Plasma lactate and leukocyte mitochondrial DNA copy number as biomarkers of insulin sensitivity in non-diabetic women

  • José L. SantosEmail author
  • Luis R. Cataldo
  • Cristián Cortés-Rivera
  • Carolina Bravo
  • Luis Díaz-Casanova
  • J. Alfredo Martínez
  • Fermín I. Milagro
  • José Galgani
Original Article


High plasma lactate levels have been associated with reduced mitochondrial respiratory capacity and increased type 2 diabetes risk, while mitochondrial DNA (mtDNA) copy number has been proposed as a biomarker of mitochondrial function linked to glucose homeostasis. The aim of this study was to evaluate the association between circulating lactate levels and leukocyte mtDNA copy numbers with insulin secretion/sensitivity indexes in 65 Chilean non-diabetic women. mtDNA copy numbers were measured in leukocytes using qPCR and digital-droplet PCR. A 75-g Oral Glucose Tolerance Test (OGTT) was performed to calculate systemic and tissue-specific insulin sensitivity indexes, as well as insulin secretion surrogates based on plasma c-peptide. An intravenous glucose tolerance test (IVGTT; 0.3 g/kg) was also carried out. Disposition indexes were calculated as the product of insulin secretion × sensitivity. Plasma levels of leptin, adiponectin, TNF-α, MCP-1, and non-esterified fatty acids were also determined. Fasting plasma lactate shows a significant association with a wide range of insulin sensitivity/resistance indexes based on fasting plasma samples (HOMA-S, adipose IR index, Revised-QUICKI, leptin-adiponectin ratio, TyG index, McAuley index and TG-to-HDL-C ratio), as well as OGTT-based measures such as the Matsuda index, the hepatic insulin resistance index, and the disposition index. Fasting plasma lactate was also positively associated with the circulating adipokines TNF-α and MCP-1. We also detected a direct association between fasting plasma lactate with leukocyte mtDNA copy numbers. The above results support the use of fasting plasma lactate, and possibly leukocyte mtDNA copy numbers, as biomarkers of reduced oxidative mitochondrial capacity, decreased hepatic insulin sensitivity, and future diabetes risk.


Lactate Mitochondrial DNA Insulin sensitivity Biomarker Diabetes 


Funding information

This study was supported by the Chilean Fondo Nacional de Desarrollo Científico y Tecnológico (FONDECYT; projects 1150416 and 1170117), the Spanish Biomedical Research Centre in Physiopathology of Obesity and Nutrition (CIBERobn), Institute of Health Carlos III, Madrid, Spain (CB12/03/30002) and Ministerio de Economía y Competitividad (AGL2013-4554-R).

