Organisms Diversity & Evolution

, Volume 10, Issue 4, pp 275–285 | Cite as

Two Pione species (Hadromerida, Clionaidae) from the Red Sea: a taxonomical challenge

  • Filippo Ferrario
  • Barbara Calcinai
  • Dirk Erpenbeck
  • Paolo Galli
  • Gert Wörheide
Original Article

Abstract

Boring sponges of the genus Pione (Hadromerida, Clionaidae) are easily recognizable due to their spiculation. However, species identification is challenging, as the potentially diagnostic morphological character states of different species often overlap. For this reason, this group of species is frequently referred to as the ‘Pione vastifica complex’, after the most well-studied species of the genus. Boring-sponge samples were collected in the Red Sea and identified as P. cf. lampa and P. cf. vastifica, respectively. So far, these two species names have usually been considered as valid, although some authors suggested them to be synonymous. Morphological analyses were performed on spicules and micro-erosion patterns by means of both light and scanning electron microscopy. Two apparent morphotypes can be distinguished, mainly by the growth form, but statistical analysis does not support a clear separation in two species. In addition, a DNA barcoding approach using sequences of CO1 has not identified any nucleotide sequence differences. These data support the hypothesis that P. cf. lampa and P. cf. vastifica from the Red Sea are conspecific.

