Organisms Diversity & Evolution

, Volume 10, Issue 5, pp 381–395 | Cite as

Genetic and morphological divergence among Gravel Bank Grasshoppers, Chorthippus pullus (Acrididae), from contrasting environments

  • Valerio Ketmaier
  • Heiko Stuckas
  • Julien Hempel
  • Ingmar Landeck
  • Michael Tobler
  • Martin Plath
  • Ralph Tiedemann
Original Article


Gravel Bank Grasshopper (Chorthippus pullus) populations inhabit two contrasting environments, pebbly gravel banks with scarce vegetation cover in mountainous areas along the Alps and lowland grasslands dominated by Common Heather (Calluna vulgaris). Heath populations of C. pullus have been rediscovered only recently, and show a distribution scattered across Central Europe. The wings are reduced in this species; thus, it has low potential for long-distance dispersal. We used sequence data on a newly developed non-coding nuclear marker from three gravel-bank and four heath populations to test whether grasshoppers from the two environments represent distinct lineages. Gravel-bank populations were studied in southern Germany (Bavaria), heath populations in eastern Germany (Brandenburg and Saxony) and Ukraine. We compared those genetic data with an analysis of variation in a suite of morphometric traits. Finally, we combined genetic and morphometric data to reconstruct a plausible scenario for the ecological shift observed in C. pullus. Our newly developed marker did not sort populations from contrasting environments in two monophyletic lineages. Nevertheless, we found a general lack of gene flow between the gravel-bank and heath populations. There was pronounced variation among populations in morphometric traits. That variation was partially partitioned by habitat type, and populations from the same habitat tended to be more similar than those from different habitats. Our data suggest that heath populations originated through northward expansion from multiple southern European refugia, and that the gravel-bank populations represent one of these sources. Patterns of genetic and morphometric divergence suggest that gravel-bank and heath populations may be in the process of incipient speciation.


Chorthippus pullus Genetic divergence Morphometrics Nuclear DNA Biogeography 



This study would not have been possible without the help of G. Waeber (Ökologisch-Faunistische Arbeitsgemeinschaft, ÖFA; Schwabach). We also wish to thank R. Weid (Obere Naturschutzbehörde; Munich) for valuable suggestions, J. Voith (Bayerisches Landesamt für Umweltschutz, LfU; Augsburg) for his support during the early stages of the project, and E. Beyer (Regierung von Oberbayern, Sachgebiet 55.1 Naturschutz; Munich) for granting us permission to sample in the Bavarian reserves. J. Zettel (University of Bern, Switzerland) and P. Detzel (Gruppe für ökologische Gutachten Stuttgart/ Hochschule für Wirtschaft und Umwelt; Nürtingen) provided useful bibliographic information. M. Fischer (Senckenberg Naturhistorische Sammlungen Dresden) drew Fig. 2. O. Bininda-Emonds and K. Klass provided comments that improved the manuscript substantially. Finally, we wish to thank K. Moll and A. Schneider for technical assistance in the laboratory. M. Tobler was supported by Swiss National Science Foundation (SNF); additional financial support came from the University of Potsdam.

Supplementary material

13127_2010_31_MOESM1_ESM.pdf (92 kb)
ESM 1 (PDF 92 kb)


