Organisms Diversity & Evolution

, Volume 10, Issue 3, pp 243–258 | Cite as

Skeletogenesis and sequence heterochrony in rodent evolution, with particular emphasis on the African striped mouse, Rhabdomys pumilio (Mammalia)

  • Laura A. B. Wilson
  • Carsten Schradin
  • Christian Mitgutsch
  • Fernando C. Galliari
  • Andrea Mess
  • Marcelo R. Sánchez-Villagra
Original Article


Data documenting skeletal development in rodents, the most species-rich ‘order’ of mammals, are at present restricted to a few model species, a shortcoming that hinders exploration of the morphological and ecological diversification of the group. In this study we provide the most comprehensive sampling of rodent ossification sequences to date, with the aim of exploring whether heterochrony is ubiquitous in rodent evolution at the onset of skeletal formation. The onset of ossification in 17 cranial elements and 24 postcranial elements was examined for eight muroid and caviomorph rodent species. New data are provided for two non-model species. For one of these, the African striped mouse, Rhabdomys pumilio, sampling was extended by studying 53 autopodial elements and examining intraspecific variation. The Parsimov method of studying sequence heterochrony was used to explore the role that changes in developmental timing play in early skeletal formation. Few heterochronies were found to diagnose the muroid and caviomorph clades, suggesting conserved patterning in skeletal development. Mechanisms leading to the generation of the wide range of morphological diversity encapsulated within Rodentia may be restricted to later periods in development than those studied in this work. Documentation of skeletogenesis in Rhabdomys indicates that intraspecifc variation in ossification sequence pattern is present, though not extensive. Our study suggests that sequence heterochrony is neither pivotal nor prevalent during early skeletal formation in rodents.


Rodent Heterochrony Rhabdomys Skeletogenesis Development Intraspecific variation 

Supplementary material

13127_2010_20_MOESM1_ESM.xls (102 kb)
ESM 1(PDF 102 KB)


