Advertisement

The role of lamin A/C in mesenchymal stem cell differentiation

  • Bo Zhang
  • Yang Yang
  • Reziwan Keyimu
  • Jin Hao
  • Zhihe ZhaoEmail author
  • Rui YeEmail author
Review

Abstract

Lamin A/C is the major architectural protein of cell nucleus in charge of the nuclear mechanosensing. By integrating extracellular mechanical and biochemical signals, lamin A/C regulates multiple intracellular events including mesenchymal stem cell (MSC) fate determination. Herein, we review the recent findings about the effects and mechanisms of lamin A/C in governing MSC lineage commitment, with a special focus on osteogenesis and adipogenesis. Better understanding of MSC differentiation regulated by lamin A/C could provide insights into pathogenesis of age-related osteoporosis.

Keywords

Lamin A/C Mesenchymal stem cells Osteogenesis Adipogenesis 

Abbreviations

ECM

Extracellular matrix

HGPS

Hutchinson-Gilford progeria syndrome

KASH

Klarsicht/ANC-1/Syne homology

LINC

Linkers of nucleoskeleton and cytoskeleton

MKL1

Megakaryoblastic leukemia 1

MSC

Mesenchymal stem cell

RA

Retinoic acid

RAR

Retinoic acid receptors

RARE

RA-responsive elements

SRF

Serum response factor

SUN

Sad1/UNC-84

YAP

Yes-associated protein

TAZ

transcriptional co-activators with PDZ-binding motif

Notes

Funding information

This work was supported by grants from the National Natural Science Foundation of China (31470904, Zhihe Zhao; 81400522, Rui Ye).

