996). Some heterostrophic gastropods from Triassic St. Cassian formation with a discussion on the classification of the Allogastropoda. Paläontologische Zeitschrift, 70, 325–365.Google Scholar
  5. Bandel, K., & Heidelberger, D. (2002). A Devonian member of the subclass Heterostropha (Gastropoda) with valvatoid shell shape. Neues Jahrbuch für Geologie und Paläontologie Monatshefte, 2002(9), 503–550.Google Scholar
  6. Bäumler, N., Haszprunar, G., & Ruthensteiner, B. (2008). 3D interactive microanatomy of Omalogyra atomus (Philippi, 1841) (Gastropoda, Heterobranchia, Omalogyridae). In D. Geiger, & B. Ruthensteiner (Eds.) Micromolluscs: Methodological challenges – exciting results. Zoosymposia, 1, 108–116.Google Scholar
  7. Bernard, F. (1890). Recherches sur Valvata piscinalis. Bulletin Scientifique de la France et de la Belgique, 22, 253–361. pls. 12–20.Google Scholar
  8. Bieler, R., Ball, A. D., & Mikkelsen, P. M. (1998). Marine Valvatoidea – Comments on anatomy and systematics with description of a new species from Florida (Heterobranchia: Cornirostridae). Malacologia, 40, 305–320.Google Scholar
  9. Clare, A. S. (1987). Studies on the juxtaganglionar organ of trochids. In H. H. Boer, W. P. M. Geraerts, & J. Joosse (Eds.), Neurobiology: Molluscan models. Proceedings of the 2nd symposium on molluscan neurobiology, Amsterdam 1986 (pp. 342–349). Amsterdam: North Holland Publ. Comp.Google Scholar
  10. Cleland, D. M. (1954). A study of the habits of Valvata piscinalis (Müller) and the structure and function of the alimentary canal and reproductive system. Proceedings of the Malacological Society of London, 30, 167–203.Google Scholar
  11. Colgan, D. J., Ponder, W. F., Beacham, E., & Macaranas, J. M. (2003). Gastropod phylogeny based on six segments from four genes representing coding or non-coding and mitochondrial or nuclear DNA. Molluscan Research, 23, 123–148.CrossRefGoogle Scholar
  12. Dayrat, B., & Tillier, S. (2003). Molecular systematics of the major lineages of the Gastropoda. In C. Lydeard & D. R. Lindberg (Eds.), Molecular systematics and phylogeography of mollusks (pp. 161–184). Washington & London: Smithsonian Series on Evolutionary Biology. Smithsonian Books.Google Scholar
  13. Dinapoli, A., & Klussmann-Kolb, A. (2010). The long way to diversity – Phylogeny and evolution of the Heterobranchia (Mollusca: Gastropoda). Molecular Phylogeny and Evolution, 55, 60–76.CrossRefGoogle Scholar
  14. Falniowski, A. (1989). A critical review of some characters widely used in the systematics of higher taxa of freshwater prosobranchs (Gastropoda: Prosobranchia), and a proposal of some new, ultrastructural ones. Folia Malacologica (Kraków), 3(1216), 73–94.Google Scholar
  15. Falniowski, A. (1990). Anatomical characters and SEM structure of radula and shell in the species-level taxonomy of freshwater prosobranchs (Mollusca: Gastropoda: Prosobranchia): a comparative usefulness study. Folia Malacologica (Kraków), 4(1276), 53–142.Google Scholar
  16. Fechter, R., & Falkner, G. (1990). Weichtiere. Europäische Meeres- und Binnenmollusken. München: Mosaik Verlag.Google Scholar
  17. Fischer, P. (1880–1887). Manuel de conchyliologie et de paléontologie conchyliologique. Paris: Savy. [Fascicule 7 with pp. 609–688 published 30 June 1884.]Google Scholar
  18. Fretter, V. (1948). The structure and life history of some minute prosobranchs of rock pools: Skeneopsis planorbis (Fabricius), Omalogyra atomus (Philippi), Rissoella diapha (Alder) and Rissoella opalina (Jeffreys). Journal of the Marine Biological Association of the UK, 27, 597–632.CrossRefGoogle Scholar