  1. Alberch, P., & Blanco, M. J. (1996). Evolutionary patterns in ontogenetic transformation: from laws to regularities. International Journal of Developmental Biology, 40, 845–858.PubMedGoogle Scholar
  2. Alberch, P., Gould, S. J., Oster, G. F., & Wake, D. B. (1979). Size and shape in ontogeny and phylogeny. Palaeobiology, 5, 296–317.Google Scholar
  3. Beyerlein, L., Hillemann, H. H., & Van Arsdel, W. C., III. (1951). Ossification and calcification from postnatal day eight to the adult condition in the golden hamster (Cricetus auratus). Anatomical Record, 111, 49–65.CrossRefPubMedGoogle Scholar
  4. Bininda-Emonds, O. R. P., Cardillo, M., Jones, K. E., MacPhee, R. D. E., Beck, R. M. D., Grenyer, R., et al. (2007). The delayed rise of present-day mammals. Nature, 446, 507–512.CrossRefPubMedGoogle Scholar
  5. Bininda-Emonds, O. R. P., Jeffery, J. E., & Richardson, M. K. (2003). Is sequence heterochrony an important evolutionary mechanism in mammals? Journal of Mammalian Evolution, 10, 335–361.CrossRefGoogle Scholar
  6. Blanga-Kanfi, S., Miranda, H., Penn, O., Pupko, T., DeBry, R. W., & Huchon, D. (2009). Rodent phylogeny revised: analysis of six nuclear genes from all major rodent clades. BMC Evolutionary Biology, 9, 71. doi:10.1186/1471-2148-9-71.CrossRefPubMedGoogle Scholar
  7. Carleton, M., & Musser, G. (2005). Order Rodentia. In D. W. Wilson & D. M. Reeder (Eds.), Mammal species of the world (pp. 745–752). Washington, D.C.: Smithsonian Institution Press.Google Scholar
  8. Colbert, M. W., & Rowe, T. (2008). Ontogenetic sequence analysis: using parsimony to characterize developmental sequences and sequence polymorphism. Journal of Experimental Zoology, 310B, 398–416.CrossRefGoogle Scholar
  9. Creighton, G. K., & Strauss, R. E. (1986). Comparative patterns of growth and development in cricetine rodents and the evolution of ontogeny. Evolution, 40, 94–106.CrossRefGoogle Scholar
  10. Davies, D. A., & Parsons, F. G. (1927). The age order of the appearance and union of the normal epiphyses as seen by X-rays. Journal of Anatomy, 62, 58–71.PubMedGoogle Scholar
  11. Ebensperger, L. A., Hurtado, M. J., Soto-Gamboa, M., Lacey, E. A., & Chang, A. T. (2004). Communal nesting and kinship in degus (Octodon degus). Naturwissenschaften, 91, 391–395.CrossRefPubMedGoogle Scholar
  12. Fischer, G. M. (1940). Contribución a la anatomia de los Octodontidos. Boletín del Museo Nacional de Historia Natural (Santiago de Chile), 18, 103–124.Google Scholar
  13. Garn, S. M., & Rohmann, C. G. (1960). Variability in the order of ossification of the bony centers of the hand and wrist. American Journal of Physical Anthropology, 18, 219–230.CrossRefPubMedGoogle Scholar
  14. Garn, S. M., Rohmann, C. G., & Apfelbaum, B. (1961a). Complete epiphyseal union of the hand. American Journal of Physical Anthropology, 19, 365–372.CrossRefGoogle Scholar
  15. Garn, S. M., Rohmann, C. G., & Wallace, D. K. (1961). Association between alternate sequences of hand-wrist ossification. American Journal of Physical Anthropology, 19, 361–364.CrossRefPubMedGoogle Scholar
  16. Garn, S. M., Rohmann, C. G., & Blumenthal, T. (1966). Ossification sequence polymorphism and sexual dimorphism in skeletal development. American Journal of Physical Anthropology, 24, 101–115.CrossRefPubMedGoogle Scholar
  17. Goswami, A. (2006). Cranial modularity shifts during mammalian evolution. American Naturalist, 168, 270–280.CrossRefPubMedGoogle Scholar
  18. Goswami, A. (2007). Modularity and sequence heterochrony in the mammalian skull. Evolution & Development, 9, 291–299.Google Scholar
  19. Goswami, A., Weisbecker, V., & Sánchez-Villagra, M. R. (2009). Developmental modularity and the marsupial-placental dichotomy. Journal of Experimental Zoology, 312B, 186–195.CrossRefPubMedGoogle Scholar
  20. Gould, S. J. (1977). Ontogeny and phylogeny. Cambridge, MA: Belknap.Google Scholar