Keywords

Pione vastifica Pione lampa Boring sponges Growth form DNA barcoding 

References

  1. Bierne, N., Bonhomme, F., & David, P. (2003). Habitat preference and the marine-speciation paradox. Proceedings of the Royal Society B, Biological Sciences, 270, 1399–1406.CrossRefPubMedGoogle Scholar
  2. Calcinai, B., Cerrano, C., Sarà, M., & Bavestrello, G. (2000). Boring sponges (Porifera, Demospongiae) from the Indian Ocean. Italian Journal of Zoology, 67, 203–219.CrossRefGoogle Scholar
  3. Calcinai, B., Arillo, A., Cerrano, C., & Bavestrello, G. (2003). Taxonomy-related differences in the excavating micro-patterns of boring sponges. Journal of the Marine Biological Association of the United Kingdom, 83, 37–39.Google Scholar
  4. Carballo, J. L., Sanchez-Moyano, J. E., & Garcia-Gomez, J. C. (1994). Taxonomical and ecological remarks on boring sponges (Clionidae) from the Straits of Gibraltar (southern Spain): tentative bioindicators? Zoological Journal of the Linnean Society, 112, 407–424.CrossRefGoogle Scholar
  5. Carballo, J. L., Cruz-Barraza, J. A., & Gòmez, P. (2004). Taxonomy and description of clionaid sponges (Hadromerida, Clionaidae) from the Pacific Ocean of Mexico. Zoological Journal of the Linnean Society, 141, 353–397.CrossRefGoogle Scholar
  6. De Laubenfels, M. W. (1950). The Porifera of the Bermuda archipelago. Transactions of the Zoological Society of London, 27, 1–154. pls. I–II.CrossRefGoogle Scholar
  7. Desqueyroux-Faúndez, R. (1990). Spongiaires (Demospongiae) de l’Ile de Pâques (Isla de Pascua). Revue Suisse de Zoologie, 97, 373–409.Google Scholar
  8. Duran, S., & Rützler, K. (2006). Ecological speciation in a Caribbean marine sponge. Molecular Phylogenetics and Evolution, 40, 292–297.CrossRefPubMedGoogle Scholar
  9. Duran, S., Pascual, M., & Turon, X. (2004). Low levels of genetic variation in mtDNA sequences over the western Mediterranean and Atlantic range of the sponge Crambe crambe (Poecilosclerida). Marine Biology, 144, 31–35.CrossRefGoogle Scholar
  10. Erpenbeck, D., Hooper, J. N. A., & Wörheide, G. (2006). CO1 phylogenies in diploblasts and the ‘Barcoding of Life’—are we sequencing a suboptimal partition? Molecular Ecology Notes, 6, 550–553.CrossRefGoogle Scholar
  11. Erpenbeck, D., Duran, S., Rützler, K., Paul, V., Hooper, J. N. A., & Wörheide, G. (2007). Towards a DNA taxonomy of Caribbean demosponges: a gene tree reconstructed from partial mitochondrial CO1 gene sequences supports previous rDNA phylogenies and provides a new perspective on the systematics of Demospongiae. Journal of the Marine Biological Association of the United Kingdom, 87, 1563–1570.Google Scholar
  12. Fromont, J., Craig, R., Rawlinson, L., & Alder, J. (2005). Excavating sponges that are destructive to farmed pearl oysters in Western and Northern Australia. Aquaculture Research, 36, 150–162.CrossRefGoogle Scholar
  13. Hammer, Ø., Harper, D. A. T., & Ryan, P. D. (2001). PAST: paleontological statistics software package for education and data analysis. Palaeontologia Electronica, 4, 1–9.Google Scholar
  14. Hancock, A. (1849). On the excavating powers of certain sponges belonging to the genus Cliona with descriptions of several new species, and an allied generic form. Annals and Magazine of Natural History. 2nd Series, 3, 321–348. pls. XII–XV.Google Scholar
  15. Huelsenbeck, J. P., & Ranala, B. (2004). Frequentist properties of Bayesian posterior probabilities of phylogenetic trees under simple and complex substitution models. Systematic Biology, 53, 904–913.CrossRefPubMedGoogle Scholar
  16. Jory, D. E., & Iversen, E. S. (1985). Molluscan mariculture in the Greater Caribbean: an overview. Marine Fisheries Review, 47, 1–10.Google Scholar
  17. Klautau, M., Russo, C. A. M., Lazoski, C., Boury-Esnault, N., Thorpe, J. P., & Sole-Cava, A. M. (1999). Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution, 53, 1414–1422.CrossRefGoogle Scholar
  18. Lazoski, C., Solè-Cava, A. M., Boury-Esnault, N., Klautau, M., & Russo, C. A. M. (2001). Cryptic speciation in a high gene flow scenario in the oviparous marine sponge Chondrosia reniformis. Marine Biology, 139, 421–429.CrossRefGoogle Scholar
  19. Maddison, W. P., & Maddison, D. R. (1992). MacClade: Analysis of phylogeny and character evolution. Sunderland: Sinauer Associates.Google Scholar
  20. Mariani, S., Uriz, M. J., & Turon, X. (2000). Larval bloom of the oviparous sponge Cliona viridis: coupling of larval abundance and adult distribution. Marine Biology, 137, 783–790.CrossRefGoogle Scholar
