Organisms Diversity & Evolution

, Volume 10, Issue 2, pp 173–191 | Cite as

Optimality of phylogenetic nomenclatural procedures

Forum Paper


Nomenclatures resulting from the application of various procedures are viewed as communication tools whose optimality can be compared. The traditional, node-based, branch-based, apomorphy-based, and cladotypic procedures are compared based on theoretical cases. The traditional procedure collects several major drawbacks: endings related to ranks are of low information content on taxa hierarchy; with respect to procedures using uninominal species names, in case of a partly unbalanced and/or partly unresolved phylogeny, the application of the procedure results into supernumerary names; a traditional taxon name is prone to be polysemic, depending upon someone’s opinion on the rank and composition of the taxon, and upon conflicting hypotheses on the phylogenetic position of name-bearing types. Alternative systems vary in merit. Names of apomorphy-defined taxa are prone to be polysemic due to possible ambiguity in the formulation of the defining character state. The cladotypic nomenclatural procedure is similar in that respect, but a set of rules allow ambiguity to be limited. The main issue of node- and branch-based procedures is that cases of synonymy cannot be settled if the inner phylogeny of taxa cannot be resolved. Cases of irresolvable synonymy can occur under apomorphy-based and cladotypic procedures, but the problem can be circumvented by the use of taxa whose defining character state is not subject to ambiguous mapping. Node-, branch- and apomorphy-based definitions as governed by the PhyloCode can produce nonsensical statements, but this problem can be fixed by the adjunction of falsifiable assumptions in use under the cladotypic procedure. Cladotypic definitions must involve a fourth assumption formulated as ‘cladotypes belong to different species’ (cladogenesis assumption). The present contribution suggests that the cladotypic procedure outperforms all other proposed procedures, producing an optimal formal lexicon useful for naming and communicating about species and taxa.


Rank Species Definition Polysemy Synonymy Nonsense 



A discussion with J. M. Carpenter (AMNH, New York) initiated the development of this contribution. V. Malécot (Institut National d’Horticulture, Angers, France), C. Schmidt (Museum of Zoology, Dresden, Germany) and J. Padial (Natural History Museum of Madrid, Madrid) provided valuable comments on a draft version. I also thank Prof. A. Dubois (MNHN, Paris), Dr. M. Laurin (MNHN, Paris), Dr. Y. Bertrand (School of Life Sciences, Södertörn University College, Huddinge, Sweden) and an anonymous referee for suggestions that significantly improved the text. This does not imply their consent to the (whole) content of this paper. Dr. R. Blutner (University of Amsterdam, Netherlands) provided help regarding established terminology in linguistics. The author is a postdoctoral research fellow of the Alexander von Humboldt Foundation.


