Skip to main content

Advertisement

Log in

Impact of adipokines and myokines on fat browning

  • Original Article
  • Published:
Journal of Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Since the discovery of leptin in 1994, the adipose tissue (AT) is not just considered a passive fat storage organ but also an extremely active secretory and endocrine organ that secretes a large variety of hormones, called adipokines, involved in energy metabolism. Adipokines may not only contribute to AT dysfunction and obesity, but also in fat browning, a process that induces a phenotypic switch from energy-storing white adipocytes to thermogenic brown fat–like cells. The fat browning process and, consequently, thermogenesis can also be stimulated by physical exercise. Contracting skeletal muscle is a metabolically active tissue that participates in several endocrine functions through the production of bioactive factors, collectively termed myokines, proposed as the mediators of physical activity–induced health benefits. Myokines affect muscle mass, have profound effects on glucose and lipid metabolism, and promote browning and thermogenesis of white AT in an endocrine and/or paracrine manner. The present review focuses on the role of different myokines and adipokines in the regulation of fat browning, as well as in the potential cross-talk between AT and skeletal muscle, in order to control body weight, energy expenditure and thermogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

AgRP:

Agouti gene–related protein

ARC:

Arcuate nucleus

AT:

Adipose tissue

BAT:

Brown adipose tissue

CART:

Cocaine-amphetamine-regulated-transcript

CK:

Cytokine

CNS:

Central nervous system

MSC:

Mesenchymal stem cells

MSTN:

Myostatin

NPY:

Neuropeptide Y

PDGFR-α:

Platelet-derived growth factor receptor α

Pgc-1α:

Peroxisome proliferator–activated receptor γ coactivator-1 α

PKA:

Protein kinase A

POMC:

Proopiomelanocortin

Ppar-γ:

Peroxisome proliferator–activated receptor-γ

PRDM16:

PR domain-containing 16

PVN:

Paraventricular nucleus

Tnf-α:

Tumour necrosis factor-α

Ucp-1:

Uncoupling protein 1

VTA:

Ventral tegmental area

WAT:

White adipose tissue

References

  1. Ahima RS, Flier JS (2000) Adipose tissue as an endocrine organ. Trends Endocrinol Metab 11:327–332

    Article  CAS  PubMed  Google Scholar 

  2. Becerril S, Rodríguez A, Catalán V, Sáinz N, Ramírez B, Gómez-Ambrosi J, Frühbeck G (2012) Transcriptional analysis of brown adipose tissue in leptin-deficient mice lacking inducible nitric oxide synthase: evidence of the role of Med1 in energy balance. Physiol Genomics 44:678–688

    Article  CAS  PubMed  Google Scholar 

  3. Becerril S, Gómez-Ambrosi J, Martín M, Moncada R, Sesma P, Burrell MA, Frühbeck G (2013) Role of PRDM16 in the activation of brown fat programming. Relevance to the development of obesity. Histol Histopathol 28:1411–1425

    CAS  PubMed  Google Scholar 

  4. Becerril S, Rodríguez A, Catalán V et al (2019) iNOS gene ablation prevents liver fibrosis in leptin-deficient ob/ob mice. Genes 10(3). https://doi.org/10.3390/genes10030184

  5. Benkhoff S, Loot AE, Pierson I et al (2012) Leptin potentiates endothelium-dependent relaxation by inducing endothelial expression of neuronal NO synthase. Arterioscler Thromb Vasc Biol 32:1605–1612

    Article  CAS  PubMed  Google Scholar 

  6. Bing C, Bao Y, Jenkins J, Sanders P, Manieri M, Cinti S, Tisdale MJ, Trayhurn P (2004) Zinc-α 2-glycoprotein, a lipid mobilizing factor, is expressed in adipocytes and is up-regulated in mice with cancer cachexia. Proc Natl Acad Sci U S A 101:2500–2505

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bogdan C (2001) Nitric oxide and the immune response. Nat Immunol 2:907–916

    Article  CAS  PubMed  Google Scholar 

  8. Bookout AL, de Groot MH, Owen BM, Lee S, Gautron L, Lawrence HL, Ding X, Elmquist JK, Takahashi JS, Mangelsdorf DJ, Kliewer SA (2013) FGF21 regulates metabolism and circadian behavior by acting on the nervous system. Nat Med 19:1147–1152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Boon MR, van den Berg SA, Wang Y et al (2013) BMP7 activates brown adipose tissue and reduces diet-induced obesity only at subthermoneutrality. PLoS One 8:e74083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Böstrom PA, Fernández-Real JM (2014) Metabolism: irisin, the metabolic syndrome and follistatin in humans. Nat Rev Endocrinol 10:11–12

    Article  PubMed  CAS  Google Scholar 

  11. Böstrom P, Wu J, Jedrychowski MP et al (2012) A PGC1-α-dependent myokine that drives brown-fat-like development of white fat and thermogenesis. Nature 481:463–468

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Bouloumie A, Marumo T, Lafontan M, Busse R (1999) Leptin induces oxidative stress in human endothelial cells. FASEB J 13:1231–1238

    Article  CAS  PubMed  Google Scholar 

  13. Braga M, Reddy ST, Vergnes L, Pervin S, Grijalva V, Stout D, David J, Li X, Tomasian V, Reid CB, Norris KC, Devaskar SU, Reue K, Singh R (2014) Follistatin promotes adipocyte differentiation, browning, and energy metabolism. J Lipid Res 55:375–384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bredt DS, Snyder SH (1994) Nitric-oxide - a physiological messenger molecule. Annu Rev Biochem 63:175–195

