Organisms Diversity & Evolution

, Volume 10, Issue 4, pp 331–340 | Cite as

On the phylogenetic position of the palaeopteran Syntonopteroidea (Insecta: Ephemeroptera), with a new species from the Upper Carboniferous of England

  • Jakub Prokop
  • André Nel
  • Andrew Tenny
Original Article


A new syntonopterid, Anglolithoneura magnifica gen. et sp. n., is described from a siderite concretion (nodule) from the Late Carboniferous (Langsettian) of Lancashire County (UK). The new genus is diagnosed on hind wing venation and compared with other syntonopterid genera. The new species is the first syntonopterid formally described from the Late Carboniferous of Europe. The systematic positions of other potential Syntonopteroidea (Miracopteron mirabile, Bojophlebia prokopi, and specimens described in 1985 by J. Kukalová-Peck from Obora in the Czech Republic) are reconsidered. Wing venation synapomorphies are proposed for the Syntonopteroidea (sensu novo), and for a potential clade ((Ephemeroptera+Syntonopteroidea)+Odonatoptera) separated from the Palaeodictyopterida. The close relations of the new species with Lithoneura lameerei Carpenter, 1938 from Mazon Creek (Illinois, USA) provide additional support for a Euramerican connection during the Late Carboniferous.


Palaeoptera Syntonopteroidea Palaeodictyopterida Wing venation pattern Late Paleozoic Langsettian 



For constructive comments and improvements the authors are grateful to Prof. Rainer Willmann (Göttingen), Dr. Klaus Klass (Dresden) and an anonymous referee. We thank Dr. Philip Perkins (MCZ, Cambridge) for allowing us to study and take photographs of the holotype of Lithoneura lameerei. We also thank Andrew Ross (NHM, London) and Vojtěch Turek (NM, Prague) for help and access to the type material. The first author is very grateful to Prof. Alexander Rasnitsyn and his team for a pleasant and fruitful stay in the Laboratory of Paleoentomology of the Russian Academy of Sciences in Moscow. The first author also acknowledges research support from the Grant Agency of the Czech Republic (No. P210/10/0633), from SYNTHESYS (project No. GB-TAF-3261) for a visit to the Natural History Museum (London), and from the Ministry of Schools (MSM 0021620828).