References

  1. 1.
    Akter R, Rivas D, Geneau G, Drissi H, Duque G (2009) Effect of lamin A/C knockdown on osteoblast differentiation and function. J Bone Miner Res 24:283–293.  https://doi.org/10.1359/jbmr.081010 CrossRefGoogle Scholar
  2. 2.
    Bengtsson L (2007) What MAN1 does to the Smads. TGFbeta/BMP signaling and the nuclear envelope. FEBS J 274:1374–1382CrossRefGoogle Scholar
  3. 3.
    Bergo MO, Gavino B, Ross J, Schmidt WK, Hong C, Kendall LV, Mohr A, Meta M, Genant H, Jiang Y, Wisner ER, Van Bruggen N, Carano RA, Michaelis S, Griffey SM, Young SG (2002) Zmpste24 deficiency in mice causes spontaneous bone fractures, muscle weakness, and a prelamin A processing defect. Proc Natl Acad Sci U S A 99:13049–13054.  https://doi.org/10.1073/pnas.192460799 CrossRefGoogle Scholar
  4. 4.
    Bermeo S, Vidal C, Zhou H, Duque G (2015) Lamin A/C acts as an essential factor in mesenchymal stem cell differentiation through the regulation of the dynamics of the Wnt/beta-catenin pathway. J Cell Biochem 116:2344–2353.  https://doi.org/10.1002/jcb.25185 CrossRefGoogle Scholar
  5. 5.
    Bertrand AT, Ziaei S, Ehret C, Duchemin H, Mamchaoui K, Bigot A, Mayer M, Quijano-Roy S, Desguerre I, Laine J, Ben Yaou R, Bonne G, Coirault C (2014) Cellular microenvironments reveal defective mechanosensing responses and elevated YAP signaling in LMNA-mutated muscle precursors. J Cell Sci 127:2873–2884.  https://doi.org/10.1242/jcs.144907 CrossRefGoogle Scholar
  6. 6.
    Bianchi A, Manti PG, Lucini F, Lanzuolo C (2018) Mechanotransduction, nuclear architecture and epigenetics in Emery Dreifuss muscular dystrophy: tous pour un, un pour Tous. Nucleus 9:276–290.  https://doi.org/10.1080/19491034.2018.1460044 CrossRefGoogle Scholar
  7. 7.
    Bickmore WA, van Steensel B (2013) Genome architecture: domain organization of interphase chromosomes. Cell 152:1270–1284.  https://doi.org/10.1016/j.cell.2013.02.001 CrossRefGoogle Scholar
  8. 8.
    Boguslavsky RL, Stewart CL, Worman HJ (2006) Nuclear lamin A inhibits adipocyte differentiation: implications for Dunnigan-type familial partial lipodystrophy. Hum Mol Genet 15:653–663.  https://doi.org/10.1093/hmg/ddi480 CrossRefGoogle Scholar
  9. 9.
    Buxboim A, Swift J, Irianto J, Spinler KR, Dingal PC, Athirasala A, Kao YR, Cho S, Harada T, Shin JW, Discher DE (2014) Matrix elasticity regulates lamin-A,C phosphorylation and turnover with feedback to actomyosin. Curr Biol 24:1909–1917.  https://doi.org/10.1016/j.cub.2014.07.001 CrossRefGoogle Scholar
  10. 10.
    Chambliss AB, Khatau SB, Erdenberger N, Robinson DK, Hodzic D, Longmore GD, Wirtz D (2013) The LINC-anchored actin cap connects the extracellular milieu to the nucleus for ultrafast mechanotransduction. Sci Rep 3:1087.  https://doi.org/10.1038/srep01087 CrossRefGoogle Scholar
  11. 11.
    Cosman F, de Beur SJ, LeBoff MS, Lewiecki EM, Tanner B, Randall S, Lindsay R (2014) Clinician's guide to prevention and treatment of osteoporosis. Osteoporos Int 25:2359–2381.  https://doi.org/10.1007/s00198-014-2794-2 CrossRefGoogle Scholar
  12. 12.
    Crisp M, Liu Q, Roux K, Rattner JB, Shanahan C, Burke B, Stahl PD, Hodzic D (2006) Coupling of the nucleus and cytoplasm: role of the LINC complex. J Cell Biol 172:41–53.  https://doi.org/10.1083/jcb.200509124 CrossRefGoogle Scholar
  13. 13.
    Dahl KN, Kalinowski A (2011) Nucleoskeleton mechanics at a glance. J Cell Sci 124:675–678.  https://doi.org/10.1242/jcs.069096 CrossRefGoogle Scholar
  14. 14.
    Dittmer TA, Misteli T (2011) The lamin protein family. Genome Biol 12:222.  https://doi.org/10.1186/gb-2011-12-5-222 CrossRefGoogle Scholar
  15. 15.
    Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S, Cordenonsi M, Zanconato F, Le Digabel J, Forcato M, Bicciato S, Elvassore N, Piccolo S (2011) Role of YAP/TAZ in mechanotransduction. Nature 474:179–183.  https://doi.org/10.1038/nature10137 CrossRefGoogle Scholar
