Organisms Diversity & Evolution

, Volume 10, Issue 2, pp 161–172 | Cite as

Red- and yellow-footed tortoises, Chelonoidis carbonaria and C. denticulata (Reptilia: Testudines: Testudinidae), in South American savannahs and forests: do their phylogeographies reflect distinct habitats?

  • Mario Vargas-Ramírez
  • Jérôme Maran
  • Uwe FritzEmail author
Original Article


Using sequence data of the mitochondrial cytochrome b gene, we investigated phylogeographic differentiation of the Amazonian tortoise species Chelonoidis carbonaria and C. denticulata. While C. carbonaria is generally restricted to savannah habitats and adjacent forests, C. denticulata is associated with wet tropical and subtropical forests. Our study suggests a correlation between distinct habitat preferences and phylogeography of the two species. In Maximum Parsimony, Maximum Likelihood and Bayesian analyses, haplotypes of C. carbonaria cluster in several distinct clades reflecting the species’ patchy distribution in savannah habitats. By contrast, haplotypes of C. denticulata are only weakly differentiated; a finding also confirmed by parsimony network analysis. This suggests that the contiguous Amazonian rainforest allows gene flow between populations of the forest-dwelling C. denticulata throughout the range, but significantly impedes gene flow in C. carbonaria. The phylogeographic structure and extant distribution pattern of C. carbonaria is supportive of former Amazonian rainforest fragmentation, enabling the dispersal of savannah species. Based on fossil calibration, we dated divergence times for the C. carbonaria clades using a relaxed molecular clock, resulting in average estimates ranging from 4.0–2.2 mya. This implies that the onset of rainforest fragmentation could predate the Pleistocene considerably. Furthermore, our findings call for further research on geographic and taxonomic variation in C. carbonaria and for a reassessment of the conservation status of the distinct genetic units.


Phylogeography Cytochrome b gene Testudinidae Rainforest Forest refugia hypothesis 



The work of Mario Vargas-Ramírez was made possible by a fellowship of the DAAD (Deutscher Akademischer Austausch Dienst). María Cristina Ardíla-Robayo and Willington Ortiz (Instituto de Biología Tropical Roberto Franco, Universidad Nacional de Colombia), Olga Castaño-Mora and Orlando Rangel-Ch. (Instituto de Ciencias Naturales, Universidad Nacional de Colombia), Wilson Pérez (CORPOCESAR, Colombia) and Juan Nicolas Vargas-Gonzales were of invaluable help in Colombia. Marcelo Sánchez-Villagra (Paleontological Institute, University of Zürich) provided information about the fossil record of Chelonoidis. Anke Müller, Anna Hundsdörfer and Christian Kehlmaier (Museum of Zoology Dresden) much assisted Mario Vargas-Ramírez during lab work.


  1. Auffenberg, W. (1971). A new fossil tortoise, with remarks on the origin of South American Testudines. Copeia, 1971, 106–117.CrossRefGoogle Scholar
  2. Avise, J. C. (2000). Phylogeography: the history and formation of species. Cambridge: Harvard University Press.Google Scholar
  3. Bohonak, A. J. (2002). IBD (Isolation-by-Distance): a program for analyses of isolation by distance. Journal of Heredity, 93, 153–154.CrossRefPubMedGoogle Scholar
  4. Caccone, A., Gibbs, J. P., Ketmaier, V., Suatoni, E., & Powell, J. R. (1999). Origin and evolutionary relationships of giant Galápagos tortoises. PNAS, 96, 13223–13228.CrossRefPubMedGoogle Scholar
  5. Castaño-Mora OV (Ed.) (2002). Libro rojo de reptiles de Colombia. Instituto de Ciencias Naturales-Universidad Nacional de Colombia, Ministerio del Medio Ambiente, Conservación Internacional-Colombia, Bogotá.Google Scholar
  6. Clement, M., Posada, D., & Crandall, K. A. (2000). TCS: a computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.CrossRefPubMedGoogle Scholar
  7. Colinvaux, P. A., Irion, G., Räsänen, M. E., Bush, M. B., & Nuñes de Mello, J. A. S. (2001). A paradigm to be discarded: geological and paleoecological data falsify the Haffer and Prance refuge hypothesis of Amazonian speciation. Amazoniana, 16, 609–646.Google Scholar
  8. Cowling, S. A., Maslin, M. A., & Sykes, M. T. (2001). Paleovegetation simulations of lowland Amazonia and implications for neotropical allopatry and speciation. Quaternary Research, 55, 140–149.CrossRefGoogle Scholar
  9. Cunningham, J. (2002). A molecular perspective on the family Testudinidae Batsch, 1788. PhD thesis, University of Cape Town.Google Scholar
  10. Ernst, C. H., Altenburg, R. G. M., & Barbour, R. W. (2000). Turtles of the world, ver. 1.2. CD-ROM. Amsterdam: ETI BioInformatics.Google Scholar
  11. Farias, I. P., Jerozolimski, A., Melo, A., das Neves Viana, M., Martins, M., & dos Santos Monjeló, L. A. (2007). Population genetics of the Amazonian tortoises, Chelonoidis denticulata and C. carbonaria (Cryptodira: Testudinidae) in an area of sympatry. Amphibia-Reptilia, 28, 357–365.CrossRefGoogle Scholar
  12. Flynn, J. J., & Wyss, A. R. (1998). Recent advances in South American mammalian paleontology. TREE, 13, 11.Google Scholar
  13. Fritz, U., & Bininda-Emonds, O. R. P. (2007). When genes meet nomenclature: tortoise phylogeny and the shifting generic concepts of Testudo and Geochelone. Zoology, 110, 298–307.CrossRefPubMedGoogle Scholar
  14. Fritz, U., Široký, P., Kami, H., & Wink, M. (2005). Environmentally caused dwarfism or a valid species—Is Testudo weissingeri Bour, 1996 a distinct evolutionary lineage? New evidence from mitochondrial and nuclear genomic markers. Molecular Phylogenetics and Evolution, 37, 389–401.CrossRefPubMedGoogle Scholar
  15. Fritz, U., Auer, M., Bertolero, A., Cheylan, M., Fattizzo, T., Hundsdörfer, A. K., et al. (2006). A rangewide phylogeography of Hermann’s tortoise, Testudo hermanni (Reptilia: Testudines: Testudinidae): implications for taxonomy. Zoologica Scripta, 35, 531–543.CrossRefGoogle Scholar
  16. Fritz, U., Hundsdörfer, A. K., Široký, P., Auer, M., Kami, H., Lehmann, J., et al. (2007). Phenotypic plasticity leads to incongruence between morphology-based taxonomy and genetic differentiation in western Palaearctic tortoises (Testudo graeca complex; Testudines, Testudinidae). Amphibia-Reptilia, 28, 97–121.CrossRefGoogle Scholar
  17. Fritz, U., Ayaz, D., Buschbom, J., Kami, H. G., Mazanaeva, L. F., Aloufi, A. A., et al. (2008). Go east: Phylogeographies of Mauremys caspica and M. rivulata—Discordance of morphology, mitochondrial and nuclear genomic markers and rare hybridization. Journal of Evolutionary Biology, 21, 527–540.CrossRefPubMedGoogle Scholar