  19. Furrow, C. L. (1935). Development of the hermaphroditic genital organs of Valvata. Zeitschrift für Zellforschung und Mikroskopische Anatomie, 22, 282–304.CrossRefGoogle Scholar
  20. Garnault, P. (1890). Les organes reproducteurs de la Valvata piscinalis. Bulletin Scientifique de la France et de la Belgique, 22, 496–507. pl. 26.Google Scholar
  21. Grande, C., Templado, J., & Zardoya, R. (2008). Evolution of gastropod mitochondrial genome arrangements. BMC Evolutionary Biology, 8(61), 1–15.Google Scholar
  22. Hadfield, M. G., & Strathmann, M. F. (1990). Heterostrophic shells and pelagic development in trochoideans: implications for classification, phylogeny and palaeoecology. Journal of Molluscan Studies, 56, 239–256.CrossRefGoogle Scholar
  23. Hartmann, H., Heß, M., & Haszprunar, G. (2011). Interactive 3D anatomy and affinities of Bathysciadiidae (Gastropoda, Cocculinoidea): deep-sea limpets feeding on decaying cephalopod beaks. Journal of Morphology, 272, 259–279.PubMedCrossRefGoogle Scholar
  24. Hasegawa, K. (1997). Sunken wood-associated gastropods from Suruga Bay, Pacific side of the central Honshu, Japan, with description of 12 new species. National Science Museum Monographs, 12, 59–123.Google Scholar
  25. Haszprunar, G. (1985a). The Heterobranchia – a new concept of the phylogeny of the higher Gastropoda. Zeitschrift für Zoologische Systematik und Evolutionsforschung, 23, 15–37.CrossRefGoogle Scholar
  26. Haszprunar, G. (1985b). Zur Anatomie und systematischen Stellung der Architectonicidae (Mollusca, Allogastropoda). Zoologica Scripta, 14, 25–43.CrossRefGoogle Scholar
  27. Haszprunar, G. (1985c). On the anatomy and systematic position of the Mathildidae (Mollusca, Allogastropoda). Zoologica Scripta, 14, 201–213.CrossRefGoogle Scholar
  28. Haszprunar, G. (1988). On the origin and evolution of major gastropod groups, with special reference to the Streptoneura. Journal of Molluscan Studies, 54, 367–441.CrossRefGoogle Scholar
  29. Haszprunar, G. (1996). The molluscan rhogocyte (pore-cell, Blasenzelle, cellule nucale), and its significance for ideas on nephridial evolution. Journal of Molluscan Studies, 62, 185–211.CrossRefGoogle Scholar
  30. Healy, J. M. (1990). Spermatozoa and spermiogenesis of Cornirostra, Valvata and Orbitestella (Gastropoda, Heterobranchia) with a discussion on valvatoidean sperm morphology. Journal of Molluscan Studies, 56, 557–566.CrossRefGoogle Scholar
  31. Healy, J. M. (1993). Comparative sperm ultrastructure and spermiogenesis in basal heterobranch gastropods (Valvatoidea, Architectonicoidea, Rissoelloidea, Omalogyroidea, Pyramidelloidea). Zoologica Scripta, 22, 263–276.CrossRefGoogle Scholar
  32. Hedegaard, C. (1990). Shell structure of the Recent Archaeogastropoda. PhD thesis. Aarhus, Denmark: University of Aarhus.Google Scholar
  33. Herbert, D. G. (1982). Fine structural observations on the juxtaganglionar organ of Gibbula umbilicalis (Da Costa). Journal of Mollusan Studies, 48, 226–228.Google Scholar
  34. Heß, M., Beck, F., Gensler, H., Kano, Y., Kiel, S., & Haszprunar, G. (2008). Microanatomy, shell structure and molecular phylogeny of Leptogyra, Xyleptogyra and Leptogyropsis (Gastropoda: Neomphalida: Melanodrymiidae) from sunken wood. Journal of Molluscan Studies, 74, 383–401.CrossRefGoogle Scholar
  35. Høisaeter, T., & Johannessen, P. J. (2002). Xylodiscula planata sp. nov., a “lower” heterobranch gastropod from Norwegian waters. Sarsia, 86, 325–332.Google Scholar
  36. Jamieson, B. G. M. (1987). A biological classification of sperm types, with special reference to annelids and molluscs, and an example of spermiocladistics. In H. Mohri (Ed.), New horizons in sperm cell research (pp. 311–332). Tokyo: Japan Scientific Society Press.Google Scholar
  37. Johansson, J. (1956). Garnault’s duct and its significance for the phylogeny of the genital system of Valvata. Zoologiska Bidrag från Uppsala, 30, 457–464. pls. 1–2.Google Scholar
  38. Jörger, K. M., Stöger, I., Kano, Y., Fukuda, H., Knebelsberger, T., & Schrödl, M. (2010). On the origin of Acochlidia and other enigmatic euthyneuran gastropods and implications for the systematics of Heterobranchia. BMC Evolutionary Biology, 10(323), 1–20.Google Scholar
  39. Kruglow, N. D., & Frolenkova, O. A. (1981). Structure of egg-clutches in molluscs of the family Valvatidae (Pectinibranchia, Ectobranchia). [In Russian, with English abstract.] Vestnik Leningradskogo Gosudarstvennogo Universiteta Biologichesky, 1981(1), 52–58.Google Scholar
  40. Kunze, T., & Haszprunar, G. (2008). What are skeneimorph gastropods? – How 3D based anatomy can help to shed some light on the polyphyletic assemblage called Skeneidae. The Malacologist, 52, 6–7.Google Scholar
  41. Lindholm, W. A. (1927). Valvata naticina Menke und ihr Formenkreis. Archiv für Molluskenkunde, 59, 20–33.Google Scholar
  42. Luchtel, D. L., Martin, A. W., Deyrup-Olsen, I., & Boer, H. H. (1997). Gastropoda: Pulmonata. In F. W. Harrison & A. J. Kohn (Eds.), Microscopic anatomy of invertebrates, vol. 6B: Mollusca II (pp. 459–718). New York: Wiley-Liss.Google Scholar
  43. Marshall, B. A. (1988). Skeneidae, Vitrinellidae and Orbitestellidae (Mollusca, Gastropoda) associated with biogenic substrata from bathyal depths off New Zealand and New South Wales. Journal of Natural History, 22, 969–1004.CrossRefGoogle Scholar
  44. Marshall, D. J., & Hodgson, A. N. (1990). Structure of the cephalic tentacles of some species of prosobranch limpets (Patellidae and Fissurellidae). Journal of Molluscan Studies, 56, 415–424.CrossRefGoogle Scholar
  45. Martoja, M. (1965a). Existence d’un organe juxta-ganglionaire chez Aplysia punctata Cuv. (Gastéropode Opisthobranche). Comptes Rendus de l’Academie des Sciences, Paris, 260, 4615–4617.Google Scholar
  46. Martoja, M. (1965b). Données relatives à l’organe juxta-ganglionaire des Prosobranches Diotocardes. Comptes Rendus de l’Academie des Sciences, Paris, 261, 3195–3196.Google Scholar
  47. McArthur, A. G., & Harasewych, M. G. (2003). Molecular systematics of the major lineages of the Gastropoda. In C. Lydeard & D. R. Lindberg (Eds.), Molecular systematics and phylogeography of mollusks (pp. 140–160). Washington & London: Smithsonian Series on Evolutionary Biology. Smithsonian Books.Google Scholar
  48. Monterosato, T. A. (1874). Recherches conchyliologiques, effectuées au Cap Santo Vito, en Sicilie. Journal de Conchyliologie (Paris), 14, 243–282.Google Scholar
  49. Ponder, W. F. (1990a). The anatomy and relationships of the Orbitestellidae (Gastropoda: Heterobranchia). Journal of Molluscan Studies, 56, 515–532.CrossRefGoogle Scholar
  50. Ponder, W. F. (1990b). The anatomy and relationships of a marine valvatoidean (Gastropoda: Heterobranchia). Journal of Molluscan Studies, 56, 533–556.CrossRefGoogle Scholar
  51. Ponder, W. F. (1991a). Marine valvatoidean gastropods – implication for early heterobranch phylogeny. Journal of Molluscan Studies, 57, 21–32.CrossRefGoogle Scholar
  52. Ponder, W. F. (1991b). The anatomy of Diala, with an assessment of its taxonomic position (Mollusca: Cerithioidea). In F. E. Wells, D. I. Walker, H. Kirkman, & R. Lethbridge (Eds.), The marine flora and fauna of Albany, Western Australia, vol. 2 (pp. 500–519). Perth: Western Australian Museum.Google Scholar
  53. Ponder, W. F., & Lindberg, D. R. (1997). Towards a phylogeny of gastropod molluscs: an analysis using morphological characters. Zoological Journal of the Linnean Society, 119, 83–265.CrossRefGoogle Scholar
  54. Rath, E. (1986). Beiträge zur Anatomie und Ontogenie der Valvatidae (Mollusca: Gastropoda). Unpublished dissertation. Vienna, Austria: Institut für Zoologie der Universität Wien.Google Scholar
  55. Rath, E. (1988). Organization and systematic position of the Valvatidae. Malacological Review, Supplement, 4, 194–204.Google Scholar
  56. Richardson, K. C., Jarett, L., & Finke, E. H. (1960). Embedding in epoxy resins for ultrathin sectioning in electron microscopy. Stain Technology, 35, 313–323.PubMedGoogle Scholar
  57. Robertson, R. (1985). Four characters and the higher category systematics of gastropods. American Malacological Bulletin, Special Edition, 1, 1–22.Google Scholar
  58. Robertson, R. (1993). Snail handedness. The coiling directions of gastropods. National Geographic Research and Exploration, 9, 104–119.Google Scholar
  59. Romeis, B. (1989). Mikroskopische Technik, 17th edition [Böck, P. (Ed.)]. Munich, etc.: Urban & Schwarzenberg.Google Scholar
  60. Rubio, F., Rolan, E., & Fernandes, F. (1992). Nueva especie de Hyalogyra (Archaeogastropoda: Skeneidae) procedente de la costa occidental Africana. Bollettino di Malacologico, 28, 145–148.Google Scholar
  61. Ruthensteiner, B. (2008). Soft part 3D visualization by serial sectioning and computer reconstruction. In D. Geiger, & B. Ruthensteiner (Eds.), Micromolluscs: methodological challenges – exciting results. Zoosymposia, 1, 63–100.Google Scholar
  62. Ruthensteiner, B., & Heß, M. (2008). Embedding 3D models of biological specimens in PDF publications. Microscopy Research and Technique, 71, 778–786.PubMedCrossRefGoogle Scholar
  63. Sahling, H., Rickert, D., Lee, R. W., Linke, P., & Suess, E. (2002). Macrofaunal community structure and sulfide flux at gas hydrate deposits from the Cascadia convergent margin, NE Pacific. Marine Ecology Progress Series, 231, 121–138.CrossRefGoogle Scholar
  64. Salvini-Plawen, L., & Haszprunar, G. (1987). The Vetigastropoda and the systematics of streptoneurous Gastropoda (Mollusca). Journal of Zoology (London), 211, 747–770.Google Scholar
  65. Sasaki, T. (1998). Comparative anatomy and phylogeny of the recent Archaeogastropoda (Mollusca: Gastropoda). University and Museum of Tokyo Bulletin, 38, 1–224.Google Scholar
  66. Simone, L. R. L. (1995). Rissoella ornata, a new species of Rissoellidae (Mollusca: Gastropoda: Rissoelloidea) from the southeastern coast of Brazil. Proceedings of the Biological Society of Washington, 108, 560–567.Google Scholar
  67. Sitnikova, T. Y. (1984). Some aspects of the structure and functioning of the reproductive system of the family Valvatidae (Gastropoda, Pectinibranchia). [In Russian, with English abstract]. Vestnik Leningradskogo Gosudarstvennogo Universiteta Biologichesky, 1984(2), 121–123.Google Scholar
  68. Sminia, T., & Boer, H. H. (1973). Haemocyanin production in pore cells of the freshwater snail Lymnaea stagnalis. Zeitschrift für Zellforschung, 145, 443–445.CrossRefGoogle Scholar
