Networking Science

, Volume 3, Issue 1–4, pp 82–95 | Cite as

Path selection for quantum repeater networks

  • Rodney Van Meter
  • Takahiko Satoh
  • Thaddeus D. Ladd
  • William J. Munro
  • Kae Nemoto
Research Article


Quantum networks will support long-distance quantum key distribution (QKD) and distributed quantum computation, and are an active area of both experimental and theoretical research. Here, we present an analysis of topologically complex networks of quantum repeaters composed of heterogeneous links. Quantum networks have fundamental behavioral differences from classical networks; the delicacy of quantum states makes a practical path selection algorithm imperative, but classical notions of resource utilization are not directly applicable, rendering known path selection mechanisms inadequate. To adapt Dijkstra’s algorithm for quantum repeater networks that generate entangled Bell pairs, we quantify the key differences and define a link cost metric, seconds per Bell pair of a particular fidelity, where a single Bell pair is the resource consumed to perform one quantum teleportation. Simulations that include both the physical interactions and the extensive classical messaging confirm that Dijkstra’s algorithm works well in a quantum context. Simulating about three hundred heterogeneous paths, comparing our path cost and the total work along the path gives a coefficient of determination of 0.88 or better.


quantum communication quantum repeater Dijkstra path selection 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [1]
    E. W. Dijkstra, “A note on two problems in connexion with graphs,” Numerische Mathematik, vol. 1, no. 1, pp. 269–271, Dec. 1959.CrossRefMATHMathSciNetGoogle Scholar
  2. [2]
    C.-W. Chou, J. Laurat, H. Deng, K. S. Choi, H. de Riedmatten, D. Felinto, and H. J. Kimble, “Functional quantum nodes for entanglement distribution over scalable quantum networks,” Science, vol. 316, no. 5829, pp. 1316–1320, Jun. 2007.CrossRefGoogle Scholar
  3. [3]
    H. J. Kimble, “The quantum Internet,” Nature, vol. 453, no. 7198, pp. 1023–1030, Jun. 2008.CrossRefGoogle Scholar
  4. [4]
    R. Reichle, D. Leibfried, E. Knill, J. Britton, R. B. Blakestad, J. D. Jost, C. Langer, R. Ozeri, S. Seidelin, and D. J. Wineland, “Experimental purification of two-atom entanglement,” Nature, vol. 443, no. 7113, pp. 838–841, Aug. 2006.CrossRefGoogle Scholar
  5. [5]
    T. Tashima, T. Kitano, Ş. K. Özdemir, T. Yamamoto, M. Koashi, and N. Imoto, “Demonstration of local expansion toward large-scale entangled webs,” Phys. Rev. Lett., vol. 105, no. 21, pp. 210503, Nov. 2010.CrossRefGoogle Scholar
  6. [6]
    Z. Zhao, T. Yang, Y. A. Chen, A. N. Zhang, and J. W. Pan, “Experimental realization of entanglement concentration and a quantum repeater,” Phys. Rev. Lett., vol. 90, no. 20, pp. 207901, May 2003.CrossRefGoogle Scholar
  7. [7]
    C. H. Bennett, G. Brassard, C. Crépeau, R. Josza, A. Peres, and W. Wootters, “Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels,” Phys. Rev. Lett., vol. 70, no. 13, pp. 1895–1899, Mar. 1993.CrossRefMATHMathSciNetGoogle Scholar
  8. [8]
    H.-J. Briegel, W. Dür, J. I. Cirac, and P. Zoller, “Quantum repeaters: the role of imperfect local operations in quantum communication,” Phys. Rev. Lett., vol. 81, no. 26, pp. 5932–5935, Dec. 1998.CrossRefGoogle Scholar