  18. Fritz, U., Ayaz, D., Hundsdörfer, A. K., Kotenko, T., Guicking, D., Wink, M., et al. (2009a). Mitochondrial diversity of European pond turtles (Emys orbicularis) in Anatolia and the Ponto-Caspian Region: Multiple old refuges, hotspot of extant diversification and critically endangered endemics. Organisms Diversity & Evolution, 9, 100–114.CrossRefGoogle Scholar
  19. Fritz, U., Harris, D. J., Fahd, S., Rouag, R., Graciá Martínez, E., Giménez Casalduero, A., et al. (2009b). Mitochondrial phylogeography of Testudo graeca in the Western Mediterranean: old complex divergence in North Africa and recent arrival in Europe. Amphibia-Reptilia, 30, 63–80.CrossRefGoogle Scholar
  20. Glor, R. E., Vitt, L. J., & Larson, A. (2001). A molecular phylogenetic analysis of diversification in Amazonian Anolis lizards. Molecular Ecology, 10, 2661–2668.CrossRefPubMedGoogle Scholar
  21. Haffer, J. (1969). Speciation in Amazonian forest birds. Science, 165, 131–137.CrossRefPubMedGoogle Scholar
  22. Haffer, J. (1997). Alternative models of vertebrate speciation in Amazonia: an overview. Biodiversity and Conservation, 6, 451–476.CrossRefGoogle Scholar
  23. Haig, S. M., Mullins, T. D., & Forsman, E. D. (2004). Subspecies relationships and genetic structure in the spotted owl. Conservation Genetics, 5, 683–705.CrossRefGoogle Scholar
  24. Hall, T. A. (1999). BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95–98.Google Scholar
  25. Hooghiemstra, H., & van der Hammen, T. (1998). Neogene and Quaternary development of the neotropical rainforest: the forest refugia hypothesis, and a literature overview. Earth Science Reviews, 44, 147–183.CrossRefGoogle Scholar
  26. IUCN = International Union for the Conservation of Nature and Natural Resources (2008) IUCN red list of threatened species. Accessed 28 July 2008.
  27. Iverson, J. B. (1992). A revised checklist with distribution maps of the turtles of the world. Richmond: Privately printed.Google Scholar
  28. Le, M., Raxworthy, C. J., McCord, W. P., & Mertz, L. (2006). A molecular phylogeny of tortoises (Testudines: Testudinidae) based on mitochondrial and nuclear genes. Molecular Phylogenetics and Evolution, 40, 517–531.CrossRefPubMedGoogle Scholar
  29. Legendre, P., & Legendre, L. (1998). Numerical ecology (2nd ed.). New York: Elsevier.Google Scholar
  30. Lenk, P., Fritz, U., Joger, U., & Wink, M. (1999). Mitochondrial phylogeography of the European pond turtle, Emys orbicularis (Linnaeus 1758). Molecular Ecology, 8, 1911–1922.CrossRefPubMedGoogle Scholar
  31. Li, C., Wu, X.-C., Rieppel, O., Wang, L.-T., & Zhao, L.-J. (2008). An ancestral turtle from the Late Triassic of southwestern China. Nature, 456, 497–501.CrossRefPubMedGoogle Scholar
  32. Mayle, F. E., Burbidge, R., & Killeen, T. J. (2004). Millennial scale dynamics of southern Amazonian rainforests. Science, 290, 2291–2294.CrossRefGoogle Scholar
  33. Miller, M. P., Haig, S. M., & Wagner, R. S. (2006). Phylogeography and spatial genetic structure of the southern torrent salamander: implications for conservation and management. Journal of Heredity, 97, 561–570.CrossRefPubMedGoogle Scholar
  34. Moritz, C. (1994). Defining evolutionarily significant units for conservation. TREE, 9, 373–375.Google Scholar
  35. Moritz, C., Patton, J. L., Schneider, C. J., & Smith, T. B. (2000). Diversification of rainforest faunas: an integrated molecular approach. Annual Review of Ecology, Evolution and Systematics, 31, 533–563.CrossRefGoogle Scholar
  36. Pennington, R. T., Prado, D. E., & Pendry, C. A. (2000). Neotropical seasonally dry forests and Quaternary vegetation changes. Journal of Biogeography, 27, 261–273.CrossRefGoogle Scholar
  37. Pennington, R. T., Lavin, M., Prado, D. E., Pendry, C. A., Pell, S. K., & Butterworth, C. A. (2004). Historical climate change and speciation: neotropical seasonally dry forest plants show patterns of both Tertiary and Quaternary diversification. Philosophical Transactions of the Royal Society of London, B, 359, 515–538.CrossRefGoogle Scholar