    Article  CAS  PubMed  Google Scholar 

  15. Buford TW, Cooke MB, Willoughby DS (2009) Resistance exercise-induced changes of inflammatory gene expression within human skeletal muscle. Eur J Appl Physiol 107:463–471

    Article  CAS  PubMed  Google Scholar 

  16. Burysek L, Houstek J (1997) β-Adrenergic stimulation of interleukin-1α and interleukin-6 expression in mouse brown adipocytes. FEBS Lett 411:83–86

    Article  CAS  PubMed  Google Scholar 

  17. Carrière A, Jeanson Y, Berger-Müller S, André M, Chenouard V, Arnaud E, Barreau C, Walther R, Galinier A, Wdziekonski B, Villageois P, Louche K, Collas P, Moro C, Dani C, Villarroya F, Casteilla L (2014) Browning of white adipose cells by intermediate metabolites: an adaptive mechanism to alleviate redox pressure. Diabetes 63:3253–3265

    Article  PubMed  CAS  Google Scholar 

  18. Catalán V, Gómez-Ambrosi J, Rodríguez A, Silva C, Rotellar F, Gil MJ, Cienfuegos JA, Salvador J, Frühbeck G (2008) Expression of caveolin-1 in human adipose tissue is upregulated in obesity and obesity-associated type 2 diabetes mellitus and related to inflammation. Clin Endocrinol 68:213–219

    Google Scholar 

  19. Catalán V, Gómez-Ambrosi J, Rodríguez A, Frühbeck G (2013) Adipose tissue immunity and cancer. Front Physiol 4:275

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cederberg A, Gronning LM, Ahren B, Tasken K, Carlsson P, Enerback S (2001) FOXC2 is a winged helix gene that counteracts obesity, hypertriglyceridemia, and diet-induced insulin resistance. Cell 106:563–573

    Article  CAS  PubMed  Google Scholar 

  21. Cereijo R, Gavalda-Navarro A, Cairo M et al (2018) CXCL14, a brown adipokine that mediates brown-fat-to-macrophage communication in thermogenic adaptation. Cell Metab 28(750–763):e756

    Google Scholar 

  22. Chan M, Lim YC, Yang J, Namwanje M, Liu L, Qiang L (2019) Identification of a natural beige adipose depot in mice. J Biol Chem 294:6751–6761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chartoumpekis DV, Habeos IG, Ziros PG, Psyrogiannis AI, Kyriazopoulou VE, Papavassiliou AG (2011) Brown adipose tissue responds to cold and adrenergic stimulation by induction of FGF21. Mol Med 17:736–740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chatterjee S, Ganini D, Tokar EJ, Kumar A, Das S, Corbett J, Kadiiska MB, Waalkes MP, Diehl AM, Mason RP (2013) Leptin is key to peroxynitrite-mediated oxidative stress and Kupffer cell activation in experimental non-alcoholic steatohepatitis. J Hepatol 58:778–784

    Article  CAS  PubMed  Google Scholar 

  25. Chen Y, Ikeda K, Yoneshiro T, Scaramozza A, Tajima K, Wang Q, Kim K, Shinoda K, Sponton CH, Brown Z, Brack A, Kajimura S (2019) Thermal stress induces glycolytic beige fat formation via a myogenic state. Nature 565:180–185

    Article  CAS  PubMed  Google Scholar 

  26. Cinti S (2000) Anatomy of the adipose organ. Eat Weight Disord 5:132–142

    Article  CAS  PubMed  Google Scholar 

  27. Cypess AM, Weiner LS, Roberts-Toler C, Franquet Elía E, Kessler SH, Kahn PA, English J, Chatman K, Trauger SA, Doria A, Kolodny GM (2015) Activation of human brown adipose tissue by a β3-adrenergic receptor agonist. Cell Metab 21:33–38

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dodd GT, Decherf S, Loh K, Simonds SE, Wiede F, Balland E, Merry TL, Münzberg H, Zhang ZY, Kahn BB, Neel BG, Bence KK, Andrews ZB, Cowley MA, Tiganis T (2015) Leptin and insulin act on POMC neurons to promote the browning of white fat. Cell 160:88–104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Douris N, Stevanovic DM, Fisher FM, Cisu TI, Chee MJ, Nguyen NL, Zarebidaki E, Adams AC, Kharitonenkov A, Flier JS, Bartness TJ, Maratos-Flier E (2015) Central fibroblast growth factor 21 browns white fat via sympathetic action in male mice. Endocrinology 156:2470–2481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Eaton M, Granata C, Barry J, Safdar A, Bishop D, Little JP (2018) Impact of a single bout of high-intensity interval exercise and short-term interval training on interleukin-6, FNDC5, and METRNL mRNA expression in human skeletal muscle. J Sport Health Sci 7:191–196

    Article  PubMed  Google Scholar 

  31. Eckel RH, Krauss RM, Comm AN (1998) American Heart Association call to action: obesity as a major risk factor for coronary heart disease. Circulation 97:2099–2100

    Article  CAS  PubMed  Google Scholar 

  32. Esmaili S, Xu A, George J (2014) The multifaceted and controversial immunometabolic actions of adiponectin. Trends Endocrinol Metab 25:444–451

    Article  CAS  PubMed  Google Scholar 

  33. Ferioli M, Zauli G, Maiorano P, Milani D, Mirandola P, Neri LM (2019) Role of physical exercise in the regulation of epigenetic mechanisms in inflammation, cancer, neurodegenerative diseases, and aging process. J Cell Physiol 14. https://doi.org/10.1002/jcp.28304