  1. Anderson, L. I. (1994). Xiphosurans from the Westphalian D of the Radstock Basin, Somerset Coalfield. In E. A. Jarzembowski (Ed.), Writhlington Special Issue, the South Wales Coalfield and Mazon Creek, Illinois. Proceedings of the Geologists’ Association, 105, 265–275.Google Scholar
  2. Anderson, L. I., Dunlop, J. A., Eagar, R. M. C., Horrocks, C. A., & Wilson, H. M. (1999). Soft-bodied fossils from the roof shales of the wigan four foot coal seam, Westhoughton, Lancashire, UK. Geological Magazine, 135, 321–329.CrossRefGoogle Scholar
  3. Bechly, G. (1996). Morphologische Untersuchungen am Flügelgeäder der rezenten Libellen und deren Stammgruppenvertreter (Insecta; Pterygota; Odonata), unter besonderer Berücksichtigung der phylogenetischen Systematik und des Grundplanes der *Odonata. Petalura (Böblingen), Special Volume, 2, 1–402.Google Scholar
  4. Béthoux, O. (2005). Wing venation pattern of Plecoptera (Insecta: Neoptera). Illiesia, 1, 52–81.Google Scholar
  5. Béthoux, O., Nel, A., Schneider, J. W., & Gand, G. (2007). Lodetiella magnifica nov. gen. and nov. sp. (Insecta: Palaeodictyoptera; Permian), an extreme situation in wing morphology of palaeopterous insects. Geobios, 40, 181–189.CrossRefGoogle Scholar
  6. Beutel, R. G., & Gorb, S. N. (2006). A revised interpretation of the evolution of attachment structures in Hexapoda with special emphasis on Mantophasmatodea. Arthropod Systematics & Phylogeny, 64, 3–25.Google Scholar
  7. Boudreaux, H. B. (1979). Arthropod phylogeny with special reference to insects. New York: Robert E. Krieger, John Wiley & Sons.Google Scholar
  8. Carpenter, F. M. (1938). Two Carboniferous insects from the vicinity of Mazon Creek, Illinois. American Journal of Science, Fifth Series, 36, 445–452.Google Scholar
  9. Carpenter, F. M. (1987). Review of the extinct family Syntonopteridae (order uncertain). Psyche, 94, 373–388.CrossRefGoogle Scholar
  10. Carpenter, F. M. (1992). Superclass Hexapoda. In R. C. Moore & R. L. Kaesler (Eds.), Treatise on invertebrate paleontology, Part R, Arthropoda 4 (pp. 1–655). Boulder: Geological Society of America and University of Kansas.Google Scholar
  11. Demoulin, G. (1954). Aedophasma anglica Scudder, syntonopteroide méconnu (Insecta: Paléodictyoptères). Bulletin et Annales de la Société Royale de l’Entomologie de Belgique, 90, 278–281.Google Scholar
  12. Dunlop, J. A. (1994). The palaeobiology of the Writhlington trigonotarbid arachnid. In E. A. Jarzembowski (Ed.), Writhlington Special Issue, the South Wales Coalfield and Mazon Creek, Illinois. Proceedings of the Geologists’ Association, 105, 287–296.Google Scholar
  13. Edmunds, G. F., Jr., & Travers, J. R. (1954). The flight mechanics and evolution of the wings of Ephemeroptera, with notes on the archetype insect wing. Journal of the Washington Academy of Sciences, 44, 390–400.Google Scholar
  14. Garrouste, R., Nel, A., & Gand, G. (2009). New fossil arthropods (Notostraca and Insecta: Syntonopterida) in the Continental Middle Permian of Provence (Bas-Argens basin, France). Comptes rendus palevol, 8, 49–57.CrossRefGoogle Scholar
  15. Grimaldi, D. A., & Engel, M. S. (2005). Evolution of the insects. New York: Cambridge University Press.Google Scholar
  16. Haas, F., & Kukalová-Peck, J. (2001). Dermaptera hindwing structure and folding: new evidence for familial, ordinal and superordinal relationships within Neoptera (Insecta). European Journal of Entomology, 98, 445–509.Google Scholar
  17. Handlirsch, A. (1911). New Paleozoic insects from the vicinity of Mazon Creek, Illinois. American Journal of Science, Fourth Series, 31, 297–378.Google Scholar