  1. Alonso-Zarazaga, M. A. (2005). Nomenclature of higher taxa: a new approach. Bulletin of Zoological Nomenclature, 62, 189–199.Google Scholar
  2. Benton, M. J. (2000). Stems, nodes, crown clades, and rank-free lists: is Linnaeus dead? Biological Reviews, 75, 633–648.PubMedCrossRefGoogle Scholar
  3. Benton, M. J. (2007). The Phylocode: beating a dead horse? Acta Palaeontologica Polonica, 52, 651–655.Google Scholar
  4. Bertrand, Y. (2008). Contrasting the general with the particular in phylogenetics—a proposal to keep the meanings of mono/paraphyletic and clade/grade separated. Taxon, 57, 705–708.Google Scholar
  5. Bertrand, Y., & Härlin, M. (2006). Stability and universality in the application of taxon names in phylogenetic nomenclature. Systematic Biology, 55, 848–858.CrossRefPubMedGoogle Scholar
  6. Bertrand, Y., & Härlin, M. (2008). Phylogenetic hypotheses, taxonomic sameness and the reference of taxon names. Zoologica Scripta, 37, 337–347.CrossRefGoogle Scholar
  7. Béthoux, O. (2007a). Propositions for a character-state-based biological taxonomy. Zoologica Scripta, 36, 409–416.CrossRefGoogle Scholar
  8. Béthoux, O. (2007b). Cladotypic taxonomy revisited. Arthropod Systematics & Phylogeny, 65, 127–133.Google Scholar
  9. Béthoux, O. (2007c). Cladotypic taxonomy applied: titanopterans are orthopterans. Arthropod Systematics & Phylogeny, 65, 135–156.Google Scholar
  10. Béthoux, O. (2008). Revision and phylogenetic affinities of the lobeattid species bronsoni Dana, 1864 and silvatica Laurentiaux, Laurentiaux-Vieira, 1980 (Pennsylvanian; Archaeorthoptera). Arthropod Systematics & Phylogeny, 66, 145–163.Google Scholar
  11. Bryant, H. N. (1996). Explicitness, stability, and universality in the phylogenetic definition and usage of taxon names: a case study of the phylogenetic taxonomy of the Carnivora (Mammalia). Systematic Biology, 45, 174–179.Google Scholar
  12. Cantino, P. D., & de Queiroz, K. (2007). International code of phylogenetic nomenclature, version 4b. Accessed 15 January 2009.
  13. Cantino, P. D., & Olmstead, R. G. (2008). Application of phylogenetically defined names does not require that every specifier be present on a tree. Systematic Biology, 57, 157–160.CrossRefPubMedGoogle Scholar
  14. Colless, D. H. (1977). A cornucopia of categories. Systematic Zoology, 26, 349–352.CrossRefGoogle Scholar
  15. Darwin, C. (1859). On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. I. Extract from an unpublished work on species, II. Abstract of a letter from C. Darwin, Esq., to Prof. Asa Gray. Journal of the Proceedings of the Linnean Society of London /Zoology, 3, 45–53.Google Scholar
  16. Dayrat, B. (2005). Advantages of naming species under the PhyloCode: an example of how a new species of Discodorididae (Mollusca, Gastropoda, Euthyneura, Nudibranchia, Doridina) may be named. Marine Biology Research, 1, 216–232.CrossRefGoogle Scholar
  17. Dayrat, B., Schander, C., & Angielczyk, K. (2004). Suggestions for a new species nomenclature. Taxon, 53, 485–491.CrossRefGoogle Scholar
  18. de Queiroz, K. (2005). Different species problems and their resolution. Bioessays, 27, 1263–1269.CrossRefPubMedGoogle Scholar
  19. de Queiroz, K., & Cantino, P. D. (2001). Phylogenetic nomenclature and the PhyloCode. Bulletin of Zoological Nomenclature, 58, 254–271.Google Scholar
  20. de Queiroz, P. C. J., & Gauthier, J. (1990). Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology, 39, 307–322.CrossRefGoogle Scholar
  21. de Queiroz, P. C. J., & Gauthier, J. (1992). Phylogenetic taxonomy. Annual Review of Ecology and Systematics, 23, 449–480.CrossRefGoogle Scholar
  22. Dubois, A. (2003). The relationships between conservation biology in the century of extinctions. Comptes Rendus Biologies, 326(Supplément 1), 9–21.CrossRefGoogle Scholar
  23. Dubois, A. (2005). Proposals for the incorporation of nomina of higher-ranked zoological taxa into the Code. Bulletin of Zoological Nomenclature, 62, 200–209.Google Scholar
  24. Dubois, A. (2006a). Incorporation of nomina of higher-rank taxa into the International Code of Zoological Nomenclature: some basic questions. Zootaxa, 1337, 1–37.Google Scholar
  25. Dubois, A. (2006b). Proposed rules for the incorporation of nomina of higher-ranked zoological taxa in the International Code of Zoological Nomenclature. 1. Some general questions, concepts and terms of biological nomenclature. Zoosystema, 27, 365–426.Google Scholar
  26. Dubois, A. (2007a). Phylogeny, taxonomy and nomenclature: the problem of taxonomic categories and of nomenclatural ranks. Zootaxa, 1519, 27–68.Google Scholar
  27. Dubois, A. (2007b). Naming taxa from cladograms: some confusions, misleading statements, and necessary clarifications. Cladistics, 23, 390–402.CrossRefGoogle Scholar
  28. Dubois, A. (2008). Phylogenetic hypotheses, taxa and nomina in zoology. Zootaxa, 1950, 51–86.Google Scholar
  29. Eggleton, P., Beccaloni, G., & Inward, D. (2007). Response to Lo et al. Biology Letters, New Series, 3, 564–565.Google Scholar
  30. Forey, P. L. (2001). The PhyloCode: description and commentary. Bulletin of Zoological Nomenclature, 58, 81–96.Google Scholar
  31. Forey, P. L. (2002). PhyloCode–pain, no gain. Taxon, 51, 43–54.CrossRefGoogle Scholar