  21. Harrison, L. B., & Larsson, H. C. E. (2008). Estimating evolution of temporal sequence changes: a practical approach to inferring ancestral developmental sequences and sequence heterochrony. Systematic Biology, 57, 378–387.CrossRefPubMedGoogle Scholar
  22. Hautier, L., Fabre, P. H., & Michaux, J. (2009). Mandible shape and dwarfism in squirrels (Mammalia, Rodentia): interaction of allometry and adaptation. Naturwissenschaften, 96, 725–730.CrossRefPubMedGoogle Scholar
  23. Hautier, L., Michaux, J., Marivaux, L., & Vianey-Liaud, M. (2008). Evolution of the zygomasseteric construction in Rodentia, as revealed by a geometric morphometric analysis of the mandible of Graphiurus (Rodentia, Gliridae). Zoological Journal of the Linnean Society, 154, 807–821.CrossRefGoogle Scholar
  24. Huxley, J. S. (1932). Problems of relative growth. London: Methuen.Google Scholar
  25. Jeffery, J. E., Bininda-Emonds, O. R. P., Coates, M. I., & Richardson, M. K. (2005). A new technique for identifying sequence heterochrony. Systematic Biology, 54, 230–240.CrossRefPubMedGoogle Scholar
  26. de Jong, I. M. L., Colbert, M. W., Witte, F., & Richardson, M. K. (2009). Polymorphism in developmental timing: intraspecific heterochrony in a Lake Victoria cichlid. Evolution & Development, 11, 625–635.CrossRefGoogle Scholar
  27. Kaufman, M. H. (2008). The atlas of mouse development. London: Elsevier Academic Press.Google Scholar
  28. Kavanagh, K. D., Evans, A. R., & Jernvall, J. (2007). Predicting evolutionary patterns of mammalian teeth from development. Nature, 449, 427–433.CrossRefPubMedGoogle Scholar
  29. Klingenberg, C. P. (1998). Heterochrony and allometry: the analysis of evolutionary change in ontogeny. Biological Reviews, 73, 79–123.CrossRefPubMedGoogle Scholar
  30. Lillegraven, J. A. (1975). Biological considerations of the marsupial-placental dichotomy. Evolution, 29, 707–722.CrossRefGoogle Scholar
  31. Mabee, P. M., Olmstead, K. L., & Cubbage, C. C. (2000). An experimental study of intraspecific variation, developmental timing, and heterochrony in fishes. Evolution, 54, 2091–2106.PubMedGoogle Scholar
  32. Mall, F. P. (1906). On ossification centres in human embryos less than one hundred days old. American Journal of Anatomy: Developmental Dynamics, 5, 433–458.CrossRefGoogle Scholar
  33. Mess, A. (2007). Development of the chorioallantoic placenta in Octodon degus—A model for growth processes in caviomorph rodents? Journal of Experimental Zoology, 308B, 371–383.CrossRefGoogle Scholar
  34. Michaux, J., Hautier, L., Simonin, T., & Vianey-Liaud, M. (2008). Phylogeny, adaptation and mandible shape in Sciuridae (Rodentia, Mammalia). Mammalia, 72, 286–296.CrossRefGoogle Scholar
  35. Monteiro, L. R., Bonato, V., & dos Reis, S. F. (2005). Evolutionary integration and morphological diversification in complex morphological structures: mandible shape divergence in spiny rats (Rodentia, Echimyidae). Evolution & Development, 7, 429–439.CrossRefGoogle Scholar
  36. Moore, M. K. (1991). Comparative ontogeny of cranial ossification in the spotted salamander, Ambystoma maculatum, and the tailed frog, Ascaphus truei. M. Sc. thesis. Baton Rouge, LA: Louisiana State University.Google Scholar
  37. Moore, M. K., & Townsend, V. R., Jr. (2003). Intraspecific variation in cranial ossification in the tailed frog, Ascaphus truei. Journal of Herpetology, 37, 714–717.CrossRefGoogle Scholar
  38. Nowak, R. M. (1999). Walker’s mammals of the world (6th ed.). Baltimore, MD: Johns Hopkins University Press.Google Scholar
  39. Nunn, C. L., & Smith, K. K. (1998). Statistical analyses of developmental sequences: the craniofacial region in marsupial and placental mammals. American Naturalist, 152, 82–101.CrossRefPubMedGoogle Scholar
  40. Petri, C. (1935). Die Skelettentwicklung beim Meerschwein, zugleich ein Beitrag zur vergleichenden Anatomie der Skelettentwicklung der Säuger. Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich, 80, 157–240.Google Scholar