  38. Posada, D., & Crandall, K. A. (1998). MODELTEST: testing the model of DNA substitution. Bioinformatics, 14, 817–818.CrossRefPubMedGoogle Scholar
  39. Posada, D., & Crandall, K. A. (2001). Intraspecific gene genealogies: trees grafting into networks. TREE, 16, 37–45.PubMedGoogle Scholar
  40. Potts, R., & Behrensmeyer, A. K. (1992). Late Cenozoic terrestrial ecosystems. In A. K. Behrensmeyer, J. D. Damuth, W. A. DiMichele, R. Potts, H. D. Sues, & S. L. Wing (Eds.), Terrestrial ecosystems through time: Evolutionary paleoecology of terrestrial plants and animals (pp. 419–541). Chicago: University of Chicago Press.Google Scholar
  41. Prance, G. T. (1973). Phytogeographic support for the theory of Pleistocene forest refuges in the Amazon basin, based on evidence from distribution patterns in Caryocaraceae, Chrysobalanaceae, Dichapetalaceae and Lecythidaceae. Acta Amazonica, 3, 5–28.Google Scholar
  42. Praschag, P., Hundsdörfer, A. K., & Fritz, U. (2007). Phylogeny and taxonomy of endangered South and South-east Asian freshwater turtles elucidated by mtDNA sequence variation (Testudines: Geoemydidae: Batagur, Callagur, Hardella, Kachuga, Pangshura). Zoologica Scripta, 36, 429–442.CrossRefGoogle Scholar
  43. Pritchard, P. C. H., & Trebbau, P. (1984). The turtles of Venezuela. Athens: Society for the Study of Amphibians and Reptiles.Google Scholar
  44. Quijada-Mascareñas, J. A., Ferguson, K. E., Pook, C. E., da Graça, S. M., Thorpe, R. S., & Wüster, W. (2007). Amazonian biogeography: the neotropical rattlesnake (Crotalus durissus complex) as an example. Journal of Biogeography, 34, 1296–1312.CrossRefGoogle Scholar
  45. Ripplinger, J., & Wagner, R. S. (2004). Phylogeography of northern populations of the Pacific chorus frog, Pseudacris regilla. Northwestern Naturalist, 85, 118–125.CrossRefGoogle Scholar
  46. Ronquist, F., & Huelsenbeck, J. P. (2003). MrBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.CrossRefPubMedGoogle Scholar
  47. Swofford, D. L. (2002). PAUP*. phylogenetic analysis using parsimony (*and Other Methods), ver. 4.0b10. Sunderland: Sinauer Associates.Google Scholar
  48. Tamura, K., Dudley, J., Nei, M., & Kumar, S. (2007). MEGA 4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Molecular Biology and Evolution, 24, 1596–1599.CrossRefPubMedGoogle Scholar
  49. Telles, M. P. C., & Diniz-Filho, J. A. F. (2005). Multiple Mantel tests and isolation-by-distance, taking into account long-term historical divergence. Genetics and Molecular Research, 4, 742–748.PubMedGoogle Scholar
  50. Thorne, J. L., & Kishino, H. (2002). Divergence time and evolutionary rate estimation with multilocus data. Systematic Biology, 51, 689–702.CrossRefPubMedGoogle Scholar
  51. Thorne, J. L., Kishino, H., & Painter, I. S. (1998). Estimating the rate of evolution of the rate of molecular evolution. Molecular Biology and Evolution, 15, 1647–1657.PubMedGoogle Scholar
  52. Wüster, W., Ferguson, J. E., Quijada-Mascareñas, J. A., Pook, C. E., Salomão, M. G., & Thorpe, R. S. (2005). Tracing an invasion: landbridges, refugia, and the phylogeography of the neotropical rattlesnake (Serpentes: Viperidae: Crotalus durissus). Molecular Ecology, 14, 1095–1108.CrossRefPubMedGoogle Scholar
  53. Yang, Z. (1997). PAML: a program package for phylogenetic analysis by maximum likelihood. Computer Applications in the Biosciences, 13, 555–556.PubMedGoogle Scholar

Copyright information

© Gesellschaft fuer Biologische Systematik 2010

Authors and Affiliations

  • Mario Vargas-Ramírez
    • 1
  • Jérôme Maran
    • 2
  • Uwe Fritz
    • 1
    Email author
  1. 1.Museum of Zoology (Museum für Tierkunde), Senckenberg Natural History Collections DresdenDresdenGermany
  2. 2.L’Association du Refuge des Tortues, Mairie des BessièresBessièresFrance

Personalised recommendations