  1. Abercrombie, L. G., Anderson, C. M., Baldwin, B. G., Bang, I. C., Beldade, R., Bernardi, G., et al. (2009). Permanent genetic resources added to Molecular Ecology Resources database 1 January 2009–30 April 2009. Molecular Ecology Resources, 9, 1375–1429.CrossRefGoogle Scholar
  2. Altschul, S., Madden, T., Schäffer, A., Zhang, J., Zhang, Z., Miller, W., et al. (1997). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389–3402.CrossRefPubMedGoogle Scholar
  3. Butlin, R. K., & Hewitt, G. M. (1998). Genetics of behavioural and morphological differences between parapatric subspecies of Chorthippus parallelus (Orthoptera: Acrididae). Biological Journal of the Linnean Society, 33, 233–248.CrossRefGoogle Scholar
  4. Butlin, R. K., Ritchie, M. G., & Hewitt, G. M. (1991). Comparison among morphological characters in the Chorthippus parallelus hybrid zone (Orthoptera: Acrididae). Philosophical Transactions of the Royal Society B, 334, 297–308.CrossRefGoogle Scholar
  5. Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.CrossRefPubMedGoogle Scholar
  6. Cooper, S. J. B., & Hewitt, G. M. (1993). Nuclear DNA sequence divergence between parapatric subspecies of the grasshopper Chorthippus parallelus. Insect Molecular Biology, 2, 185–194.CrossRefPubMedGoogle Scholar
  7. Crandall, K. A., & Templeton, A. R. (1993). Empirical tests of some predictions from coalescent theory with applications to intraspecific phylogeny reconstruction. Genetics, 134, 959–969.PubMedGoogle Scholar
  8. Dieckmann, U., Doebeli, M., Metz, J. A., & Tautz, D. (2004). Adaptive speciation. Cambridge: Cambridge University Press.Google Scholar
  9. Excoffier, L., Smouse, P. E., & Quattro, J. M. (1992). Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics, 131, 479–491.PubMedGoogle Scholar
  10. Excoffier, L., Laval, G., & Schneider, S. (2005). Arlequin ver 3.0: an integrated software package for population genetics data analysis. Evolutionary Bioinformatics, 1, 47–50.Google Scholar
  11. Felsenstein, J. (1981). Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17, 368–376.CrossRefPubMedGoogle Scholar
  12. Felsenstein, J. (1985). Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39, 783–791.CrossRefGoogle Scholar
  13. Fontana, P., Tirello, P., & Buzzetti, F. M. (2004). The Chorthippus of the pebbly river-beds (Glyptobothrus pullus) in Italy: conservation and first protection actions (Orthoptera, Acrididae). Atti Accademia Roveretiana degli Agiati, 4, 57–70.Google Scholar
  14. Goudet, J. (1995). FSTAT (version 1.2): a computer program to calculate F-statistics. Journal of Heredity, 86, 485–486.Google Scholar
  15. Gwynne, D. T. (1984). Sexual selection and sexual differences in Mormon Crickets (Orthoptera: Tettigoniidae, Anabrus simplex). Evolution, 38, 1011–1022.CrossRefGoogle Scholar
  16. Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Research, 41, 95–98.Google Scholar
  17. Hewitt, G. M. (1999). Post-glacial re-colonization of European biota. Biological Journal of the Linnean Society, 68, 87–112.CrossRefGoogle Scholar
  18. Hongo, Y. (2007). Evolution of male dimorphic allometry in a population of the Japanese horned beetle Trypoxylus dichotomus septentrionalis. Behavioral Ecology and Sociobiology, 62, 245–253.CrossRefGoogle Scholar
  19. Lu, G. Q., & Bernatchez, L. (1999). Correlated trophic specialization and genetic divergence in sympatric lake whitefish ecotypes (Coregonus clupeaformis): support for the ecological speciation hypothesis. Evolution, 53, 1491–1505.CrossRefGoogle Scholar
  20. Maas, S., Detzel, D., & Staudt, A. (2002). Gefährdungsanalyse der Heuschrecken in Deutschland. Bonn: Bundesamt für Naturschutz.Google Scholar
  21. McLain, D. K., & Boromisa, R. D. (1987). Male choice, fighting ability, assortative mating and the intensity of sexual selection in the Milkweed Longhorn Beetle, Tetraopes tetraophthalmus (Coleoptera, Cerambycidae). Behavioral Ecology and Sociobiology, 20, 239–246.CrossRefGoogle Scholar
  22. Nosil, P., Vines, T. H., & Funk, D. J. (2005). Perspective: reproductive isolation caused by natural selection against immigrants from divergent habitats. Evolution, 59, 2256–2263.PubMedGoogle Scholar
  23. Posada, D., & Crandall, K. A. (1998). Modeltest: testing the model of DNA substitutions. Bioinformatics, 14, 817–818.CrossRefPubMedGoogle Scholar
  24. Posada, D., & Crandall, K. A. (2001). Intraspecific gene genealogies: trees grafting into networks. Trends in Ecology and Evolution, 16, 37–45.CrossRefPubMedGoogle Scholar
  25. Reich, M. (1991). Grasshoppers (Orthoptera, Saltatoria) on alpine and pre-alpine riverbanks and their use as indicators for natural floodplain dynamics. Regulated Rivers: Research and Management, 6, 333–339.CrossRefGoogle Scholar
  26. Reinhardt, K., Köhler, G., Maas, S., & Detzel, P. (2005). Low dispersal ability and habitat specificity promote extinctions in rare but not in widespread species: the Orthoptera of Germany. Ecography, 28, 593–602.CrossRefGoogle Scholar
  27. Rombel, I. T., Sykes, K. F., Rayner, S., & Johnston, S. A. (2002). ORF-FINDER: a vector for high-throughput gene identification. Gene, 282, 33–41.CrossRefPubMedGoogle Scholar
  28. Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406–425.PubMedGoogle Scholar
  29. Saldamando, C. I., Miyaguchi, S., Tatsuta, H., Kishino, H., Bridles, J. R., & Butlin, R. K. (2005). Inheritance of song and stridulatory peg number divergence between Chorthippus brunneus and C. jacobsi, two naturally hybridizing grasshopper species (Orthoptera, Acrididae). Journal of Evolutionary Biology, 18, 703–712.CrossRefPubMedGoogle Scholar
  30. Schädler, M., & Stadler, J. (2000). Verbreitung und Lebensraum des Kiesbankgrashüpfers Chorthippus pullus in Sachsen. Articulata, 15, 7–15.Google Scholar
  31. Schluter, D. (2000). The ecology of adaptive radiation. Oxford: Oxford University Press.Google Scholar
  32. Schwarz, W. (1998). Wanderverhalten und Aktionsraum adulter Chorthippus pullus in einer Wildflusslandschaft bei Salzburg. Linzer Biologische Beiträge, 30, 605–611.Google Scholar
  33. Simmons, L. W., Teale, R. J., Maier, M., Standish, R. J., Bailey, W. J., & Withers, P. C. (1992). Some costs of reproduction for male Bush Crickets, Requena verticalis (Orthoptera, Tettigonidae). Allocating resources to mate attraction and nuptial feeding. Behavioral Ecology and Sociobiology, 31, 57–62.CrossRefGoogle Scholar
  34. Slatkin, M. (1993). Isolation by distance in equilibrium and non-equilibrium populations. Evolution, 47, 264–279.CrossRefGoogle Scholar
  35. Swofford, D. (2002). PAUP*: Phylogenetic Analysis Using Parsimony* (and other methods) ver. 4.1. Sunderland: Sinauer Associates.Google Scholar
  36. Sword, G. A., Senior, L. B., Gaskin, J. F., & Joern, A. (2007). Double trouble for grasshopper molecular systematics: intra-individual heterogeneity of both mitochondrial 12S-valine-16S and nuclear internal transcribed spaces ribosomal DNA sequences in Hesperotettix viridis (Orthoptera: Acrididae). Systematic Entomology, 32, 420–428.CrossRefGoogle Scholar
  37. Taberlet, P., Fumagalli, L., Wust-Saucy, A. G., & Cosson, J. F. (1998). Comparative phylogeography and postglacial colonization routes in Europe. Molecular Ecology, 7, 453–464.CrossRefPubMedGoogle Scholar
  38. Templeton, A. R., Crandall, K. A., & Sing, C. F. (1992). A cladistic analysis of phenotypic associations and haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics, 132, 619–633.PubMedGoogle Scholar
  39. Tobler, M., DeWitt, T. J., Schlupp, I., García de León, F. J., Herrmann, R., Feulner, P. G. D., et al. (2008). Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana. Evolution, 62, 2643–2659.CrossRefPubMedGoogle Scholar
  40. Tregenza, T. (2002). Divergence and reproductive isolation in the early stages of speciation. Genetica, 116, 291–300.CrossRefPubMedGoogle Scholar
  41. Tregenza, T., Pritchard, V. L., & Butlin, R. K. (2000). Pattern of trait divergence between populations of the Meadow Grasshopper, Chorthippus parallelus. Evolution, 54, 574–585.PubMedGoogle Scholar
  42. Ustinova, J., Achmann, R., Cremer, S., & Mayer, F. (2006). Long repeats in a huge genome: microsatellite loci in the grasshopper Chorthippus biguttulus. Journal of Molecular Evolution, 62, 158–167.CrossRefPubMedGoogle Scholar
  43. Vencl, F. V. (2004). Allometry and proximate mechanisms of sexual selection in Photinus fireflies, and some other beetles. Integrative and Comparative Biology, 44, 242–249.CrossRefGoogle Scholar
  44. Vincent, S. E. (2006). Sex-based divergence in head shape and diet in the Eastern Lubber Grasshopper (Romalea microptera). Zoology, 109, 331–338.CrossRefPubMedGoogle Scholar
  45. Walther, D. (2006). Habitatpräferenz und Populationsstruktur des Kiesbank-Grashüpfers Chorthippus pullus (Philippi 1830) (Orthoptera, Acrididae) an zwei Standorten im Pfynwald (Schweiz, VS). Diploma thesis. Bern: University of Bern, Faculty of Science.Google Scholar
  46. Weir, B. S., & Cockerham, C. C. (1984). Estimating F-statistics for the analysis of population structure. Evolution, 38, 1358–1370.CrossRefGoogle Scholar
  47. Wright, S. (1965). The interpretation of population structure by F-statistics with regard to systems of mating. Evolution, 19, 395–420.CrossRefGoogle Scholar
  48. Zhang, D. X., & Hewitt, G. M. (2003). Nuclear analyses in genetic studies of populations: practice, problems and prospects. Molecular Ecology, 12, 563–584.CrossRefPubMedGoogle Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2010

Authors and Affiliations

  • Valerio Ketmaier
    • 1
  • Heiko Stuckas
    • 2
  • Julien Hempel
    • 1
  • Ingmar Landeck
    • 3
  • Michael Tobler
    • 4
  • Martin Plath
    • 5
  • Ralph Tiedemann
    • 1
  1. 1.Unit of Evolutionary Biology & Systematic Zoology, Institute of Biochemistry & BiologyUniversity of PotsdamPotsdamGermany
  2. 2.Senckenberg Naturhistorische Sammlungen DresdenMuseum of ZoologyDresdenGermany
  3. 3.Research Institute for Post-Mining Landscapes Inc.FinsterwaldeGermany
  4. 4.Departments of Biology and Wildlife & Fisheries SciencesTexas A & M UniversityCollege StationUSA
  5. 5.Department of Ecology & EvolutionJ.-W.-Goethe-University of FrankfurtFrankfurt am MainGermany

Personalised recommendations