  9. [9]
    S. Lloyd, J. H. Shapiro, F. N. C. Wong, P. Kumar, S. M. Shahriar, and H. P. Yuen, “Infrastructure for the quantum Internet,” ACM SIGCOMM Comput. Commun. Rev., vol. 34, no. 5, pp. 9–20, Oct. 2004.CrossRefGoogle Scholar
  10. [10]
    C. H. Bennett and G. Brassard, “Quantum cryptography: Public key distribution and coin tossing,” in Proc. IEEE Int. Conf. Computers, Systems, and Signal Processing, Bangalore, India, 1984, pp. 175–179.Google Scholar
  11. [11]
    D. Dodson, M. Fujiwara, P. Grangier, M. Hayashi, K. Imafuku, K. Kitayama, P. Kumar, C. Kurtsiefer, G. Lenhart, N. Luetkenhaus, et al. (2009). Updating Quantum Cryptography Report ver. 1. [Online]. Available: Scholar
  12. [12]
    H.-K. Lo and Y. Zhao, “Quantum cryptography,” in Encyclopedia of Complexity and System Science. New York: Springer, 2009, vol. 8, pp. 7265–7289.CrossRefGoogle Scholar
  13. [13]
    C. Elliott, D. Pearson, and G. Troxel, “Quantum cryptography in practice,” in Proc. Conf. Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM). New York: ACM, 2003, pp. 227–238.Google Scholar
  14. [14]
    A. Mink, S. Frankel, and R. Perlner, “Quantum key distribution (QKD) and commodity security protocols: Introduction and integration,” Int. J. Netw. Secur. Appl., vol. 1, no. 2, pp. 101–112, Jul. 2009.Google Scholar
  15. [15]
    S. Nagayama and R. Van Meter, “IKE for IPsec with QKD,” Internet Draft, draft-nagayama-ipsecme-ipsec-with-qkd-00; Oct. 2009, expired Apr. 22, 2010.Google Scholar
  16. [16]
    M Peev, C. Pacher, R. Alléaume, C. Barreiro, J. Bouda, W. Boxleitner, T. Debuisschert, E. Diamanti, M. Dianati, J. F. Dynes, et al. “The SECOQC quantum key distribution network in Vienna,” New J. Phys., vol. 11, no. 7, pp. 075001, Jul. 2009.CrossRefGoogle Scholar
  17. [17]
    T.-Y. Chen, J. Wang, H. Liang, W.-Y. Liu, Y. Liu, X. Jiang, Y. Wang, X. Wan, W.-Q. Cai, L. Ju, et al. “Metropolitan all-pass and inter-city quantum communication network,” Opt Express, vol. 18, no. 26, pp. 27217–27225, Dec. 2010.CrossRefGoogle Scholar
  18. [18]
    R. Alléaume, F. Roueff, E. Diamanti, and N. Lütkenhaus, “Topological optimization of quantum key distribution networks,” New J. Phys., vol. 11, no. 7, pp. 075002, Jul. 2009.CrossRefGoogle Scholar
  19. [19]
    A. K. Ekert, “Quantum cryptography based on Bell’s theorem,” Phys. Rev. Lett., vol. 67, no. 6, pp. 661–663, Aug. 1991.CrossRefMATHMathSciNetGoogle Scholar
  20. [20]
    M. Ben-Or and A. Hassidim, “Fast quantum Byzantine agreement,” in Proc. 37th Annu. ACM Symp. Theory Computing. New York: ACM, 2005, pp. 481–485.Google Scholar
  21. [21]
    H. Buhrman and H. Röhrig, “Distributed quantum computing,” in Mathematical Foundations of Computer Science 2003, B. Rovan, P. Vojtáš, Eds. Berlin: Springer, 2003, pp. 1–20.CrossRefGoogle Scholar
  22. [22]
    E. D’Hondt, “Distributed quantum computation: A measurement-based approach,” Ph.D. thesis, Vrije Universiteit Brussel, Belgium, 2005.Google Scholar
  23. [23]
    S. Tani, H. Kobayashi, and K. Matsumoto, “Exact quantum algorithms for the leader election problem,” in Proc. 22nd Annu. Symp. Theoretical Aspects Computer Science (STACS). Berlin: Springer, 2005, pp. 581–592.Google Scholar
  24. [24]
    W. Dür and H. J. Briegel, “Entanglement purification and quantum error correction,” Rep. Prog. Phys., vol. 70, no. 8, pp. 1381–1424, Aug. 2007.CrossRefGoogle Scholar