Compliance with ethical standards

All participants signed written informed consent and the research protocol was approved by the Ethics Committee of the School of Medicine of the Pontificia Universidad Católica de Chile.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Abdul-Ghani MA, Matsuda M, Balas B, DeFronzo RA (2007) Muscle and liver insulin resistance indexes derived from the oral glucose tolerance test. Diabetes Care 30:89–94CrossRefGoogle Scholar
  2. 2.
    Ahmed K, Tunaru S, Tang C, Müller M, Gille A, Sassmann A, Hanson J, Offermanns S (2010) An autocrine lactate loop mediates insulin-dependent inhibition of lipolysis through GPR81. Cell Metab 11:311–319CrossRefGoogle Scholar
  3. 3.
    American Diabetes Association (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37:81–90CrossRefGoogle Scholar
  4. 4.
    Ashar FN, Moes A, Moore AZ, Grove ML, Chaves PHM, Coresh J, Newman AB, Matteini AM, Bandeen-Roche K, Boerwinkle E, Walston JD, Arking DE (2015) Association of mitochondrial DNA levels with frailty and all-cause mortality. J Mol Med 93:177–186CrossRefGoogle Scholar
  5. 5.
    Ashar FN, Zhang Y, Longchamps RJ, Lane J, Moes A, Grove ML, Mychaleckyj JC, Taylor KD, Coresh J, Rotter JI, Boerwinkle E, Pankratz N, Guallar E, Arking DE (2017) Association of mitochondrial DNA copy number with cardiovascular disease. JAMA Cardiol 2:1247–1255CrossRefGoogle Scholar
  6. 6.
    Berhane F, Fite A, Daboul N, Al-Janabi W et al (2015) Plasma lactate levels increase during Hyperinsulinemic euglycemic clamp and oral glucose tolerance test. J Diabetes Res. Google Scholar
  7. 7.
    Brooks GA (2009) Cell-cell and intracellular lactate shuttles. J Physiol 587:5591–5600CrossRefGoogle Scholar
  8. 8.
    Burkart AM, Tan K, Warren L, Iovino S, Hughes KJ, Kahn CR, Patti ME (2016) Insulin resistance in human iPS cells reduces mitochondrial size and function. Sci Rep 6:22788CrossRefGoogle Scholar
  9. 9.
    Carneiro L, Pellerin L (2015) Monocarboxylate transporters: new players in body weight regulation. Obes Rev 16:55–66CrossRefGoogle Scholar
  10. 10.
    Chondronikola M, Magkos F, Yoshino J, Okunade AL, Patterson BW, Muehlbauer MJ, Newgard CB, Klein S (2018) Effect of progressive weight loss on lactate metabolism: a randomized controlled trial. Obesity 26:683–688CrossRefGoogle Scholar
  11. 11.
    Crawford SO, Hoogeveen RC, Brancati FL, Astor BC, Ballantyne CM, Schmidt MI, Young JH (2010) Association of blood lactate with type 2 diabetes: the atherosclerosis risk in communities carotid MRI study. Int J Epidemiol 39:1647–1655CrossRefGoogle Scholar
  12. 12.
    Cree LM, Patel SK, Pyle A, Lynn S, Turnbull DM, Chinnery PF, Walker M (2008) Age-related decline in mitochondrial DNA copy number in isolated human pancreatic islets. Diabetologia 51:1440–1443CrossRefGoogle Scholar
  13. 13.
    DeFronzo RA, Ferrannini E, Groop L, Henry RR et al (2015) Type 2 diabetes mellitus. Nature Rev Dis Primers 1:15019CrossRefGoogle Scholar
  14. 14.
    Diez-Juan A, Rubio C, Marin C, Martinez S, al-Asmar N, Riboldi M, Díaz-Gimeno P, Valbuena D, Simón C (2015) Mitochondrial DNA content as a viability score in human euploid embryos: less is better. Fertil Steril 104:534–541CrossRefGoogle Scholar
  15. 15.
    Galgani JE, Gómez C, Mizgier ML, Gutierrez J, Santos JL, Olmos P, Mari A (2016) Assessment of the role of metabolic determinants on the relationship between insulin sensitivity and secretion. PLoS One 11:e0168352CrossRefGoogle Scholar
  16. 16.
    Gianotti TF, Sookoian S, Dieuzeide G, García SI, Gemma C, González CD, Pirola CJ (2008) A decreased mitochondrial DNA content is related to insulin resistance in adolescents. Obesity 16:1591–1595CrossRefGoogle Scholar
  17. 17.
    Giulivi C, Zhang YF, Omanska-Klusek A, Ross-Inta C, Wong S, Hertz-Picciotto I, Tassone F, Pessah IN (2010) Mitochondrial dysfunction in autism. JAMA 304:2389–2396CrossRefGoogle Scholar
  18. 18.
    Haas RH, Parikh S, Falk MJ, Saneto RP et al (2008) The in-depth evaluation of suspected mitochondrial disease. Mol Genet Metab 94:16–37CrossRefGoogle Scholar
  19. 19.
    Herzberg-Schäfer SA, Staiger H, Heni M, Ketterer C et al (2010) Evaluation of fasting state-/oral glucose tolerance test-derived measures of insulin release for the detection of genetically impaired β-cell function. PLoS One 5:e14194CrossRefGoogle Scholar
  20. 20.
    Ho JE, Larson MG, Vasan RS, Ghorbani A, Cheng S, Rhee EP, Florez JC, Clish CB, Gerszten RE, Wang TJ (2013) Metabolite profiles during oral glucose challenge. Diabetes 62:2689–2698CrossRefGoogle Scholar
  21. 21.
    Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, le Zhan, Yanxiang Guo J, White E, Rabinowitz JD (2017) Glucose feeds the TCA cycle via circulating lactate. Nature 551:115–118CrossRefGoogle Scholar
  22. 22.
    Juraschek SP, Selvin E, Miller ER, Brancati FL, Young JH (2013) Plasma lactate and diabetes risk in 8045 participants of the atherosclerosis risk in communities study. Ann Epidemiol 23:791–796.e4CrossRefGoogle Scholar
  23. 23.
    Juraschek SP, Shantha GPS, Chu AY, Miller ER, Guallar E, Hoogeveen RC, Ballantyne CM, Brancati FL, Schmidt MI, Pankow JS, Young JH (2013) Lactate and risk of incident diabetes in a case-cohort of the atherosclerosis risk in communities (ARIC) study. PLoS One 8:e55113CrossRefGoogle Scholar
  24. 24.
    Kahn SE (2003) The relative contributions of insulin resistance and beta-cell dysfunction to the pathophysiology of type 2 diabetes. Diabetologia 46:3–19CrossRefGoogle Scholar
  25. 25.
    Kerckhoffs DA, Arner P, Bolinder J (1998) Lipolysis and lactate production in human skeletal muscle and adipose tissue following glucose ingestion. Clin Sci 94:71–77CrossRefGoogle Scholar
  26. 26.
    Knez J, Winckelmans E, Plusquin M, Thijs L, Cauwenberghs N, Gu Y, Staessen JA, Nawrot TS, Kuznetsova T (2016) Correlates of peripheral blood mitochondrial DNA content in a general population. Am J Epidemiol 183:138–146Google Scholar
  27. 27.
    Lee SH, Chung DJ, Lee HS, Kim TJ, Kim MH, Jeong HJ, Im JA, Lee DC, Lee JW (2011) Mitochondrial DNA copy number in peripheral blood in polycystic ovary syndrome. Metabolism 60:1677–1682CrossRefGoogle Scholar
  28. 28.
    Lin LI (1989) A concordance correlation coefficient to evaluate reproducibility. Biometrics 45:255–268CrossRefGoogle Scholar
  29. 29.
    Lovejoy J, Newby FD, Gebhart SSP, DiGirolamo M (1992) Insulin resistance in obesity is associated with elevated basal lactate levels and diminished lactate appearance following intravenous glucose and insulin. Metabolism 41:22–27CrossRefGoogle Scholar
  30. 30.
    Maechler P (2013) Mitochondrial function and insulin secretion. Mol Cell Endocrinol 379:12–18CrossRefGoogle Scholar
  31. 31.
    Malik AN, Czajka A (2013) Is mitochondrial DNA content a potential biomarker of mitochondrial dysfunction? Mitochondrion 13:481–492CrossRefGoogle Scholar
  32. 32.
    Matsuda M, DeFronzo RA (1999) Insulin sensitivity indices obtained from oral glucose tolerance testing: comparison with the euglycemic insulin clamp. Diabetes Care 22:1462–1470CrossRefGoogle Scholar
  33. 33.
    Menni C, Migaud M, Glastonbury CA, Beaumont M, Nikolaou A, Small KS, Brosnan MJ, Mohney RP, Spector TD, Valdes AM (2016) Metabolomic profiling to dissect the role of visceral fat in cardiometabolic health. Obesity 24:1380–1388CrossRefGoogle Scholar
  34. 34.
    Navarro-González D, Sánchez-Íñigo L, Fernández-Montero A, Pastrana-Delgado J, Martinez JA (2016) TyG index change is more determinant for forecasting type 2 diabetes onset than weight gain. Medicine 95:e3646CrossRefGoogle Scholar
  35. 35.
    Nile DL, Brown AE, Kumaheri MA, Blair HR, Heggie A, Miwa S, Cree LM, Payne B, Chinnery PF, Brown L, Gunn DA, Walker M (2014) Age-related mitochondrial DNA depletion and the impact on pancreatic beta cell function. PLoS One 9:e115433CrossRefGoogle Scholar
  36. 36.
    Otonkoski T, Kaminen N, Ustinov J, Lapatto R, Meissner T, Mayatepek E, Kere J, Sipila I (2003) Physical exercise-induced hyperinsulinemic hypoglycemia is an autosomal-dominant trait characterized by abnormal pyruvate-induced insulin release. Diabetes 52:199–204CrossRefGoogle Scholar
  37. 37.
    Otten J, Ahrén B, Olsson T (2014) Surrogate measures of insulin sensitivity vs the hyperinsulinaemic–euglycaemic clamp: a meta-analysis. Diabetologia 57:1781–1788CrossRefGoogle Scholar
  38. 38.
    Park KS, Lee KU, Song JH, Choi CS, Shin CS, Park DJ, Kim SK, Koh JJ, Lee HK (2001) Peripheral blood mitochondrial DNA content is inversely correlated with insulin secretion during hyperglycemic clamp studies in healthy young men. Diabetes Res Clin Pract 52:97–102CrossRefGoogle Scholar
  39. 39.
    Podlesniy P, Llorens F, Golanska E, Sikorska B, Liberski P, Zerr I, Trullas R (2016) Mitochondrial DNA differentiates Alzheimer’s disease from Creutzfeldt-Jakob disease. Alzheimers Dement 12:546–555CrossRefGoogle Scholar
  40. 40.
    Pullen TJ, Khan AM, Barton G, Butcher SA, Sun G, Rutter GA (2010) Identification of genes selectively disallowed in the pancreatic islet. Islets 2:89–95CrossRefGoogle Scholar
  41. 41.
    Qvisth V, Hagstrom-Toft E, Moberg E, Sjoberg S, Bolinder J (2006) Lactate release from adipose tissue and skeletal muscle in vivo: defective insulin regulation in insulin-resistant obese women. Am J Physiol Endocrinol Metab 292:E709–E714CrossRefGoogle Scholar
  42. 42.
    Ram J, Snehalatha C, Selvam S, Nanditha A, Shetty AS, Godsland IF, Johnston DG, Ramachandran A (2015) The oral disposition index is a strong predictor of incident diabetes in Asian Indian prediabetic men. Acta Diabetol 52:733–741CrossRefGoogle Scholar
  43. 43.
    Rooney MS, Shukla SA, Wu CJ, Getz G, Hacohen N (2015) Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160:48–61CrossRefGoogle Scholar
  44. 44.
    Santos JL, Yévenes I, Cataldo LR, Morales M, Galgani J, Arancibia C, Vega J, Olmos P, Flores M, Valderas JP, Pollak F (2016) Development and assessment of the disposition index based on the oral glucose tolerance test in subjects with different glycaemic status. J Physiol Biochem 72:121–131CrossRefGoogle Scholar
  45. 45.
    Shaham O, Wei R, Wang TJ, Ricciardi C et al (2008) Metabolic profiling of the human response to a glucose challenge reveals distinct axes of insulin sensitivity. Mol Syst Biol 4:214CrossRefGoogle Scholar
  46. 46.
    Shoar Z, Goldenthal MJ, De Luca F, Suarez E (2016) Mitochondrial DNA content and function, childhood obesity, and insulin resistance. Endocr Res 41:49–56CrossRefGoogle Scholar
  47. 47.
    Small L, Brandon AE, Quek LE, Krycer JR, James DE, Turner N, Cooney GJ (2018) Acute activation of pyruvate dehydrogenase increases glucose oxidation in muscle without changing glucose uptake. Am J Physiol Endocrinol Metab 315:E258–E266CrossRefGoogle Scholar
  48. 48.
    Soejima A, Inoue K, Takai D, Kaneko M, Ishihara H, Oka Y, Hayashi JI (1996) Mitochondrial DNA is required for regulation of glucose-stimulated insulin secretion in a mouse pancreatic beta cell line, MIN6. J Biol Chem 271:26194–26199CrossRefGoogle Scholar
  49. 49.
    Song J, Oh JY, Sung YA, Pak YK, Park KS, Lee HK (2001) Peripheral blood mitochondrial DNA content is related to insulin sensitivity in offspring of type 2 diabetic patients. Diabetes Care 24:865–869CrossRefGoogle Scholar
  50. 50.
    Szendroedi J, Phielix E, Roden M (2012) The role of mitochondria in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol 8:92–103CrossRefGoogle Scholar
  51. 51.
    Tura A, Kautzky-Willer A, Pacini G (2006) Insulinogenic indices from insulin and C-peptide: comparison of beta-cell function from OGTT and IVGTT. Diabetes Res Clin Pract 72:298–301CrossRefGoogle Scholar
  52. 52.
    Tura A, Sbrignadello S, Succurro E, Groop L, Sesti G, Pacini G (2010) An empirical index of insulin sensitivity from short IVGTT: validation against the minimal model and glucose clamp indices in patients with different clinical characteristics. Diabetologia 53:144–152CrossRefGoogle Scholar
  53. 53.
    Utzschneider KM, Prigeon RL, Faulenbach MV, Tong J, Carr DB, Boyko EJ, Leonetti DL, McNeely MJ, Fujimoto WY, Kahn SE (2009) Oral disposition index predicts the development of future diabetes above and beyond fasting and 2-h glucose levels. Diabetes Care 32:335–341CrossRefGoogle Scholar
  54. 54.
    Weng SW, Lin TK, Liou CW, Chen SD, Wei YH, Lee HC, Chen IY, Hsieh CJ, Wang PW (2009) Peripheral blood mitochondrial DNA content and dysregulation of glucose metabolism. Diabetes Res Clin Pract 83:94–99CrossRefGoogle Scholar
  55. 55.
    Wu C, Khan SA, Lange AJ (2005) Regulation of glycolysis-role of insulin. Exp Gerontol 40:894–899CrossRefGoogle Scholar
  56. 56.
    Ye W, Zheng Y, Zhang S, Yan L, Cheng H, Wu M (2016) Oxamate improves glycemic control and insulin sensitivity via inhibition of tissue lactate production in db/db mice. PLoS One 11:e0150303CrossRefGoogle Scholar
  57. 57.
    Ylikallio E, Tyynismaa H, Tsutsui H, Ide T, Suomalainen A (2010) High mitochondrial DNA copy number has detrimental effects in mice. Hum Mol Genet 19:2695–2705CrossRefGoogle Scholar
  58. 58.
    Zhou M, Zhu L, Cui X, Feng L, Zhao X, He S, Ping F, Li W, Li Y (2016) Reduced peripheral blood mtDNA content is associated with impaired glucose-stimulated islet β cell function in a Chinese population with different degrees of glucose tolerance. Diabetes Metab Res Rev 32:768–774CrossRefGoogle Scholar

Copyright information

© University of Navarra 2019

Authors and Affiliations

  • José L. Santos
    • 1
    Email author
  • Luis R. Cataldo
    • 1
  • Cristián Cortés-Rivera
    • 1
  • Carolina Bravo
    • 1
  • Luis Díaz-Casanova
    • 1
  • J. Alfredo Martínez
    • 2
    • 3
    • 4
    • 5
  • Fermín I. Milagro
    • 2
    • 3
  • José Galgani
    • 1
  1. 1.Department of Nutrition, Diabetes and Metabolism, School of MedicinePontificia Universidad Católica de ChileSantiagoChile
  2. 2.Department of Nutrition, Food Sciences and Physiology, Centre for Nutrition ResearchUniversity of NavarraPamplonaSpain
  3. 3.Centro de Investigación Biomédica en Red de la Fisiopatología de la Obesidad y Nutrición (CIBERobn)Instituto de Salud Carlos IIIMadridSpain
  4. 4.IdiSNA, Navarra’s Health Research InstitutePamplonaSpain
  5. 5.IMDEA-FoodMadridSpain

Personalised recommendations