  18. Handlirsch, A. (1919). Revision der paläozoischen Insekten. Denkschriften der Kaiserlichen Akademie der Wissenschaften, Mathematisch-Naturwissenschaftliche Klasse, Wien, 96, 511–592.Google Scholar
  19. Hennig, W. (1981). Insect phylogeny. Chichester: Wiley.Google Scholar
  20. Hovmöller, R., Pape, T., & Källersjö, M. (2002). The Paleoptera problem: basal pterygote phylogeny inferred from 18S and 28S rDNA sequences. Cladistics, 18, 313–323.Google Scholar
  21. Kjer, K. M. (2004). Aligned 18S and insect phylogeny. Systematic Biology, 53, 506–514.CrossRefPubMedGoogle Scholar
  22. Kjer, K. M., Carle, F. L., Litman, J., & Ware, J. (2006). A molecular phylogeny of Hexapoda. Arthropod Systematics & Phylogeny, 64, 35–44.Google Scholar
  23. Klass, K.-D. (2007). Die Stammesgeschichte der Hexapoden: eine kritische Diskussion neuerer Daten und Hypothesen. Denisia, 20, 413–450.Google Scholar
  24. Klass, K.-D. (2009). A critical review of current data and hypotheses on hexapod phylogeny. Proceedings of the Arthropodan Embryological Society of Japan, 43, 3–22.Google Scholar
  25. Kluge, N. (2004). The phylogenetic system of Ephemeroptera. Dordrecht: Kluwer Academic.Google Scholar
  26. Kristensen, N. P. (1991). Phylogeny of extant hexapods. In I. D. Naumann (Ed.), The insects of Australia, vol. I (2nd ed., pp. 125–140). Melbourne: Melbourne University Press.Google Scholar
  27. Kristensen, N. P. (1995). Forty years’ insect phylogenetic systematics: Hennig’s “Kritische Bemerkungen...” and subsequent developments. Zoologische Beiträge (Neue Fassung), 36, 83–124.Google Scholar
  28. Kukalová, J. (1969a). Revisional study of the order palaeodictyoptera in the Upper Carboniferous shales of commentry, France. Part 1. Psyche, 76, 163–215.CrossRefGoogle Scholar
  29. Kukalová, J. (1969b). Revisional study of the order palaeodictyoptera in the Upper Carboniferous shales of commentry, France. Part 2. Psyche, 76, 439–486.CrossRefGoogle Scholar
  30. Kukalová, J. (1970). Revisional study of the order palaeodictyoptera in the Upper Carboniferous shales of commentry, France. Part 3. Psyche, 77, 1–44.CrossRefGoogle Scholar
  31. Kukalová-Peck, J. (1985). Ephemeroid wing venation based upon new gigantic Carboniferous mayflies and basic morphology, phylogeny, and metamorphosis of pterygote insects (Insecta, Ephemerida). Canadian Journal of Zoology, 63, 933–955.CrossRefGoogle Scholar
  32. Kukalová-Peck, J. (1991). Fossil history and the evolution of hexapod structures. In I. D. Naumann (Ed.), The insects of Australia, vol. I (2nd ed., pp. 141–179). Melbourne: Melbourne University Press.Google Scholar
  33. Kukalová-Peck, J. (1997). Arthropod phylogeny and ‘basal’ morphological structures. In R. A. Fortey & R. H. Thomas (Eds.), Arthropod relationships (pp. 249–268). London: Chapman & Hall.Google Scholar
  34. Kukalová-Peck, J., & Lawrence, J. F. (2004). Relationships among coleopteran suborders and major endoneopteran lineages: evidence from hind wing characters. European Journal of Entomology, 101, 95–144.Google Scholar
  35. Kukalová-Peck, J., Peters, G., & Soldán, T. (2009). Homologisation of the anterior articular plate in the wing base of Ephemeroptera and Odonatoptera. Aquatic Insects, 31(Supplement 1), 459–470.CrossRefGoogle Scholar
  36. Lameere, A. (1922). Sur la nervation alaire des insectes. Bulletin de la Classe des Sciences, Académie Royale de Belgique, 5, 138–149.Google Scholar
  37. Laurentiaux, D. (1953). Classe des insectes (Insecta Linné, 1758). In J. Piveteau (Ed.), Traité de paléontologie (pp. 397–527). Paris: Masson.Google Scholar
  38. Martynov, A. V. (1924). Über Zwei Grundtypen der Flügel bei den Insekten und ihre Evolution. Zeitschrift für Morphologie und Ökologie der Tiere, 4, 465–501.CrossRefGoogle Scholar