  32. Gauthier, J., & de Queiroz, P. C. J. (2001). Feathered dinosaurs, flying dinosaurs, crown dinosaurs, and the name “Aves”. In J. Gauthier & L. F. Gall (Eds.), New perspectives on the origin and early evolution of birds: Proceedings of the International Symposium in honor of John H. Ostrom (pp. 7–41). New Haven: Peabody Museum of Natural History, Yale University.Google Scholar
  33. Godfray, H. C. J., & Knapp, S. (2004). Taxonomy for the twenty-first century. Introduction. Philosophical Transactions of the Royal Society of London / B, 359, 559–569.CrossRefGoogle Scholar
  34. Griffiths, G. C. D. (1976). The future of the Linnaean nomenclature. Systematic Zoology, 25, 168–173.CrossRefGoogle Scholar
  35. Härlin, M. (2003). On the relationships between content, ancestor, and ancestry in phylogenetic nomenclature. Cladistics, 19, 144–147.CrossRefGoogle Scholar
  36. Hennig, W. (1950). Grundzüge einer Theorie der phylogenetischen Systematik. Berlin: Deutscher Zentralverlag.Google Scholar
  37. Hennig, W. (1966). Phylogenetic systematics. Urbana: University of Illinois Press.Google Scholar
  38. Kojima, J.-I. (2003). Apomorphy-based definition also pinpoints a node a PhyloCode names prevent effective communication. Botanical Review, 69, 44–58.CrossRefGoogle Scholar
  39. Laurin, M. (2005). The advantages of phylogenetic nomenclature over Linnean nomenclature. In A. Minelli, G. Ortalli, & G. Sanga (Eds.), Animal names. Venice: Instituto Veneto di Scienze, Lettere ed Arti.Google Scholar
  40. Lee, M. S. Y. (1996). The phylogenetic approach to biological taxonomy: practical aspects. Zoologica Scripta, 25, 187–190.CrossRefGoogle Scholar
  41. Lee, M. S. Y. (1998). Ancestors and taxonomy. Trends in Ecology and Evolution, 13, 26.CrossRefGoogle Scholar
  42. Lee, M. S. Y., & Skinner, A. (2007). Stability, ranks, and the PhyloCode. Acta Palaeontologica Polonica, 52, 643–650.Google Scholar
  43. Lee, M. S. Y., & Skinner, A. (2008). Hierarchy and clade definitions in Phylogenetic taxonomy. Organisms Diversity and Evolution, 8, 17–20.CrossRefGoogle Scholar
  44. Lo, N., Engel, M. S., Cameron, S., Nalepa, C. A., Tokuda, G., Grimaldi, D., et al. (2007). Save Isoptera: a comment on Inward et al. Biology Letters, New Series, 3, 562–563.Google Scholar
  45. Mayr, E. (1942). Systematics and the origin of species. New York: Columbia University Press.Google Scholar
  46. Mayr, E., & Ashlock, P. D. (1991). Principles of systematic zoology. New York: McGraw-Hill.Google Scholar
  47. Moore, G. (1998). A comparison of traditional and phylogenetic nomenclature. Taxon, 47, 561–579.CrossRefGoogle Scholar
  48. Nixon, K. C., & Carpenter, J. M. (2000). On the other “Phylogenetic Systematics”. Cladistics, 16, 298–318.Google Scholar
  49. Nixon, K. C., Carpenter, J. M., & Stevenson, D. W. (2003). The PhyloCode is fatally flawed, and the ‘Linnean’ system can easily be fixed. Botanical Review, 69, 111–120.CrossRefGoogle Scholar
  50. Patterson, C., & Rosen, D. E. (1977). Review of ichthyodectiform and other Mesozoic teleost fishes and the theory and practice of classifying fossils. Bulletin of the American Museum of Natural History, 158, 81–172.Google Scholar
  51. Pleijel, F. (1999). Phylogenetic taxonomy, a farewell to species, and a revision of Heteropodarke (Hesionidae, Polychaeta, Annelida). Systematic Biology, 48, 755–789.CrossRefGoogle Scholar
  52. Polaszek, A., Agosti, D., Alonso-Zarazaga, M., Beccaloni, G., de Place Bjørn, P., Bouchet, P., et al. (2005). A universal register for animal names. Nature, 437, 477.CrossRefPubMedGoogle Scholar
  53. Schander, C., & Thollesson, M. (1995). Phylogenetic taxonomy—some comments. Zoologica Scripta, 24, 263–268.CrossRefGoogle Scholar
  54. Schuh, R. T. (2003). The Linnean system and its 250-year persistence. Botanical Review, 69, 59–78.CrossRefGoogle Scholar
  55. Sereno, P. C. (2005). The logical basis of phylogenetic taxonomy. Systematic Biology, 54, 595–619.CrossRefPubMedGoogle Scholar
  56. van der Linde, K., Bächli, G., Toda, M. J., Zhang, W.-X., Hu, Y.-G., & Spicer, G. S. (2007). Drosophila Fallén, 1823 (Insecta, Diptera): proposed conservation of usage. Bulletin of Zoological Nomenclature, 64, 238–242.Google Scholar
  57. Wallace, A. R. (1859). On the tendency of species to form varieties; and on the perpetuation of varieties and species by natural means of selection. III. On the tendency of varieties to depart indefinitely from the original type. Journal of the Proceedings of the Linnean Society of London / Zoology, 3, 53–62.Google Scholar
  58. Wheeler, Q. D. (2004). Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society of London / B, 359, 571–583.CrossRefGoogle Scholar
  59. Wiley, E. O. (1979). An annotated Linnaean hierarchy, with comments on natural taxa and competing systems. Systematic Zoology, 28, 308–337.CrossRefGoogle Scholar
  60. Willmann, R. (1987). Phylogenetic systematics, classification and the plesion concept. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg, Neue Fassung, 29, 221–233.Google Scholar
  61. Wyss, A. R., & Meng, J. (1997). Application of phylogenetic taxonomy to poorly resolved crown clades: a stem-modified node-based definition of Rodentia. Systematic Biology, 45, 559–568.Google Scholar

Copyright information

© Gesellschaft fuer Biologische Systematik 2010

Authors and Affiliations

  1. 1.Institute of Geology, Department of PalaeontologyFreiberg University of Mining and TechnologyFreibergGermany
  2. 2.Senckenberg Natural History Collections of Dresden, Museum of ZoologyDresdenGermany

Personalised recommendations