  25. [25]
    A. G. Fowler, D. S. Wang, C. D. Hill, T. D. Ladd, R. Van Meter, and L. C. L. Hollenberg, “Surface code quantum communication,” Phys. Rev. Lett., vol. 104, no. 18, pp. 180503, May 2010.CrossRefGoogle Scholar
  26. [26]
    L. Jiang, J. M. Taylor, K. Nemoto, W. J. Munro, R. Van Meter, and M. D. Lukin, “Quantum repeater with encoding,” Phys. Rev. A, vol. 79, no. 3, pp. 032325, Mar. 2009.CrossRefGoogle Scholar
  27. [27]
    W. J. Munro, K. A. Harrison, A. M. Stephens, S. J. Devitt, and K. Nemoto, “From quantum multiplexing to high-performance quantum networking,” Nat. Photonics, vol. 4, no. 11, pp. 792–796, Nov. 2010.CrossRefGoogle Scholar
  28. [28]
    S. Bratzik, S. Abruzzo, H. Kampermann, and D. Bruß, “Quantum repeaters and quantum key distribution: The impact of entanglement distillation on the secret key rate,” Phys. Rev. A, vol. 87, no. 6, pp. 062335, Jun. 2013.CrossRefGoogle Scholar
  29. [29]
    A. Basu and J. Riecke, “Stability issues in OSPF routing,” ACM SIGCOMM Comput. Commun. Rev., vol. 31, no. 4, pp. 225–236, Oct. 2001.CrossRefGoogle Scholar
  30. [30]
    R. Govindan and P. Radoslavov, “An analysis of the internal structure of large autonomous systems,” Technical Report 02-777, University of Southern California, USA, 2002.Google Scholar
  31. [31]
    J. Moy, “RFC 2178: OSPF version 2,” IETF, Jul. 1997.Google Scholar
  32. [32]
    C. Di Franco and D. Ballester, “Optimal path for a quantum teleportation protocol in entangled networks,” Phys. Rev. A, vol. 85, no. 1, pp. 010303, Jan. 2012.CrossRefGoogle Scholar
  33. [33]
    W. K. Wootters and W. H. Zurek, “A single quantum cannot be cloned,” Nature, vol. 299, no. 5886, p. 802, Oct. 1982.CrossRefGoogle Scholar
  34. [34]
    A. Fedrizzi, R. Ursin, T. Herbst, M. Nespoli, R. Prevedel, T. Scheidl, F. Tiefenbacher, T. Jennewein, and A. Zeilinger, “Highfidelity transmission of entanglement over a high-loss free-space channel,” Nat. Phys., vol. 5, no. 6, pp. 389–392, Jun. 2009.CrossRefGoogle Scholar
  35. [35]
    T. Scheidl, R. Ursin, A. Fedrizzi, S. Ramelow, X. S. Ma, T. Herbst, R. Prevedel, L. Ratschbacher, J. Kofler, T. Jennewein, and A. Zeilinger, “Feasibility of 300 km quantum key distribution with entangled states,” New J. Phys., vol. 11, no. 8, pp. 085002, Aug. 2009.CrossRefGoogle Scholar
  36. [36]
    P. Villoresi, T. Jennewein, F. Tamburini, M. Aspelmeyer, C. Bonato, R. Ursin, C. Pernechele, V. Luceri, G. Bianco, A. Zeilinger, and C. Barbieri, “Experimental verification of the feasibility of a quantum channel between Space and Earth,” New J. Phys., vol. 10, no. 3, pp. 033038, Mar. 2008.CrossRefGoogle Scholar
  37. [37]
    R. Van Meter, T. D. Ladd, W. J. Munro, and K. Nemoto, “System design for a long-line quantum repeater,” IEEE/ACM Trans. Netw., vol. 17, no. 3, pp. 1002–1013, Jun. 2009.CrossRefGoogle Scholar
  38. [38]
    J. D. Touch, Y. S. Wang, and V. Pingali, “A recursive network architecture,” ISI Technical Report ISI-TR-2006-626, Information Sciences Institute, The University of Southern California, USA, 2006.Google Scholar
  39. [39]
    D. Copsey, M. Oskin, T. Metodiev, F. T. Chong, I. Chuang, and J. Kubiatowicz, “The effect of communication costs in solid-state quantum computing architectures,” in Proc. 15th Annu. ACM Symp. Parallel Algorithms and Architectures. New York: ACM, 2003, pp. 65–74.Google Scholar