  41. Prochel, J. (2006). Early skeletal development in Talpa europaea, the common European mole. Zoological Science, 23, 427–434.CrossRefPubMedGoogle Scholar
  42. Prochel, J., & Sánchez-Villagra, M. R. (2003). Carpal ontogeny in Monodelphis domestica and Caluromys philander (Marsupialia). Zoology, 106, 73–84.CrossRefPubMedGoogle Scholar
  43. Prochel, J., Vogel, P., & Sánchez-Villagra, M. R. (2004). Hand development and sequence of ossification in the forelimb of the European shrew Crocidura russula (Soricidae) and comparisons across therian mammals. Journal of Anatomy, 205, 99–111.CrossRefPubMedGoogle Scholar
  44. Rojas, M. A., Montenegro, M. A., & Morales, B. (1982). Embryonic development of the degu, Octodon degus. Journal of Reproduction and Fertility, 66, 31–38.PubMedCrossRefGoogle Scholar
  45. Roth, V. L. (1996). Cranial integration in the Sciuridae. American Zoologist, 36, 14–23.Google Scholar
  46. Sánchez-Villagra, M. R. (2002). Comparative patterns of postcranial ontogeny in therian mammals: an analysis of relative timing of ossification events. Journal of Experimental Zoology: Molecular Development Evolution, 294, 264–273.CrossRefGoogle Scholar
  47. Sánchez-Villagra, M. R., Goswami, A., Weisbecker, V., Mock, O., & Kuratani, S. (2008). Conserved relative timing of cranial ossification patterns in early mammalian evolution. Evolution & Development, 10, 519–530.CrossRefGoogle Scholar
  48. Schoch, R. R. (2006). Skull ontogeny: developmental patterns of fish conserved across major tetrapod clades. Evolution & Development, 8, 524–536.CrossRefGoogle Scholar
  49. Schradin, C. (2005). When to live alone and when to live in groups: ecological determinants of sociality in the African striped mouse (Rhabdomys pumilio, Sparrman, 1784). Belgian Journal of Zoology, 135(Suppl. 1), 77–82.Google Scholar
  50. Schradin, C. (2006). Whole-day follows of striped mice (Rhabdomys pumilio), a diurnal murid rodent. Journal of Ethology, 24, 37–43.CrossRefGoogle Scholar
  51. Schradin, C., & Pillay, N. (2003). Paternal care in the social and diurnal striped mouse (Rhabdomys pumilio): laboratory and field evidence. Journal of Comparative Psychology, 117, 317–324.CrossRefPubMedGoogle Scholar
  52. Schradin, C., & Pillay, N. (2004). The striped mouse (Rhabdomys pumilio) from the succulent karoo of South Africa: A territorial group living solitary forager with communal breeding and helpers at the nest. Journal of Comparative Psychology, 118, 37–47.CrossRefPubMedGoogle Scholar
  53. Schulmeister, S., & Wheeler, W. C. (2004). Comparative and phylogenetic analysis of developmental sequences. Evolution & Development, 6, 50–57.CrossRefGoogle Scholar
  54. Sears, K. E. (2004). Constraints on the morphological evolution of marsupial shoulder girdles. Evolution, 58, 2353–2370.PubMedGoogle Scholar
  55. Sears, K. E. (2009). Differences in the timing of prechondrogenic limb development in mammals: the marsupial-placental dichotomy resolved. Evolution, 63, 2193–2200.CrossRefPubMedGoogle Scholar
  56. Smith, K. K. (1997). Comparative patterns of craniofacial development in eutherian and metatherian mammals. Evolution, 51, 1663–1678.CrossRefGoogle Scholar
  57. Smith, K. K. (2001). Heterochrony revisited: the evolution of developmental sequences. Biological Journal of the Linnean Society, 73, 169–186.CrossRefGoogle Scholar
  58. Steppan, S. J., Adkins, R. M., & Anderson, J. (2004). Phylogeny and divergence date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Systematic Biology, 53, 533–553.CrossRefPubMedGoogle Scholar
  59. Strong, R. M. (1925). The order, time, and rate of ossification of the albino rat (Mus norvegicus albinus) skeleton. Amererican Journal of Anatomy: Developmental Dynamics, 36, 313–355.Google Scholar