  16. 16.
    Duque G, Rivas D (2006) Age-related changes in lamin A/C expression in the osteoarticular system: laminopathies as a potential new aging mechanism. Mech Ageing Dev 127:378–383.  https://doi.org/10.1016/j.mad.2005.12.007 CrossRefGoogle Scholar
  17. 17.
    Duque G, Vidal C, Rivas D (2011) Protein isoprenylation regulates osteogenic differentiation of mesenchymal stem cells: effect of alendronate, and farnesyl and geranylgeranyl transferase inhibitors. Br J Pharmacol 162:1109–1118.  https://doi.org/10.1111/j.1476-5381.2010.01111.x CrossRefGoogle Scholar
  18. 18.
    Galarza Torre A, Shaw JE, Wood A, Gilbert HTJ, Dobre O, Genever P, Brennan K, Richardson SM, Swift J (2018) An immortalised mesenchymal stem cell line maintains mechano-responsive behaviour and can be used as a reporter of substrate stiffness. Sci Rep 8:8981.  https://doi.org/10.1038/s41598-018-27346-9 CrossRefGoogle Scholar
  19. 19.
    Gimble JM, Zvonic S, Floyd ZE, Kassem M, Nuttall ME (2006) Playing with bone and fat. J Cell Biochem 98:251–266.  https://doi.org/10.1002/jcb.20777 CrossRefGoogle Scholar
  20. 20.
    Goldberg MW, Huttenlauch I, Hutchison CJ, Stick R (2008) Filaments made from A- and B-type lamins differ in structure and organization. J Cell Sci 121:215–225.  https://doi.org/10.1242/jcs.022020 CrossRefGoogle Scholar
  21. 21.
    Green AC, Kocovski P, Jovic T, Walia MK, Chandraratna RAS, Martin TJ, Baker EK, Purton LE (2017) Retinoic acid receptor signalling directly regulates osteoblast and adipocyte differentiation from mesenchymal progenitor cells. Exp Cell Res 350:284–297.  https://doi.org/10.1016/j.yexcr.2016.12.007 CrossRefGoogle Scholar
  22. 22.
    Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB, Talhout W, Eussen BH, de Klein A, Wessels L, de Laat W, van Steensel B (2008) Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–951.  https://doi.org/10.1038/nature06947 CrossRefGoogle Scholar
  23. 23.
    Heo SJ, Driscoll TP, Thorpe SD (2016) Differentiation alters stem cell nuclear architecture, mechanics, and mechano-sensitivity. Elife 5.  https://doi.org/10.7554/eLife.18207
  24. 24.
    Ho CY, Jaalouk DE, Vartiainen MK, Lammerding J (2013) Lamin A/C and emerin regulate MKL1-SRF activity by modulating actin dynamics. Nature 497:507–511.  https://doi.org/10.1038/nature12105 CrossRefGoogle Scholar
  25. 25.
    Hutchison CJ, Worman HJ (2004) A-type lamins: guardians of the soma? Nat Cell Biol 6:1062–1067.  https://doi.org/10.1038/ncb1104-1062 CrossRefGoogle Scholar
  26. 26.
    Ihalainen TO, Aires L, Herzog FA, Schwartlander R, Moeller J, Vogel V (2015) Differential basal-to-apical accessibility of lamin A/C epitopes in the nuclear lamina regulated by changes in cytoskeletal tension. Nat Mater 14:1252–1261.  https://doi.org/10.1038/nmat4389 CrossRefGoogle Scholar
  27. 27.
    Isobe K, Gohara R, Ueda T, Takasaki Y, Ando S (2007) The last twenty residues in the head domain of mouse lamin A contain important structural elements for formation of head-to-tail polymers in vitro. Biosci Biotechnol Biochem 71:1252–1259.  https://doi.org/10.1271/bbb.60674 CrossRefGoogle Scholar
  28. 28.
    Ivanovska IL, Swift J, Spinler K, Dingal D, Cho S, Discher DE (2017) Cross-linked matrix rigidity and soluble retinoids synergize in nuclear lamina regulation of stem cell differentiation. Mol Biol Cell 28:2010–2022.  https://doi.org/10.1091/mbc.E17-01-0010 CrossRefGoogle Scholar
  29. 29.
    Kim DH, Khatau SB, Feng Y, Walcott S, Sun SX, Longmore GD, Wirtz D (2012) Actin cap associated focal adhesions and their distinct role in cellular mechanosensing. Sci Rep 2:555.  https://doi.org/10.1038/srep00555 CrossRefGoogle Scholar
  30. 30.