  34. Fischer K, Ruiz HH, Jhun K, Finan B, Oberlin DJ, van der Heide V, Kalinovich AV, Petrovic N, Wolf Y, Clemmensen C, Shin AC, Divanovic S, Brombacher F, Glasmacher E, Keipert S, Jastroch M, Nagler J, Schramm KW, Medrikova D, Collden G, Woods SC, Herzig S, Homann D, Jung S, Nedergaard J, Cannon B, Tschöp MH, Müller TD, Buettner C (2017) Alternatively activated macrophages do not synthesize catecholamines or contribute to adipose tissue adaptive thermogenesis. Nat Med 23:623–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Fisher FM, Kleiner S, Douris N, Fox EC, Mepani RJ, Verdeguer F, Wu J, Kharitonenkov A, Flier JS, Maratos-Flier E, Spiegelman BM (2012) FGF21 regulates PGC-1α and browning of white adipose tissues in adaptive thermogenesis. Genes Dev 26:271–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Fortuno A, Rodriguez A, Gomez-Ambrosi J, Fruhbeck G, Diez J (2003) Adipose tissue as an endocrine organ: role of leptin and adiponectin in the pathogenesis of cardiovascular diseases. J Physiol Biochem 59:51–60

    Article  CAS  PubMed  Google Scholar 

  37. Frederich RC, Hamann A, Anderson S, Lollmann B, Lowell BB, Flier JS (1995) Leptin levels reflect body lipid content in mice: evidence for diet-induced resistance to leptin action. Nat Med 1:1311–1314

    Article  CAS  PubMed  Google Scholar 

  38. Friedman JM, Mantzoros CS (2015) 20 years of leptin: from the discovery of the leptin gene to leptin in our therapeutic armamentarium. Metabolism 64:1–4

    Article  CAS  PubMed  Google Scholar 

  39. Frühbeck G (2005) Obesity: aquaporin enters the picture. Nature 438:436–437

    Article  PubMed  CAS  Google Scholar 

  40. Frühbeck G (2006) Intracellular signalling pathways activated by leptin. Biochem J 393:7–20

    Article  PubMed  CAS  Google Scholar 

  41. Frühbeck G, Gómez-Ambrosi J (2001) Rationale for the existence of additional adipostatic hormones. FASEB J 15:1996–2006

    Article  PubMed  Google Scholar 

  42. Frühbeck G, Gómez-Ambrosi J (2001) Modulation of the leptin-induced white adipose tissue lipolysis by nitric oxide. Cell Signal 13:827–833

    Article  PubMed  Google Scholar 

  43. Frühbeck G, Jebb SA, Prentice AM (1998) Leptin: physiology and pathophysiology. Clin Physiol 18:399–419

    Article  PubMed  Google Scholar 

  44. Frühbeck G, Gómez-Ambrosi J, Salvador J (2001) Leptin-induced lipolysis opposes the tonic inhibition of endogenous adenosine in white adipocytes. FASEB J 15:333–340

    Article  PubMed  Google Scholar 

  45. Frühbeck G, Gómez-Ambrosi J, Muruzábal FJ, Burrell MA (2001) The adipocyte: a model for integration of endocrine and metabolic signaling in energy metabolism regulation. Am J Physiol Endocrinol Metab 280:E827–E847

    Article  PubMed  Google Scholar 

  46. Frühbeck G, Becerril S, Sáinz N, Garrastachu P, Garcia-Velloso MJ (2009) BAT: a new target for human obesity? Trends Pharmacol Sci 30:387–396

    Article  PubMed  CAS  Google Scholar 

  47. Frühbeck G, Toplak H, Woodward E, Yumuk V, Maislos M, Oppert JM (2013) Obesity: the gateway to ill health - an EASO position statement on a rising public health, clinical and scientific challenge in Europe. Obes Facts 6:117–120

    Article  PubMed  PubMed Central  Google Scholar 

  48. Frühbeck G, Méndez-Gimenez L, Fernández-Formoso JA, Fernández S, Rodríguez A (2014) Regulation of adipocyte lipolysis. Nutr Res Rev 27:63–93

    Article  PubMed  CAS  Google Scholar 

  49. Frühbeck G, Kiortsis DN, Catalán V (2018) Precision medicine: diagnosis and management of obesity. Lancet Diabetes Endocrinol 6:164–166

    Article  PubMed  Google Scholar 

  50. Fukunaka A, Fukada T, Bhin J et al (2017) Zinc transporter ZIP13 suppresses beige adipocyte biogenesis and energy expenditure by regulating C/EBP-beta expression. PLoS Genet 13:e1006950

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Gan L, Liu Z, Feng F, Wu T, Luo D, Hu C, Sun C (2018) Foxc2 coordinates inflammation and browning of white adipose by leptin-STAT3-PRDM16 signal in mice. Int J Obes 42:252–259

    Article  CAS  Google Scholar 

  52. Gao ZG, Daquinag AC, Su F, Snyder B, Kolonin MG (2018) PDGFRα/PDGFRβ signaling balance modulates progenitor cell differentiation into white and beige adipocytes. Development 145(1). https://doi.org/10.1242/dev.155861

  53. García-Alonso V, Claria J (2014) Prostaglandin E2 signals white-to-brown adipogenic differentiation. Adipocyte 3:290–296

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Garonna E, Botham KM, Birdsey GM, Randi AM, Gonzalez-Perez RR, Wheeler-Jones CPD (2011) Vascular endothelial growth factor receptor-2 couples cyclo-oxygenase-2 with pro-angiogenic actions of leptin on human endothelial cells. PLoS One 6(4):e18823