  21. McKenna, S. A. (1997). Interactions between the boring sponge, Cliona lampa and two hermatypic corals from Bermuda. Proceedings of the 8th International Coral Reef Symposium, 2, 1369–1374.Google Scholar
  22. Meyer, C. P., Geller, J. B., & Paulay, G. (2005). Fine scale endemism on coral reefs: archipelagic differentiation in turbinid gastropods. Evolution, 59, 113–125.PubMedGoogle Scholar
  23. Nichols, S. A., & Barnes, P. A. G. (2005). A molecular phylogeny and historical biogeography of the marine sponge genus Placospongia (Phylum Porifera) indicate low dispersal capabilities and widespread crypsis. Journal of Experimental Marine Biology and Ecology, 323, 1–15.CrossRefGoogle Scholar
  24. Palumbi, S. R., Grabowsky, G., Duda, T., Geyer, L., & Tachino, N. (1997). Speciation and population genetic structure in tropical Pacific Sea urchins. Evolution, 51, 1506–1517.CrossRefGoogle Scholar
  25. Pang, R. K. (1973). The systematics of some Jamaican excavating sponges (Porifera). Postilla, 161, 1–75.Google Scholar
  26. Posada, D., & Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817–818.CrossRefPubMedGoogle Scholar
  27. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.CrossRefPubMedGoogle Scholar
  28. Rosell, D. (1994). Morphological and ecological relationships of two clionid sponges. Ophelia, 40, 37–50.Google Scholar
  29. Rosell, D., & Uriz, M. J. (1997). Phylogenetic relationships within the excavating Hadromerida (Porifera), with a systematic revision. Cladistics, 13, 349–366.CrossRefGoogle Scholar
  30. Rosell, D., & Uriz, M. J. (2002). Excavating and endolithic sponge species (Porifera) from the Mediterranean: species descriptions and identification key. Organisms Diversity and Evolution, 2, 55–86.CrossRefGoogle Scholar
  31. Rützler, K. (1973). Clionid sponges from the coast of Tunisia. Bulletin de l’Institut d’Océanographie et de Peche, Salammbo, 2, 623–636.Google Scholar
  32. Rützler, K. (1974). The burrowing sponges of Bermuda. Smithsonian Contributions to Zoology, 165, 1–32.Google Scholar
  33. Rützler, K. (2002a). Family Clionaidae D’Orbigny, 1851. In J. N. A. Hooper & R. W. M. Van Soest (Eds.), Systema Porifera: A guide to the classification of sponges (pp. 173–185). New York: Kluger Academic/Plenum.Google Scholar
  34. Rützler, K. (2002b). Impact of crustose clionid sponges on Caribbean reef corals. Acta Geologica Hispanica, 37, 61–72.Google Scholar
  35. Rützler, K., & Stone, S. M. (1986). Discovery and significance of Albany Hancock’s microscope preparations of excavating sponges (Porifera: Hadromerida: Clionidae). Proceedings of the Biological Society of Washington, 99, 659–675.Google Scholar
  36. Schönberg, C. H. L. (2002). Pione lampa, a bioeroding sponge in a worm reef. Hydrobiologia, 482, 49–68.CrossRefGoogle Scholar
  37. Schönberg, C. H. L., & Beuck, L. (2007). Where Topsent went wrong: Aka infesta a.k.a. Aka labyrinthica (Demospongiae: Phloeodictyidae) and implications for other Aka spp. Journal of the Marine Biological Association of the United Kingdom, 87, 1459–1476.CrossRefGoogle Scholar
  38. Van Soest, R. W. M, Boury-Esnault, N., Hooper, J. N. A., Rützler, K, de Voogd, N. J., Alvarez, B., et al. (2008). World Porifera database. http://www.marinespecies.org/porifera. Accessed 12 March 2009.
  39. Wörheide, G. (2006). Low variation in partial cytochrome oxidase subunit I (COI) mitochondrial sequences in the coralline demosponge Astrosclera willeyana across the Indo-Pacific. Marine Biology, 148, 907–912.CrossRefGoogle Scholar
  40. Zundelevich, A., Lazar, B., & Ilan, M. (2007). Chemical versus mechanical bioerosion of coral reefs by boring sponges—lessons from Pione cf. vastifica. Journal of Experimental Biology, 210, 91–96.CrossRefPubMedGoogle Scholar
  41. Zwickl, D. J. (2006). Genetic algorithm approaches for the phylogenetic analysis of large biological sequence datasets under the maximum likelihood criterion. Ph.D. dissertation. Austin, Texas: University of Texas at Austin.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2010

Authors and Affiliations

  • Filippo Ferrario
    • 1
    • 2
  • Barbara Calcinai
    • 3
  • Dirk Erpenbeck
    • 4
  • Paolo Galli
    • 2
  • Gert Wörheide
    • 4
  1. 1.Centro Interdipartimentale di Ricerca per le Scienze Ambientali in RavennaUniversità di BolognaRavennaItaly
  2. 2.Dipartimento di Biotecnologie e BioscienzeUniversità degli Studi di Milano-BicoccaMilanoItaly
  3. 3.Dipartimento di Scienze del MareUniversità Politecnica delle MarcheAnconaItaly
  4. 4.Department of Earth and Environmental Sciences, Palaeontology and Geobiology & GeoBio-CenterLMULudwig-Maximilians-University MunichMunichGermany

Personalised recommendations