  39. Nel, A., Fleck, G., Garrouste, R., Gand, G., Lapeyrie, J., Bybee, S. M., et al. (2009). Revision of Permo-Carboniferous griffenflies (Insecta: Odonatoptera: Meganisoptera) based upon new species and redescription of selected poorly known taxa from Eurasia. Palaeontographica (A), 289, 89–121.Google Scholar
  40. Novokshonov, V. G. (1993). New insects (Insecta) from the lower permian of chekarda (Central Urals). Paleontological Journal, 27, 172–178.Google Scholar
  41. Ogden, T. H., & Whiting, M. F. (2003). The problem with “the Paleoptera problem:” sense and sensitivity. Cladistics, 19, 432–442.Google Scholar
  42. Proctor, C. J. (1999). An Upper Carboniferous eurypterid from the writhlington geological nature reserve. Proceedings of the Geologists’ Assocation, 110, 263–265.CrossRefGoogle Scholar
  43. Prokop, J., & Ren, D. (2007). New significant fossil insects from the Upper Carboniferous of Ningxia in northern China (Insecta: Palaeodictyoptera, Archaeorthoptera). European Journal of Entomology, 104, 267–275.Google Scholar
  44. Prokop, J., & Nel, A. (2009). Systematic position of Triplosoba, hitherto the oldest mayfly from Upper Carboniferous of commentry in Central France (Insecta: Palaeodictyopterida). Systematic Entomology, 34, 610–615.CrossRefGoogle Scholar
  45. Prokop, J., Smith, R., Jarzembowski, E. A., & Nel, A. (2006). New homoiopterids from the late carboniferous of England (Insecta: Palaeodictyoptera). Comptes rendus palevol, 5, 867–873.CrossRefGoogle Scholar
  46. Rasnitsyn, A. P. (2002). Cohors Libelluliformes Laircharting, 1781 (= Subulicornes Latreille, 1807, = Hydropalaeopaloptera Rohdendorf, 1968). In A. P. Rasnitsyn & D. L. J. Quicke (Eds.), History of insects (pp. 85–89). Dordrecht: Kluwer Academic.CrossRefGoogle Scholar
  47. Soldán, T. (1997). The Ephemeroptera: whose sister-group are they? In P. Landolt & M. Sartori (Eds.), Ephemeroptera & Plecoptera. Biology, ecology, systematics (pp. 514–519). Fribourg: MTL.Google Scholar
  48. Terry, M. D., & Whiting, M. F. (2005). Mantophasmatodea and phylogeny of the lower neopterous insects. Cladistics, 21, 240–257.CrossRefGoogle Scholar
  49. Wheeler, W. C. (1989). The systematics of insect ribosomal DNA. In B. Fernholm (Ed.), The hierarchy of life (pp. 307–321). Amsterdam: Elsevier.Google Scholar
  50. Wheeler, W. C., Whiting, M., Wheeler, Q. D., & Carpenter, J. M. (2001). The phylogeny of the extant hexapod orders. Cladistics, 17, 113–169. + 404 (erratum).CrossRefGoogle Scholar
  51. Whitfield, J. B., & Kjer, K. M. (2008). Ancient rapid radiations of insects: challenges for phylogenetic analysis. Annual Review of Entomology, 53, 449–472.CrossRefPubMedGoogle Scholar
  52. Willmann, R. (1999). The Upper Carboniferous Lithoneura lameerei (Insecta, Ephemeroptera?). Paläontologische Zeitschrift, 73, 289–302.Google Scholar
  53. Willmann, R. (2007). Die Stammgruppenvertreter der Ephemeroptera und ihre systematische Stellung (Insecta). Species, Phylogeny and Evolution, 1, 109–128.Google Scholar
  54. Wootton, R. J., & Kukalova-Peck, J. (2000). Flight adaptations in Palaeozoic Palaeoptera (Insecta). Biological Reviews, 75, 129–167.CrossRefPubMedGoogle Scholar
  55. Zhou, C.-F. (2007). The bracing and fusing pattern of longitudinal veins at base in living mayflies (Insecta: Ephemeroptera). Acta Entomologica Sinica, 50, 51–56.Google Scholar

Copyright information

© Gesellschaft für Biologische Systematik 2010

Authors and Affiliations

  1. 1.Department of Zoology, Faculty of ScienceCharles University in PraguePraha 2Czech Republic
  2. 2.CNRS UMR 7205Muséum National d’Histoire NaturelleParisFrance
  3. 3.LittleboroughUK

Personalised recommendations