  55. Gleeson M (2000) Interleukins and exercise. J Physiol 529(Pt 1):1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Gómez-Ambrosi J, Salvador J, Rotellar F et al (2006) Increased serum amyloid a concentrations in morbid obesity decrease after gastric bypass. Obes Surg 16:262–269

    Article  PubMed  Google Scholar 

  57. Gómez-Ambrosi J, Catalán V, Rodríguez A, Andrada P, Ramírez B, Ibáñez P, Vila N, Romero S, Margall MA, Gil MJ, Moncada R, Valentí V, Silva C, Salvador J, Frühbeck G (2014) Increased cardiometabolic risk factors and inflammation in adipose tissue in obese subjects classified as metabolically healthy. Diabetes Care 37:2813–2821

    Article  PubMed  CAS  Google Scholar 

  58. Gomez-Ambrosi J, Catalan V, Rodriguez A, Salvador J, Fruhbeck G (2015) Does body adiposity better predict obesity-associated cardiometabolic risk than body mass index? J Am Coll Cardiol 65:632–633

    Article  PubMed  Google Scholar 

  59. Gómez-Ambrosi J, Gallego-Escuredo JM, Catalán V, Rodríguez A, Domingo P, Moncada R, Valentí V, Salvador J, Giralt M, Villarroya F, Frühbeck G (2017) FGF19 and FGF21 serum concentrations in human obesity and type 2 diabetes behave differently after diet- or surgically-induced weight loss. Clin Nutr 36:861–868

    Article  PubMed  CAS  Google Scholar 

  60. Harms MJ, Lim HW, Ho Y, Shapira SN, Ishibashi J, Rajakumari S, Steger DJ, Lazar MA, Won KJ, Seale P (2015) PRDM16 binds MED1 and controls chromatin architecture to determine a brown fat transcriptional program. Genes Dev 29:298–307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Harvey J, Ashford ML (2003) Leptin in the CNS: much more than a satiety signal. Neuropharmacology 44:845–854

    Article  CAS  PubMed  Google Scholar 

  62. Himms-Hagen J, Melnyk A, Zingaretti MC, Ceresi E, Barbatelli G, Cinti S (2000) Multilocular fat cells in WAT of CL-316243-treated rats derive directly from white adipocytes. Am J Physiol Cell Physiol 279:C670–C681

    Article  CAS  PubMed  Google Scholar 

  63. Hondares E, Rosell M, Díaz-Delfín J, Olmos Y, Monsalve M, Iglesias R, Villarroya F, Giralt M (2011) Peroxisome proliferator-activated receptor α (PPARα) induces PPARγ coactivator 1α (PGC-1α) gene expression and contributes to thermogenic activation of brown fat: involvement of PRDM16. J Biol Chem 286:43112–43122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Hui X, Gu P, Zhang J, Nie T, Pan Y, Wu D, Feng T, Zhong C, Wang Y, Lam KS, Xu A (2015) Adiponectin enhances cold-induced browning of subcutaneous adipose tissue via promoting M2 macrophage proliferation. Cell Metab 22:279–290

    Article  CAS  PubMed  Google Scholar 

  65. Iida S, Chen W, Nakadai T, Ohkuma Y, Roeder RG (2015) PRDM16 enhances nuclear receptor-dependent transcription of the brown fat-specific Ucp1 gene through interactions with Mediator subunit MED1. Genes Dev 29:308–321

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Izumiya Y, Bina HA, Ouchi N, Akasaki Y, Kharitonenkov A, Walsh K (2008) FGF21 is an Akt-regulated myokine. FEBS Lett 582:3805–3810

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Jeanson Y, Ribas F, Galinier A et al (2016) Lactate induces FGF21 expression in adipocytes through a p38-MAPK pathway. Biochem J 473:685–692

    Article  CAS  PubMed  Google Scholar 

  68. Kanzleiter T, Rath M, Gorgens SW et al (2014) The myokine decorin is regulated by contraction and involved in muscle hypertrophy. Biochem Biophys Res Commun 450:1089–1094

    Article  CAS  PubMed  Google Scholar 

  69. Karamanlidis G, Karamitri A, Docherty K, Hazlerigg DG, Lomax MA (2007) C/EBPβ reprograms white 3T3-L1 preadipocytes to a Brown adipocyte pattern of gene expression. J Biol Chem 282:24660–24669

    Article  CAS  PubMed  Google Scholar 

  70. Keipert S, Ost M, Johann K et al (2014) Skeletal muscle mitochondrial uncoupling drives endocrine cross-talk through the induction of FGF21 as a myokine. Am J Physiol Endocrinol Metab 306:E469–E482

    Article  CAS  PubMed  Google Scholar 

  71. Kharitonenkov A, Shiyanova TL, Koester A, Ford AM, Micanovic R, Galbreath EJ, Sandusky GE, Hammond LJ, Moyers JS, Owens RA, Gromada J, Brozinick JT, Hawkins ED, Wroblewski VJ, Li DS, Mehrbod F, Jaskunas SR, Shanafelt AB (2005) FGF-21 as a novel metabolic regulator. J Clin Invest 115:1627–1635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kiefer FW, Vernochet C, O'Brien P, Spoerl S, Brown JD, Nallamshetty S, Zeyda M, Stulnig TM, Cohen DE, Kahn CR, Plutzky J (2012) Retinaldehyde dehydrogenase 1 regulates a thermogenic program in white adipose tissue. Nat Med 18:918–925

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Kim H, Wrann CD, Jedrychowski M et al (2018) Irisin mediates effects on bone and fat via αV integrin receptors. Cell 175(1756–1768):e1717

    Google Scholar 

  74. Klepac K, Kilic A, Gnad T et al (2016) The Gq signalling pathway inhibits brown and beige adipose tissue. Nat Commun 7:10895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Knudsen JG, Murholm M, Carey AL et al (2014) Role of IL-6 in exercise training- and cold-induced UCP1 expression in subcutaneous white adipose tissue. PLoS One 9:e84910

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Kolb H, Kolb-Bachofen V (1998) Nitric oxide in autoimmune disease: cytotoxic or regulatory mediator? Immunol Today 19:556–561

    Article  CAS  PubMed  Google Scholar 

  77. Kristiansen OP, Mandrup-Poulsen T (2005) Interleukin-6 and diabetes: the good, the bad, or the indifferent? Diabetes 54(Suppl 2):S114–S124

    Article  CAS  PubMed  Google Scholar 

  78. Kristóf E, Klusóczki A, Veress R, Shaw A, Combi ZS, Varga K, Győry F, Balajthy Z, Bai P, Bacso Z, Fésüs L (2019) Interleukin-6 released from differentiating human beige adipocytes improves browning. Exp Cell Res 377:47–55

    Article  PubMed  CAS  Google Scholar 

  79. Lam QLK, Liu SX, Cao XT, Lu LW (2006) Involvement of leptin signaling in the survival and maturation of bone marrow-derived dendritic cells. Eur J Immunol 36:3118–3130

    Article  CAS  PubMed  Google Scholar 

  80. Lampiao F, du Plessis SS (2008) Insulin and leptin enhance human sperm motility, acrosome reaction and nitric oxide production. Asian J Androl 10:799–807

    Article  CAS  PubMed  Google Scholar 

  81. Lancha A, Frühbeck G, Gómez-Ambrosi J (2012) Peripheral signalling involved in energy homeostasis control. Nutr Res Rev 25:223–248

    Article  CAS  PubMed  Google Scholar 

  82. Lawler HM, Underkofler CM, Kern PA, Erickson C, Bredbeck B, Rasouli N (2016) Adipose tissue hypoxia, inflammation, and fibrosis in obese insulin-sensitive and obese insulin-resistant subjects. J Clin Endocrinol Metab 101:1422–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Leverve XM, Mustafa I (2002) Lactate: a key metabolite in the intercellular metabolic interplay. Crit Care 6:284–285

    Article  PubMed  PubMed Central  Google Scholar 

  84. Liu M, Zhu H, Dai Y et al (2018) Zinc-α2-glycoprotein is associated with obesity in Chinese people and HFD-induced obese mice. Front Physiol 9:62

    Article  PubMed  PubMed Central  Google Scholar 

  85. Loft A, Forss I, Siersbaek MS et al (2015) Browning of human adipocytes requires KLF11 and reprogramming of PPARγ superenhancers. Genes Dev 29:7–22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Long JZ, Svensson KJ, Tsai L, Zeng X, Roh HC, Kong X, Rao RR, Lou J, Lokurkar I, Baur W, Castellot JJ Jr, Rosen ED, Spiegelman BM (2014) A smooth muscle-like origin for beige adipocytes. Cell Metab 19:810–820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Martins L, Seoane-Collazo P, Contreras C, González-García I, Martínez-Sánchez N, González F, Zalvide J, Gallego R, Diéguez C, Nogueiras R, Tena-Sempere M, López M (2016) A functional link between AMPK and orexin mediates the effect of BMP8B on energy balance. Cell Rep 16:2231–2242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Matzuk MM, Lu N, Vogel H, Sellheyer K, Roop DR, Bradley A (1995) Multiple defects and perinatal death in mice deficient in follistatin. Nature 374:360–363

    Article  CAS  PubMed  Google Scholar 

  89. McCann SM, Mastronardi C, Waiczewska A, Karanth S, Rettori V, Yu WH (2003) The role of nitric oxide (NO) in control of LHRH release that mediates gonadotropin release and sexual behavior. Curr Pharm Des 9:381–390

    Article  CAS  PubMed  Google Scholar 

  90. McPherron AC, Lee SJ (2002) Suppression of body fat accumulation in myostatin-deficient mice. J Clin Invest 109:595–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Mendez-Gimenez L, Becerril S, Moncada R et al (2015) Sleeve gastrectomy reduces hepatic Steatosis by improving the coordinated regulation of aquaglyceroporins in adipose tissue and liver in obese rats. Obes Surg 25:1723–1734

    Article  PubMed  Google Scholar 

  92. Mills EL, Pierce KA, Jedrychowski MP et al (2018) Accumulation of succinate controls activation of adipose tissue thermogenesis. Nature 560:102–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Moreno-Navarrete JM, Ortega F, Serrano M et al (2013) Irisin is expressed and produced by human muscle and adipose tissue in association with obesity and insulin resistance. J Clin Endocrinol Metab 98:E769–E778

    Article  CAS  PubMed  Google Scholar 

  94. Mracek T, Ding Q, Tzanavari T, Kos K, Pinkney J, Wilding J, Trayhurn P, Bing C (2010) The adipokine zinc-α2-glycoprotein (ZAG) is downregulated with fat mass expansion in obesity. Clin Endocrinol 72:334–341

    Article  CAS  Google Scholar 

  95. Muruzábal FJ, Frühbeck G, Gómez-Ambrosi J, Archanco M, Burrell MA (2002) Immunocytochemical detection of leptin in non-mammalian vertebrate stomach. Gen Comp Endocrinol 128:149–152