  60. Swofford, D. L. (2002). PAUP, Phylogenetic Analysis Using Parsimony (and other methods), version 4.0b10. Computer program. Sunderland, MA: Sinauer Associates.Google Scholar
  61. Theiler, K. (1972). The House mouse: development and normal stages from fertilization to 4 weeks of age. Berlin: Springer.Google Scholar
  62. Trillmich, F., Bieneck, M., Geissler, E., & Bischof, H.-J. (2003). Ontogeny of running performance in the Wild guinea pig (Cavia aperea). Mammalian Biology, 68, 214–223.CrossRefGoogle Scholar
  63. Wagner, G. P. (1988). The influence of variation and of developmental constraints on the rate of multivariate phenotypic evolution. Journal of Evolutionary Biology, 1, 45–66.CrossRefGoogle Scholar
  64. Weisbecker, V., Goswami, A., Wroe, S., & Sánchez-Villagra, M. R. (2008). Ossification heterochrony in the therian postcranial skeleton and the marsupial-placental dichotomy. Evolution, 62, 2027–2041.CrossRefPubMedGoogle Scholar
  65. Weisbecker, V., & Schmid, S. (2007). Autopodial skeletal diversity in hystricognath rodents: functional and phylogenetic aspects. Mammalian Biology, 72, 27–44.CrossRefGoogle Scholar
  66. Werneburg, I., & Sánchez-Villagra, M. R. (2009). Timing of organogenesis support basal position of turtles in the amniote tree of life. BMC Evolutionary Biology, 9, 82. doi:10.1186/1471-2148-9-82.CrossRefPubMedGoogle Scholar
  67. Werneburg, I., & Sánchez-Villagra, M R. (2010). The early development of the Echidna, Tachyglossus aculeatus (Mammalia: Monotremata) and the grundmuster of mammalian development. Acta Zoologica. doi:10.1111/j.1463-6395.2009.00447.x.
  68. Wilson, D. E., & Reeder, D. M. (2005). Mammal species of the world: a taxonomic and geographic reference. Washington, D.C.: Smithsonian Institution Press.Google Scholar
  69. Wilson, L. A. B., & Sánchez-Villagra, M. R. (2009). Heterochrony and patterns of cranial suture closure in hystricognath rodents. Journal of Anatomy, 214, 339–354.CrossRefPubMedGoogle Scholar
  70. Wilson, L. A. B., & Sánchez-Villagra, M. R. (2010). Diversity trends and their ontogenetic basis: an exploration of allometric disparity in rodents. Proceedings of the Royal Society of London, B Biological Sciences, doi:10.1098/rspb.2009.1958
  71. Woods, C. A., & Boraker, D. K. (1975). Octodon degus. Mammalian Species, 67, 1–5.CrossRefGoogle Scholar
  72. Yukawa, M., Hayashi, N., Takagi, K., & Mochizuki, K. (1999). The normal development of Mongolian gerbil foetuses and, in particular, the timing and sequence of ossification centres. Anatomia Histologia Embryologia, 28, 319–324.CrossRefGoogle Scholar
  73. Zelditch, M. L. (2001). Beyond heterochrony: the evolution of development. New York: Wiley-Liss Press.Google Scholar
  74. Zelditch, M. L., Mezey, J., Sheets, H. D., Lundrigan, B. L., & Garland, T., Jr. (2006). Developmental regulation of skull morphology II: ontogenetic dynamics of covariance. Evolution & Development, 8, 46–60.CrossRefGoogle Scholar
  75. Zeller, U. (1987). Morphogenesis of the mammalian skull with special reference to Tupaia. Mammalia depicta, 13, 17–50.Google Scholar

Copyright information

© Gesellschaft fuer Biologische Systematik 2010

Authors and Affiliations

  • Laura A. B. Wilson
    • 1
  • Carsten Schradin
    • 2
    • 3
  • Christian Mitgutsch
    • 1
  • Fernando C. Galliari
    • 4
  • Andrea Mess
    • 5
  • Marcelo R. Sánchez-Villagra
    • 1
  1. 1.Paläontologisches Institut und MuseumZürichSwitzerland
  2. 2.Zoological Institute, Department of Animal BehaviourUniversity of ZurichZürichSwitzerland
  3. 3.School of Animal, Plant and Environmental SciencesUniversity of the WitwatersrandJohannesburgSouth Africa
  4. 4.Departamento Científico de Paleontología de Vertebrados, Facultad de Ciencias Naturales y MuseoUniversidad Nacional de la PlataLa PlataArgentina
  5. 5.Museum für NaturkundeLeibniz-Institut für Evolutions-und Biodiversitätsforschung an der Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations