Organisms Diversity & Evolution

, Volume 10, Issue 3, pp 193–204 | Cite as

Cryptic species of Notophyllum (Polychaeta: Phyllodocidae) in Scandinavian waters

  • Arne Nygren
  • Jenny Eklöf
  • Fredrik Pleijel
Original Article


The phyllodocid polychaete Notophyllum foliosum occurs in two colour morphs in Swedish and Norwegian waters, one palish yellow to grey form with black patches that is restricted to deeper waters and often associated with reefs of the deep-water coral Lophelia pertusa, and one usually yellow-orange form with black patches and white spots that is usually encountered on more shallow bottoms. We have sampled the two forms from sympatric occurrences in Norway, and the shallow form from the Swedish west coast. Phylogenetic and haplotype analyses based on the mitochondrial cytochrome c oxidase subunit I (COI) gene and the nuclear internal transcribed spacer region (ITS1-5.8SrDNA-ITS2) unequivocally indicate that the two forms represent different species. We apply the name N. foliosum (Sars, 1835) to the ‘shallow form’, and propose N. crypticum n. sp. for the ‘deep form’. A lectotype is fixed for N. foliosum.


New species Sibling species Molecular analysis COI ITS1-5.8SrDNA-ITS2 Lectotype 



This paper is part of a research programme in which we analyse Scandinavian polychaete species complexes, funded by the Swedish Taxonomy Initiative (contracts 140/07 1.4 and dha 166/08 1.4 to AN), and the Adlerbert Research Foundation (to FP and AN). We wish to thank Tor Bakke, Torkild Bakken, Danny Eibye-Jacobsen, Jon Kongsrud and Christoffer Schander for help with collecting, loans, and information about museum collections, and Olaf Bininda-Emonds and two anonymous reviewers for valuable comments.


  1. Avise, J. (2000). Phylogeography. Cambridge: Cambridge University Press.Google Scholar
  2. Bergström, E. (1914). Zur Systematik der Polychaetenfamilie der Phyllodociden. Zoologiska Bidrag från Uppsala, 3, 37–224.Google Scholar
  3. Bickford, D., Lohman, D., Sodhi, N., Ng, P., Meier, R., Winker, K., et al. (2007). Cryptic species as a window on diversity and conservation. Trends in Ecology & Evolution, 22, 148–155.CrossRefGoogle Scholar
  4. Chen, C., Chen, C.-P., Fan, T.-Y., Yu, J.-K., & Hsieh, H.-L. (2002). Nucleotide sequences of ribosomal internal transcribed spacers and their utility in distinguishing closely related Perinereis polychaetes (Annelida; Polychaeta; Nereididiae). Marine Biotechnology, 4, 17–29.CrossRefPubMedGoogle Scholar
  5. Clement, M., Posada, D., & Crandall, K. (2000). TCS: A computer program to estimate gene genealogies. Molecular Ecology, 9, 1657–1659.CrossRefPubMedGoogle Scholar
  6. Eklöf, J., Pleijel, F., & Sundberg, P. (2007). Phylogeny of benthic Phyllodocidae (Annelida) based on morphological and molecular data. Molecular Phylogenetics and Evolution, 45, 261–271.CrossRefPubMedGoogle Scholar
  7. Farris, S. J., Albert, V. A., Källersjö, M., Lipscomb, D., & Kluge, A. G. (1996). Parsimony jackknifing outperforms neighbor-joining. Cladistics, 12, 99–124.CrossRefGoogle Scholar
  8. Folmer, O., Black, M. B., Hoeh, W. R., Lutz, R. A., & Vrijenhoek, R. C. (1994). DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology, 3, 294–299.PubMedGoogle Scholar
  9. Gatesy, J., DeSalle, R., & Wheeler, W. (1993). Alignment-ambiguous nucleotide sites and the exclusion of systematic data. Molecular Phylogenetics and Evolution, 2, 152–157.CrossRefPubMedGoogle Scholar
  10. Gelman, A., Carlin, J. B., Stern, H. S., & Rubin, D. B. (1995). Bayesian data analysis. London: Chapman & Hall.Google Scholar
  11. Hart, M., & Sunday, J. (2007). Things fall apart: biological species from unconnected parsimony networks. Biology Letters, 3, 509–512.CrossRefPubMedGoogle Scholar
  12. Kato, T., & Pleijel, F. (2002). A revision of Notophyllum (Phyllodocidae, Polychaeta). Journal of Natural History, 36, 1135–1178.CrossRefGoogle Scholar
  13. Klautau, M., Russo, C. A. M., Lazoski, C., Boury-Esnault, N., Thorpe, J. P., & Solé-Cava, A. M. (1999). Does cosmopolitanism result from overconservative systematics? A case study using the marine sponge Chondrilla nucula. Evolution, 53, 1414–1422.CrossRefGoogle Scholar
  14. Knowlton, N. (1993). Sibling species in the sea. Annual Review of Ecology and Systematics, 24, 189–216.CrossRefGoogle Scholar
  15. Knowlton, N. (2000). Molecular genetic analyses of species boundaries in the sea. Hydrobiologia, 420, 73–90.CrossRefGoogle Scholar
  16. Knowlton, N., & Weigt, L. (1998). New dates and new rates for divergence across the Isthmus of Panama. Proceedings of the Royal Society B: Biological Sciences, 265, 2257–2263.CrossRefGoogle Scholar
  17. Mayr, E. (1963). Animal species and evolution. Cambridge: Harvard University Press.Google Scholar
  18. Mishler, B., & Theriot, E. (2000). The phylogenetic species concept (sensu Mishler and Theriot): monophyly, apomorphy, and phylogenetic species concepts. In Q. Wheeler & R. Meier (Eds.), Species concepts and phylogenetic theory. A debate (pp. 44–54). New York: Columbia University Press.Google Scholar
  19. Nygren, A., Pleijel, F., & Sundberg, P. (2005). Genetic relationships between Nereimyra punctata and N. woodsholea (Hesionidae, Polychaeta). Journal of Zoological Systematics and Evolutionary Research, 43, 273–276.CrossRefGoogle Scholar
  20. Nygren, A., Eklöf, J., & Pleijel, F. (2009). Arctic-boreal sibling species of Paranaitis. Marine Biology Research, 5, 315–327.CrossRefGoogle Scholar
  21. Nylander, J. (2004). MrModeltest v2. Program distributed by the author. Uppsala: Evolutionary Biology Centre, Uppsala University.Google Scholar
  22. Nylander, J., Wilgenbusch, J., Warren, D. L., & Swofford, D. L. (2007). AWTY (Are We There Yet?): a system for graphical exploration of MCMC convergence in Bayesian phylogenetics. Bioinformatics, 24, 581–583.CrossRefPubMedGoogle Scholar
  23. Ørsted, A. S. (1843). Annulatorum Danicorum Conspectus. Fasc. 1. Maricolæ. Copenhagen: Librariae Wahlianae.Google Scholar
  24. Palumbi, S. R. (1994). Genetic divergence, reproductive isolation, and marine speciation. Annual Review of Ecology and Systematics, 25, 547–572.CrossRefGoogle Scholar
  25. Pleijel, F. (1993). Polychaeta. Phyllodocidae. Marine Invertebrates of Scandinavia, 8, 1–159.Google Scholar
  26. Pleijel, F., & Dales, R. P. (1991). Polychaetes: British phyllodocoideans, typhloscolecoideans and tomopteroideans. Synopses of the British Fauna, New Series, 45, 1–202.Google Scholar
  27. Pleijel, F., Jondelius, U., Norlinder, E., Oxelman, B., Schander, C., Sundberg, P., et al. (2008). Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Molecular Phylogenetics and Evolution, 48, 369–371.CrossRefPubMedGoogle Scholar
  28. Ronquist, F., & Huelsenbeck, J. (2003). MrBayes3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572–1574.CrossRefPubMedGoogle Scholar
  29. Saez, A., & Lozano, E. (2005). Body doubles. Nature, 433, 111.CrossRefPubMedGoogle Scholar
  30. Sars, M. (1835). Beskrivelser og iakttagelser over nogle mærkelige eller nye i havet ved den Bergenske kyst levende dyr af polypernes, acephalernes, radiaternes, annelidernes of molluskernes classer, med en kort oversigt over de hidtil af forfattaren sammesteds fundne arter of deres forekommen. Bergen: Thorstein Hallegers Forlag hos Chr. Dahl.Google Scholar
  31. Schlick-Steiner, B., Seifert, B., Stauffer, C., Christian, E., Crozier, R., & Steiner, F. (2007). Without morphology, cryptic species stay in taxonomic crypsis following discovery. Trends in Ecology & Evolution, 22, 391–392.CrossRefGoogle Scholar
  32. Swofford, D. (2002). PAUP*. Phylogenetic Analysis Using Parsimony (*and other methods). Sunderland: Sinauer.Google Scholar
  33. Thompson, J. D., Gibson, D. J., Plewniak, F., Jeanmougin, F., & Higgins, D. G. (1997). The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Research, 24, 4876–4882.CrossRefGoogle Scholar
  34. Wilgenbusch, J., Warren, D., & Swofford, D. (2004). A system for graphical exploration of MCMC convergence in Bayesian phylogenetic inference. Accessed 22 October 2009.
  35. Winker, K. (2005). Sibling species were first recognized by William Derham (1718). The Auk, 122, 706–707.CrossRefGoogle Scholar

Copyright information

© Gesellschaft fuer Biologische Systematik 2010

Authors and Affiliations

  1. 1.Systematics and Biodiversity, Department of ZoologyUniversity of GothenburgGöteborgSweden
  2. 2.Department of Marine Ecology—TjärnöUniversity of GothenburgStrömstadSweden

Personalised recommendations