    Article  PubMed  CAS  Google Scholar 

  96. Myers MG, Cowley MA, Munzberg H (2008) Mechanisms of leptin action and leptin resistance. Annu Rev Physiol 70:537–556

    Article  CAS  PubMed  Google Scholar 

  97. Nedergaard J, Bengtsson T, Cannon B (2007) Unexpected evidence for active brown adipose tissue in adult humans. Am J Physiol Endocrinol Metab 293:E444–E452

    Article  CAS  PubMed  Google Scholar 

  98. Nguyen KD, Qiu Y, Cui X, Goh YP, Mwangi J, David T, Mukundan L, Brombacher F, Locksley RM, Chawla A (2011) Alternatively activated macrophages produce catecholamines to sustain adaptive thermogenesis. Nature 480:104–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Norheim F, Raastad T, Thiede B, Rustan AC, Drevon CA, Haugen F (2011) Proteomic identification of secreted proteins from human skeletal muscle cells and expression in response to strength training. Am J Physiol Endocrinol Metab 301:E1013–E1021

    Article  CAS  PubMed  Google Scholar 

  100. Ohno H, Shinoda K, Spiegelman BM, Kajimura S (2012) PPARγ agonists induce a white-to-brown fat conversion through stabilization of PRDM16 protein. Cell Metab 15:395–404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Okla M, Ha JH, Temel RE, Chung S (2015) BMP7 drives human adipogenic stem cells into metabolically active beige adipocytes. Lipids 50:111–120

    Article  CAS  PubMed  Google Scholar 

  102. Papapetropoulos A, Garcia-Cardena G, Madri JA, Sessa WC (1997) Nitric oxide production contributes to the angiogenic properties of vascular endothelial growth factor in human endothelial cells. J Clin Investig 100:3131–3139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Pedersen BK, Febbraio MA (2012) Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol 8:457–465

    Article  CAS  PubMed  Google Scholar 

  104. Petrovic N, Walden TB, Shabalina IG, Timmons JA, Cannon B, Nedergaard J (2010) Chronic peroxisome proliferator-activated receptor gamma (PPARγ) activation of epididymally derived white adipocyte cultures reveals a population of thermogenically competent, UCP1-containing adipocytes molecularly distinct from classic brown adipocytes. J Biol Chem 285:7153–7164

    Article  CAS  PubMed  Google Scholar 

  105. Plum L, Rother E, Munzberg H et al (2007) Enhanced leptin-stimulated PI3K activation in the CNS promotes white adipose tissue transdifferentiation. Cell Metab 6:431–445

    Article  CAS  PubMed  Google Scholar 

  106. Pourteymour S, Eckardt K, Holen T, Langleite T, Lee S, Jensen J, Birkeland KI, Drevon CA, Hjorth M (2017) Global mRNA sequencing of human skeletal muscle: search for novel exercise-regulated myokines. Mol Metab 6:352–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Puigserver P, Wu Z, Park CW, Graves R, Wright M, Spiegelman BM (1998) A cold-inducible coactivator of nuclear receptors linked to adaptive thermogenesis. Cell 92:829–839

    Article  CAS  PubMed  Google Scholar 

  108. Qian SW, Wu MY, Wang YN, Zhao YX, Zou Y, Pan JB, Tang Y, Liu Y, Guo L, Tang QQ (2019) BMP4 facilitates beige fat biogenesis via regulating adipose tissue macrophages. J Mol Cell Biol 11:14–25

    Article  CAS  PubMed  Google Scholar 

  109. Qiang L, Wang L, Kon N, Zhao W, Lee S, Zhang Y, Rosenbaum M, Zhao Y, Gu W, Farmer SR, Accili D (2012) Brown remodeling of white adipose tissue by SirT1-dependent deacetylation of Pparγ. Cell 150:620–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Rao RR, Long JZ, White JP, Svensson KJ, Lou J, Lokurkar I, Jedrychowski MP, Ruas JL, Wrann CD, Lo JC, Camera DM, Lachey J, Gygi S, Seehra J, Hawley JA, Spiegelman BM (2014) Meteorin-like is a hormone that regulates immune-adipose interactions to increase beige fat thermogenesis. Cell 157:1279–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Reynoso R, Cardoso N, Szwarcfarb B, Carbone S, Ponzo O, Moguilevsky JA, Scacchi P (2007) Nitric oxide synthase inhibition prevents leptin induced Gn-RH release in prepubertal and peripubertal female rats. Exp Clin Endocrinol Diabetes 115:423–427

    Article  CAS  PubMed  Google Scholar 

  112. Ridnour LA, Isenberg JS, Espey MG, Thomas DD, Roberts DD, Wink DA (2005) Nitric oxide regulates angiogenesis through a functional switch involving thrombospondin-1. Proc Natl Acad Sci U S A 102:13147–13152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Roca-Rivada A, Castelao C, Senin LL et al (2013) FNDC5/irisin is not only a myokine but also an adipokine. PLoS One 8:e60563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Rocha-Rodrigues S, Rodríguez A, Gouveia AM et al (2016) Effects of physical exercise on myokines expression and brown adipose-like phenotype modulation in rats fed a high-fat diet. Life Sci 165:100–108

    Article  CAS  PubMed  Google Scholar 

  115. Rodríguez A, Catalán V, Gómez-Ambrosi J, Frühbeck G (2007) Visceral and subcutaneous adiposity: are both potential therapeutic targets for tackling the metabolic syndrome? Curr Pharm Des 13:2169–2175

    Article  PubMed  Google Scholar 

  116. Rodríguez A, Gómez-Ambrosi J, Catalán V, Fortuño A, Frühbeck G (2010) Leptin inhibits the proliferation of vascular smooth muscle cells induced by angiotensin II through nitric oxide-dependent mechanisms. Mediat Inflamm 2010:105489