    Kim DH, Wirtz D (2015) Cytoskeletal tension induces the polarized architecture of the nucleus. Biomaterials 48:161–172.  https://doi.org/10.1016/j.biomaterials.2015.01.023 CrossRefGoogle Scholar
  31. 31.
    Kulangara K, Yang J, Chellappan M, Yang Y, Leong KW (2014) Nanotopography alters nuclear protein expression, proliferation and differentiation of human mesenchymal stem/stromal cells. PLoS One 9:e114698.  https://doi.org/10.1371/journal.pone.0114698 CrossRefGoogle Scholar
  32. 32.
    Lee B, Lee TH, Shim J (2017) Emerin suppresses notch signaling by restricting the notch intracellular domain to the nuclear membrane. Biochim Biophys Acta Mol Cell Res 1864:303–313.  https://doi.org/10.1016/j.bbamcr.2016.11.013 CrossRefGoogle Scholar
  33. 33.
    Li J, Wang J, Zou Y, Zhang Y, Long D, Lei L, Tan L, Ye R, Wang X, Zhao Z (2012) The influence of delayed compressive stress on TGF-beta1-induced chondrogenic differentiation of rat BMSCs through Smad-dependent and Smad-independent pathways. Biomaterials 33:8395–8405.  https://doi.org/10.1016/j.biomaterials.2012.08.019 CrossRefGoogle Scholar
  34. 34.
    Li R, Liang L, Dou Y, Huang Z, Mo H, Wang Y, Yu B (2015) Mechanical strain regulates osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells. Biomed Res Int 2015:873251. doi: https://doi.org/10.1155/2015/873251, 1, 10
  35. 35.
    Li W, Yeo LS, Vidal C, McCorquodale T, Herrmann M, Fatkin D, Duque G (2011) Decreased bone formation and osteopenia in lamin a/c-deficient mice. PLoS One 6:e19313.  https://doi.org/10.1371/journal.pone.0019313 CrossRefGoogle Scholar
  36. 36.
    Lombardi ML, Lammerding J (2011) Keeping the LINC: the importance of nucleocytoskeletal coupling in intracellular force transmission and cellular function. Biochem Soc Trans 39:1729–1734.  https://doi.org/10.1042/bst20110686 CrossRefGoogle Scholar
  37. 37.
    Maniotis AJ, Chen CS, Ingber DE (1997) Demonstration of mechanical connections between integrins, cytoskeletal filaments, and nucleoplasm that stabilize nuclear structure. Proc Natl Acad Sci U S A 94:849–854CrossRefGoogle Scholar
  38. 38.
    Maraldi NM, Capanni C, Cenni V, Fini M, Lattanzi G (2011) Laminopathies and lamin-associated signaling pathways. J Cell Biochem 112:979–992.  https://doi.org/10.1002/jcb.22992 CrossRefGoogle Scholar
  39. 39.
    Merideth MA, Gordon LB, Clauss S, Sachdev V, Smith AC, Perry MB, Brewer CC, Zalewski C, Kim HJ, Solomon B, Brooks BP, Gerber LH, Turner ML, Domingo DL, Hart TC, Graf J, Reynolds JC, Gropman A, Yanovski JA, Gerhard-Herman M, Collins FS, Nabel EG, Cannon RO 3rd, Gahl WA, Introne WJ (2008) Phenotype and course of Hutchinson-Gilford progeria syndrome. N Engl J Med 358:592–604.  https://doi.org/10.1056/NEJMoa0706898 CrossRefGoogle Scholar
  40. 40.
    Miralles F, Posern G, Zaromytidou AI, Treisman R (2003) Actin dynamics control SRF activity by regulation of its coactivator MAL. Cell 113:329–342CrossRefGoogle Scholar
  41. 41.
    Mouilleron S, Guettler S, Langer CA, Treisman R, McDonald NQ (2008) Molecular basis for G-actin binding to RPEL motifs from the serum response factor coactivator MAL. EMBO J 27:3198–3208.  https://doi.org/10.1038/emboj.2008.235 CrossRefGoogle Scholar
  42. 42.
    Mounkes LC, Kozlov S, Hernandez L, Sullivan T, Stewart CL (2003) A progeroid syndrome in mice is caused by defects in A-type lamins. Nature 423:298–301.  https://doi.org/10.1038/nature01631 CrossRefGoogle Scholar
  43. 43.
    Nobusue H, Onishi N, Shimizu T, Sugihara E, Oki Y, Sumikawa Y, Chiyoda T, Akashi K, Saya H, Kano K (2014) Regulation of MKL1 via actin cytoskeleton dynamics drives adipocyte differentiation. Nat Commun 5:3368.  https://doi.org/10.1038/ncomms4368 CrossRefGoogle Scholar
  44. 44.
    Olson EN, Nordheim A (2010) Linking actin dynamics and gene transcription to drive cellular motile functions. Nat Rev Mol Cell Biol 11:353–365.  https://doi.org/10.1038/nrm2890 CrossRefGoogle Scholar
  45. 45.
    Osmanagic-Myers S, Dechat T, Foisner R (2015) Lamins at the crossroads of mechanosignaling. Genes Dev 29:225–237.  https://doi.org/10.1101/gad.255968.114 CrossRefGoogle Scholar
  46. 46.
    Pan D, Estevez-Salmeron LD, Stroschein SL, Zhu X, He J, Zhou S, Luo K (2005) The integral inner nuclear membrane protein MAN1 physically interacts with the R-Smad proteins to repress signaling by the transforming growth factor-{beta} superfamily of cytokines. J Biol Chem 280:15992–16001.  https://doi.org/10.1074/jbc.M411234200 CrossRefGoogle Scholar
  47. 47.
    Parmacek MS (2007) Myocardin-related transcription factors: critical coactivators regulating cardiovascular development and adaptation. Circ Res 100:633–644.  https://doi.org/10.1161/01.RES.0000259563.61091.e8 CrossRefGoogle Scholar
  48. 48.
    Pekovic V, Hutchison CJ (2008) Adult stem cell maintenance and tissue regeneration in the ageing context: the role for A-type lamins as intrinsic modulators of ageing in adult stem cells and their niches. J Anat 213:5–25.  https://doi.org/10.1111/j.1469-7580.2008.00928.x CrossRefGoogle Scholar
  49. 49.
    Perepelina K, Dmitrieva R, Ignatieva E, Borodkina A, Kostareva A, Malashicheva A (2018) Lamin A/C mutation associated with lipodystrophy influences adipogenic differentiation of stem cells through interaction with notch signaling. Biochem Cell Biol 96:342–348.  https://doi.org/10.1139/bcb-2017-0210 CrossRefGoogle Scholar
  50. 50.
    Philip JT, Dahl KN (2008) Nuclear mechanotransduction: response of the lamina to extracellular stress with implications in aging. J Biomech 41:3164–3170.  https://doi.org/10.1016/j.jbiomech.2008.08.024 CrossRefGoogle Scholar
  51. 51.
    Rauner M, Sipos W, Goettsch C, Wutzl A, Foisner R, Pietschmann P, Hofbauer LC (2009) Inhibition of lamin A/C attenuates osteoblast differentiation and enhances RANKL-dependent osteoclastogenesis. J Bone Miner Res 24:78–86.  https://doi.org/10.1359/jbmr.080902 CrossRefGoogle Scholar
  52. 52.
    Rivas D, Akter R, Duque G (2007) Inhibition of protein Farnesylation arrests adipogenesis and affects PPARgamma expression and activation in differentiating mesenchymal stem cells. PPAR Res 2007:81654–81657.  https://doi.org/10.1155/2007/81654 CrossRefGoogle Scholar
  53. 53.
    Rivas D, Li W, Akter R, Henderson JE, Duque G (2009) Accelerated features of age-related bone loss in zmpste24 metalloproteinase-deficient mice. J Gerontol A Biol Sci Med Sci 64:1015–1024.  https://doi.org/10.1093/gerona/glp089 CrossRefGoogle Scholar
  54. 54.
    Rosenwald M, Efthymiou V, Opitz L, Wolfrum C (2017) SRF and MKL1 independently inhibit Brown adipogenesis. PLoS One 12:e0170643.  https://doi.org/10.1371/journal.pone.0170643 CrossRefGoogle Scholar
  55. 55.
    Scaffidi P, Misteli T (2008) Lamin A-dependent misregulation of adult stem cells associated with accelerated ageing. Nat Cell Biol 10:452–459.  https://doi.org/10.1038/ncb1708 CrossRefGoogle Scholar
  56. 56.
    Schmidt E, Nilsson O, Koskela A, Tuukkanen J, Ohlsson C, Rozell B, Eriksson M (2012) Expression of the Hutchinson-Gilford progeria mutation during osteoblast development results in loss of osteocytes, irregular mineralization, and poor biomechanical properties. J Biol Chem 287:33512–33522.  https://doi.org/10.1074/jbc.M112.366450 CrossRefGoogle Scholar
  57. 57.
    Song F, Jiang D, Wang T, Wang Y, Lou Y, Zhang Y, Ma H, Kang Y (2017) Mechanical stress regulates osteogenesis and adipogenesis of rat mesenchymal stem cells through PI3K/Akt/GSK-3beta/beta-catenin signaling pathway. Biomed Res Int 2017:6027402. doi: https://doi.org/10.1155/2017/6027402, 1, 10
  58. 58.
    Stroud MJ (2018) Linker of nucleoskeleton and cytoskeleton complex proteins in cardiomyopathy. Biophys Rev 10:1033–1051.  https://doi.org/10.1007/s12551-018-0431-6 CrossRefGoogle Scholar
  59. 59.
    Stroud MJ, Banerjee I, Veevers J, Chen J (2014) Linker of nucleoskeleton and cytoskeleton complex proteins in cardiac structure, function, and disease. Circ Res 114:538–548.  https://doi.org/10.1161/circresaha.114.301236 CrossRefGoogle Scholar
  60. 60.
    Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC, Pinter J, Pajerowski JD, Spinler KR, Shin JW, Tewari M, Rehfeldt F, Speicher DW, Discher DE (2013) Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104.  https://doi.org/10.1126/science.1240104 CrossRefGoogle Scholar
  61. 61.
    Talwar S, Jain N, Shivashankar GV (2014) The regulation of gene expression during onset of differentiation by nuclear mechanical heterogeneity. Biomaterials 35:2411–2419.  https://doi.org/10.1016/j.biomaterials.2013.12.010 CrossRefGoogle Scholar
  62. 62.
    Vartiainen MK, Guettler S, Larijani B, Treisman R (2007) Nuclear actin regulates dynamic subcellular localization and activity of the SRF cofactor MAL. Science 316:1749–1752.  https://doi.org/10.1126/science.1141084 CrossRefGoogle Scholar
  63. 63.
    Vidal C, Bermeo S, Fatkin D, Duque G (2012) Role of the nuclear envelope in the pathogenesis of age-related bone loss and osteoporosis. BoneKEy reports 1:62.  https://doi.org/10.1038/bonekey.2012.62 CrossRefGoogle Scholar
  64. 64.
    Wang Y, Tao Y, Hyman ME, Li J, Chen Y (2009) Osteoporosis in China. Osteoporos Int 20:1651–1662.  https://doi.org/10.1007/s00198-009-0925-y CrossRefGoogle Scholar
  65. 65.
    Wen JH, Vincent LG, Fuhrmann A, Choi YS, Hribar KC, Taylor-Weiner H, Chen S, Engler AJ (2014) Interplay of matrix stiffness and protein tethering in stem cell differentiation. Nat Mater 13:979–987.  https://doi.org/10.1038/nmat4051 CrossRefGoogle Scholar
  66. 66.
    Werner M, Blanquer SB, Haimi SP, Korus G, Dunlop JW, Duda GN, Grijpma DW, Petersen A (2017) Surface curvature differentially regulates stem cell migration and differentiation via altered attachment morphology and nuclear deformation. Adv Sci (Weinh) 4:1600347.  https://doi.org/10.1002/advs.201600347 CrossRefGoogle Scholar
  67. 67.
    Xie J, Zhang D, Zhou C, Yuan Q, Ye L, Zhou X (2018) Substrate elasticity regulates adipose-derived stromal cell differentiation towards osteogenesis and adipogenesis through beta-catenin transduction. Acta Biomater 79:83–95.  https://doi.org/10.1016/j.actbio.2018.08.018 CrossRefGoogle Scholar
  68. 68.
    Yang SH, Meta M, Qiao X, Frost D, Bauch J, Coffinier C, Majumdar S, Bergo MO, Young SG, Fong LG (2006) A farnesyltransferase inhibitor improves disease phenotypes in mice with a Hutchinson-Gilford progeria syndrome mutation. J Clin Invest 116:2115–2121.  https://doi.org/10.1172/jci28968 CrossRefGoogle Scholar
  69. 69.
    Ye R, Hao J, Song J, Zhao Z, Fang S, Wang Y, Li J (2014) Microenvironment is involved in cellular response to hydrostatic pressures during chondrogenesis of mesenchymal stem cells. J Cell Biochem 115:1089–1096.  https://doi.org/10.1002/jcb.24743 CrossRefGoogle Scholar
  70. 70.
    Zastrow MS, Vlcek S, Wilson KL (2004) Proteins that bind A-type lamins: integrating isolated clues. J Cell Sci 117:979–987.  https://doi.org/10.1242/jcs.01102 CrossRefGoogle Scholar

Copyright information

© University of Navarra 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduChina
  2. 2.Department of Orthodontics, West China Hospital of StomatologySichuan UniversityChengduChina
  3. 3.Department of General Dentistry, West China Hospital of StomatologySichuan UniversityChengduChina
  4. 4.Program in Biological Sciences in Dental MedicineHarvard School of Dental MedicineBostonUSA

Personalised recommendations