  40. [40]
    N. Isailovic, Y. Patel, M. Whitney, and J. Kubiatowicz, “Interconnection networks for scalable quantum computers,” in Proc. 33rd Annu. Int. Symp. Computer Architecture. Washington DC: IEEE, 2006, pp. 366–377.Google Scholar
  41. [41]
    T. S. Metodi, D. D. Thaker, A. W. Cross, I. L. Chuang, and F. T. Chong, “High-level interconnect model for the quantum logic array architecture,” ACM J. Emerg. Technol. Comput. Syst., vol. 4, no. 1, pp. 1–28, Mar. 2008.CrossRefGoogle Scholar
  42. [42]
    M. Oskin, F. T. Chong, I. L. Chuang, and J. Kubiatowicz, “Building quantum wires: The long and short of it,” in Proc. 30th Annu. Int. Symp. Computer Architecture. New York: ACM, 2003, pp. 374–387.Google Scholar
  43. [43]
    R. Van Meter, T. D. Ladd, A. G. Fowler, and Y. Yamamoto, “Distributed quantum computation architecture using semicon ductor nanophotonics,” Int. J. Quantum Inf., vol. 8, nos. 1–2, pp. 295–323, Feb.&Mar. 2010.CrossRefGoogle Scholar
  44. [44]
    A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot, “Traffic matrix estimation: Existing techniques and new directions,” ACM SIGCOMM Comput. Commun. Rev., vol. 32, no. 4, pp. 161–174, Oct. 2002.CrossRefGoogle Scholar
  45. [45]
    T. D. Ladd, P. van Loock, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater based on dispersive CQED interaction between matter qubits and bright coherent light,” New J. Phys., vol. 8, no. 9, pp. 184, Sept. 2006.CrossRefGoogle Scholar
  46. [46]
    P. van Loock, T. D. Ladd, K. Sanaka, F. Yamaguchi, K. Nemoto, W. J. Munro, and Y. Yamamoto, “Hybrid quantum repeater using bright coherent light,” Phys. Rev. Lett., vol. 96, no. 24, pp. 240501, Jun. 2006.CrossRefGoogle Scholar
  47. [47]
    L. Childress, J. M. Taylor, A. S. Sørensen, and M. D. Lukin, “Faulttolerant quantum communication based on solid-state photon emitters,” Phys. Rev. Lett., vol. 96, no. 7, pp. 070504, Feb. 2006.CrossRefGoogle Scholar
  48. [48]
    W. J. Munro, R. Van Meter, S. G. R. Louis, and K. Nemoto, “High-bandwidth hybrid quantum repeater,” Phys. Rev. Lett., vol. 101, no. 4, pp. 040502, Jul. 2008.CrossRefGoogle Scholar
  49. [49]
    J. Dehaene, M. Van den Nest, B. DeMoor, and F. Verstraete, “Local permutations of products of Bell states and entanglement distillation,” Phys. Rev. A, vol. 67, no. 2, pp. 022310, Feb. 2003.CrossRefGoogle Scholar
  50. [50]
    L. Jiang, J. M. Taylor, and M. D. Lukin, “Fast and robust approach to long-distance quantum communication with atomic ensembles,” Phys. Rev. A, vol. 76, no. 1, pp. 012301, Jul. 2007.CrossRefGoogle Scholar
  51. [51]
    L. Hartmann, B. Kraus, H.-J. Briegel, and W. Dür, “On the role of memory errors in quantum repeaters,” Phys. Rev. A, vol. 75, no. 3, pp. 032310, Mar. 2007.CrossRefGoogle Scholar

Copyright information

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Rodney Van Meter
    • 1
  • Takahiko Satoh
    • 2
  • Thaddeus D. Ladd
    • 3
    • 4
  • William J. Munro
    • 5
  • Kae Nemoto
    • 4
  1. 1.Faculty of Environment and Information StudiesKeio UniversityFujisawaJapan
  2. 2.The University of TokyoTokyoJapan
  3. 3.Stanford UniversityPalo AltoUSA
  4. 4.National Institute of InformaticsTokyoJapan
  5. 5.NTT Basic Research LabsAtsugiJapan

Personalised recommendations