  117. Rodríguez A, Becerril S, Ezquerro S, Méndez-Giménez L, Frühbeck G (2017) Crosstalk between adipokines and myokines in fat browning. Acta Physiol (Oxf) 219:362–381

    Article  CAS  Google Scholar 

  118. Rosenwald M, Perdikari A, Rulicke T, Wolfrum C (2013) Bi-directional interconversion of brite and white adipocytes. Nat Cell Biol 15:659–667

    Article  CAS  PubMed  Google Scholar 

  119. Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM (2012) A PGC-1α isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151:1319–1331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Ruiz de Azua I, Mancini G, Srivastava RK, Rey AA, Cardinal P, Tedesco L, Zingaretti CM, Sassmann A, Quarta C, Schwitter C, Conrad A, Wettschureck N, Vemuri VK, Makriyannis A, Hartwig J, Mendez-Lago M, Bindila L, Monory K, Giordano A, Cinti S, Marsicano G, Offermanns S, Nisoli E, Pagotto U, Cota D, Lutz B (2017) Adipocyte cannabinoid receptor CB1 regulates energy homeostasis and alternatively activated macrophages. J Clin Invest 127:4148–4162

    Article  PubMed  PubMed Central  Google Scholar 

  121. Russell ST, Hirai K, Tisdale MJ (2002) Role of β3-adrenergic receptors in the action of a tumour lipid mobilizing factor. Br J Cancer 86:424–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sáinz N, Rodríguez A, Catalán V et al (2009) Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1α in ob/ob mice. PLoS One 4:e6808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  123. Saito M, Okamatsu-Ogura Y, Matsushita M, Watanabe K, Yoneshiro T, Nio-Kobayashi J, Iwanaga T, Miyagawa M, Kameya T, Nakada K, Kawai Y, Tsujisaki M (2009) High incidence of metabolically active brown adipose tissue in healthy adult humans: effects of cold exposure and adiposity. Diabetes 58:1526–1531

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Sartori C, Lepori M, Scherrer U (2005) Interaction between nitric oxide and the cholinergic and sympathetic nervous system in cardiovascular control in humans. Pharmacol Ther 106:209–220

    Article  CAS  PubMed  Google Scholar 

  125. Scherer PE, Williams S, Fogliano M, Baldini G, Lodish HF (1995) A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem 270:26746–26749

    Article  CAS  PubMed  Google Scholar 

  126. Schinzari F, Tesauro M, Rovella V, di Daniele N, Mores N, Veneziani A, Cardillo C (2013) Leptin stimulates both endothelin-1 and nitric oxide activity in lean subjects but not in patients with obesity-related metabolic syndrome. J Clin Endocrinol Metab 98:1235–1241

    Article  CAS  PubMed  Google Scholar 

  127. Schuelke M, Wagner KR, Stolz LE et al (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350:2682–2688

    Article  CAS  PubMed  Google Scholar 

  128. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M, Tavernier G, Langin D, Spiegelman BM (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6:38–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Seale P, Bjork B, Yang W, Kajimura S, Chin S, Kuang S, Scimè A, Devarakonda S, Conroe HM, Erdjument-Bromage H, Tempst P, Rudnicki MA, Beier DR, Spiegelman BM (2008) PRDM16 controls a brown fat/skeletal muscle switch. Nature 454:961–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Seale P, Conroe HM, Estall J, Kajimura S, Frontini A, Ishibashi J, Cohen P, Cinti S, Spiegelman BM (2011) Prdm16 determines the thermogenic program of subcutaneous white adipose tissue in mice. J Clin Invest 121:96–105

    Article  CAS  PubMed  Google Scholar 

  131. Shabeeh H, Khan S, Jiang BY et al (2017) Blood pressure in healthy humans is regulated by neuronal NO synthase. Hypertension 69:970–976

    Article  CAS  PubMed  Google Scholar 

  132. Sidis Y, Mukherjee A, Keutmann H, Delbaere A, Sadatsuki M, Schneyer A (2006) Biological activity of follistatin isoforms and follistatin-like-3 is dependent on differential cell surface binding and specificity for activin, myostatin, and bone morphogenetic proteins. Endocrinology 147:3586–3597

    Article  CAS  PubMed  Google Scholar 

  133. Smorlesi A, Frontini A, Giordano A, Cinti S (2012) The adipose organ: white-brown adipocyte plasticity and metabolic inflammation. Obes Rev 13(Suppl 2):83–96

    Article  CAS  PubMed  Google Scholar 

  134. Stern JH, Rutkowski JM, Scherer PE (2016) Adiponectin, leptin, and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 23:770–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Svensson KJ, Long JZ, Jedrychowski MP, Cohen P, Lo JC, Serag S, Kir S, Shinoda K, Tartaglia JA, Rao RR, Chédotal A, Kajimura S, Gygi SP, Spiegelman BM (2016) A secreted Slit2 fragment regulates adipose tissue thermogenesis and metabolic function. Cell Metab 23:454–466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Tadokoro S, Ide S, Tokuyama R et al (2015) Leptin promotes wound healing in the skin. PLoS One. https://doi.org/10.1371/journal.pone.0121242

  137. Trevellin E, Scorzeto M, Olivieri M, Granzotto M, Valerio A, Tedesco L, Fabris R, Serra R, Quarta M, Reggiani C, Nisoli E, Vettor R (2014) Exercise training induces mitochondrial biogenesis and glucose uptake in subcutaneous adipose tissue through eNOS-dependent mechanisms. Diabetes 63:2800–2811