  69. Sminia, T., De With, N. D., Bos, J. L., Van Nieuwmegen, M. E., Witter, M. P., & Wondergem, J. (1976). Structure and function of the calcium cells of the freshwater pulmonate snail Lymnaea stagnalis. Netherlands Journal of Zoology, 27, 195–208. pls. 1–3.CrossRefGoogle Scholar
  70. Speimann, E., Heß, M., & Haszprunar, G. (2007). 3D-anatomy of the rhipidoglossate heterobranchs Hyalogyrina depressa Hasegawa, 1997 and Xenoskenea pellucida (Monterosato, 1874) (Gastropoda, Ectobranchia). Abstracts of the World Congress of Malacology, Antwerp, July, 2007, 212–213.Google Scholar
  71. Spurr, A. R. (1969). A low-viscosity epoxy resin embedding medium for electron microscopy. Journal of Ultrastructural Research, 26, 31–43.CrossRefGoogle Scholar
  72. Starmühlner, F. (1952). Zur Anatomie, Histologie und Biologie einheimischer Prosobranchier. Österreichische Zoologische Zeitschrift, 3, 546–590.Google Scholar
  73. Switzer-Dunlap, M. F. (1987). Ultrastructure of the juxtaganglionar organ, a putative endocrine gland associated with the cerebral ganglion of Aplysia juliana. International Journal of Invertebrate Reproduction and Development, 11, 295–304.Google Scholar
  74. Van den Biggelaar, J. A. M., & Haszprunar, G. (1996). Cleavage patterns in the Gastropoda: an evolutionary approach. Evolution, 50, 1520–1540.CrossRefGoogle Scholar
  75. Wägele, H., Klussmann-Kolb, A., Vonnemann, V., & Medina, M. (2008). Heterobranchia I. The Opisthobranchia. In W. F. Ponder & D. R. Lindberg (Eds.), Phylogeny and evolution of the Mollusca (pp. 383–406). Berkeley: University of California Press.Google Scholar
  76. Warén, A. (1992). New and little known “skeneimorph” gastropods from the Mediterranean Sea and the adjacent Atlantic Ocean. Bollettino di Malacologico (Milano), 27, 149–248.Google Scholar
  77. Warén, A., & Bouchet, P. (1993). New records, species, genera, and a new family of gastropods from hydrothermal vents and hydrocarbon seeps. Zoologica Scripta, 22, 1–90.CrossRefGoogle Scholar
  78. Warén, A., & Bouchet, P. (2001). Gastropoda and Monoplacophora from hydrothermal vents and seeps; new taxa and records. Zoologica Scripta, 44, 116–231.Google Scholar
  79. Warén, A., & Bouchet, P. (2009). New gastropods from deep-sea hydrocarbon seeps off West Africa. Deep-Sea Research II, 56, 2326–2349.CrossRefGoogle Scholar
  80. Warén, A., Gofas, S., & Schander, C. (1993). Systematic position of three European heterobranch gastropods. Veliger, 36, 1–15.Google Scholar
  81. Warén, A., Carozza, F., & Rocchini, R. (1997). Description of two new species of Hyalogyrinidae (Gastropoda, Heterobranchia) from the Mediterranean. Bollettino Malacologico, 32, 57–66.Google Scholar
  82. Wise, J. B. (1998). Morphology and systematic position of Rissoella caribaea Rehder, 1943 (Gastropoda: Heterobranchia: Rissoellidae). Nautilus, 111, 13–21.Google Scholar
  83. Yonge, C. M. (1947). The pallial organs in the aspidobranch gastropods and their evolution throughout the Mollusca. Philosophical Transactions of the Royal Society of London/B, 232, 443–518. 1 pl.CrossRefGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2011

Authors and Affiliations

  • Gerhard Haszprunar
    • 1
    • 2
    Email author
  • Erika Speimann
    • 2
  • Andreas Hawe
    • 2
  • Martin Heß
    • 2
  1. 1.Zoologische Staatssammlung MünchenMunichGermany
  2. 2.Department Biology I and GeoBio-CenterLudwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany

Personalised recommendations