    Article  CAS  PubMed  Google Scholar 

  138. van Marken Lichtenbelt WD, Vanhommerig JW, Smulders NM, Drossaerts JM, Kemerink GJ, Bouvy ND, Schrauwen P, Teule GJ (2009) Cold-activated brown adipose tissue in healthy men. N Engl J Med 360:1500–1508

    Article  PubMed  Google Scholar 

  139. Vella L, Caldow MK, Larsen AE et al (2012) Resistance exercise increases NF-κΒ activity in human skeletal muscle. Am J Physiol Regul Integr Comp Physiol 302:R667–R673

    Article  CAS  PubMed  Google Scholar 

  140. Villarreal D, Reams G, Freeman RH (2000) Effects of renal denervation on the sodium excretory actions of leptin in hypertensive rats. Kidney Int 58:989–994

    Article  CAS  PubMed  Google Scholar 

  141. Villarroya F, Cereijo R, Villarroya J, Giralt M (2017) Brown adipose tissue as a secretory organ. Nat Rev Endocrinol 13:26–35

    Article  CAS  PubMed  Google Scholar 

  142. Villarroya J, Campderros L, Ribas-Aulinas F, Carrière A, Casteilla L, Giralt M, Villarroya F (2018) Lactate induces expression and secretion of fibroblast growth factor-21 by muscle cells. Endocrine 61:165–168

    Article  CAS  PubMed  Google Scholar 

  143. Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R, Niemi T, Taittonen M, Laine J, Savisto NJ, Enerbäck S, Nuutila P (2009) Functional brown adipose tissue in healthy adults. N Engl J Med 360:1518–1525

    Article  CAS  PubMed  Google Scholar 

  144. Vishvanath L, MacPherson KA, Hepler C, Wang QA, Shao M, Spurgin SB, Wang MY, Kusminski CM, Morley TS, Gupta RK (2016) Pdgfrβ+ mural preadipocytes contribute to adipocyte hyperplasia induced by high-fat-diet feeding and prolonged cold exposure in adult mice. Cell Metab 23:350–359

    Article  CAS  PubMed  Google Scholar 

  145. Vladutiu AO (1995) Role of nitric-oxide in autoimmunity. Clin Immunol Immunopathol 76:1–11

    Article  CAS  PubMed  Google Scholar 

  146. Wang QA, Scherer PE (2014) The AdipoChaser mouse: a model tracking adipogenesis in vivo. Adipocyte 3:146–150

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Whittle AJ, Carobbio S, Martins L, Slawik M, Hondares E, Vázquez MJ, Morgan D, Csikasz RI, Gallego R, Rodriguez-Cuenca S, Dale M, Virtue S, Villarroya F, Cannon B, Rahmouni K, López M, Vidal-Puig A (2012) BMP8B increases brown adipose tissue thermogenesis through both central and peripheral actions. Cell 149:871–885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Wilcox CS (2005) Oxidative stress and nitric oxide deficiency in the kidney: a critical link to hypertension? Am J Phys Regul Integr Comp Phys 289:R913–R935

    CAS  Google Scholar 

  149. Wu J, Bostrom P, Sparks LM et al (2012) Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Wueest S, Item F, Boyle CN et al (2014) Interleukin-6 contributes to early fasting-induced free fatty acid mobilization in mice. Am J Physiol Regul Integr Comp Physiol 306:R861–R867

    Article  CAS  PubMed  Google Scholar 

  151. Xiao XH, Qi XY, Wang YD, Ran L, Yang J, Zhang HL, Xu CX, Wen GB, Liu JH (2018) Zinc α2 glycoprotein promotes browning in adipocytes. Biochem Biophys Res Commun 496:287–293

    Article  CAS  PubMed  Google Scholar 

  152. Yumuk V, Tsigos C, Fried M, Schindler K, Busetto L, Micic D, Toplak H, Obesity Management Task Force of the European Association for the Study of Obesity (2015) European guidelines for obesity management in adults. Obes Facts 8:402–424

    Article  PubMed  PubMed Central  Google Scholar 

  153. Zeng X, Ye M, Resch JM, Jedrychowski MP, Hu B, Lowell BB, Ginty DD, Spiegelman BM (2019) Innervation of thermogenic adipose tissue via a calsyntenin 3β-S100b axis. Nature 569:229–235

    Article  PubMed  PubMed Central  Google Scholar 

  154. Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432

    Article  CAS  PubMed  Google Scholar 

  155. Zhang C, McFarlane C, Lokireddy S, Masuda S, Ge X, Gluckman PD, Sharma M, Kambadur R (2012) Inhibition of myostatin protects against diet-induced obesity by enhancing fatty acid oxidation and promoting a brown adipose phenotype in mice. Diabetologia 55:183–193

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was supported by the Instituto de Salud Carlos III and fondos FEDER (PI16/00221, PI16/01217, PI17/02183 and PI17/02188) and by the Department of Health of Gobierno de Navarra (61/2014). CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN) is an initiative of the Instituto de Salud Carlos III, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sara Becerril.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key points

• Myokines are secreted and regulate physiological processes in an endocrine manner.

• The adipose tissue releases adipokines involved in the energy homeostasis.

• Myokines regulate fat browning with their activity being modulated by adipokines.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodríguez, A., Catalán, V., Ramírez, B. et al. Impact of adipokines and myokines on fat browning. J Physiol Biochem 76, 227–240 (2020). https://doi.org/10.1007/s13105-020-00736-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13105-020-00736-2

Keywords

Navigation