Journal of Physiology and Biochemistry

, Volume 74, Issue 4, pp 559–568 | Cite as

Effects of exosomes from LPS-activated macrophages on adipocyte gene expression, differentiation, and insulin-dependent glucose uptake

  • Nicolás De Silva
  • Mirian Samblas
  • J. Alfredo Martínez
  • Fermín I. Milagro
Original Article


Obesity is usually associated with low-grade inflammation, which determines the appearance of comorbidities like atherosclerosis and insulin resistance. Infiltrated macrophages in adipose tissue are partly responsible of this inflammatory condition. Numerous studies point to the existence of close intercommunication between macrophages and adipocytes and pay particular attention to the proinflammatory cytokines released by both cell types. However, it has been recently described that in both, circulation and tissue level, there are extracellular vesicles (including microvesicles and exosomes) containing miRNAs, mRNAs, and proteins that can influence the inflammatory response. The objective of the present research is to investigate the effect of exosomes released by lipopolysaccharide (LPS)-activated macrophages on gene expression and cell metabolism of adipocytes, focusing on the differential exosomal miRNA pattern between LPS- and non-activated macrophages. The results show that the exosomes secreted by the macrophages do not influence the preadipocyte-to-adipocyte differentiation process, fat storage, and insulin-mediated glucose uptake in adipocytes. However, exosomes induce changes in adipocyte gene expression depending on their origin (LPS- or non-activated macrophages), including genes such as CXCL5, SOD, TNFAIP3, C3, and CD34. Some of the pathways or metabolic processes upregulated by exosomes from LPS-activated macrophages are related to inflammation (complement activation, regulation of reactive oxygen species, migration and activation of leukocyte, and monocyte chemotaxis), carbohydrate catabolism, and cell activation. miR-530, chr9_22532, and chr16_34840 are more abundant in exosomes from LPS-activated macrophages, whereas miR-127, miR-143, and miR-486 are more abundant in those secreted by non-activated macrophages.


Obesity miRNA miR-127 miR-143 miR-503 Inflammation 



The authors thank Maider Varela, Ana Lorente, Neira Sáinz, and Asunción Redín for their valuable help with laboratory techniques. Sistemas Genómicos is acknowledged for the miRNA-seq.

Funding information

This work was supported by the CIBERobn and MINECO (AGL2013-45554-R).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Adachi T, Toishi T, Wu H, Kamiya T, Hara H (2009) Expression of extracellular superoxide dismutase during adipose differentiation in 3T3-L1 cells. Redox Rep 14:34–40CrossRefGoogle Scholar
  2. 2.
    Ai L, Wang X, Chen Z, Lin Q, Su D, Xu Q, Wu C, Jiang X, Xu A, Fan Z (2016) A20 reduces lipid storage and inflammation in hypertrophic adipocytes via p38 and Akt signaling. Mol Cell Biochem 420:73–83CrossRefGoogle Scholar
  3. 3.
    Alrob OA, OA KS, Naser SA (2017) MicroRNAs 33, 122, and 208: a potential novel targets in the treatment of obesity, diabetes, and heart-related diseases. J Physiol Biochem 73:307–314CrossRefGoogle Scholar
  4. 4.
    Arias N, Aguirre L, Fernández-Quintela A, González M, Lasa A, Miranda J, Macarulla MT, Portillo MP (2016) MicroRNAs involved in the browning process of adipocytes. J Physiol Biochem 72:509–521CrossRefGoogle Scholar
  5. 5.
    Bouloumié A, Curat CA, Sengenès C, Lolmède K, Miranville A, Busse R (2005) Role of macrophage tissue infiltration in metabolic diseases. Curr Opin Clin Nutr Metab Care 8:347–354CrossRefGoogle Scholar
  6. 6.
    Caporali A, Meloni M, Völlenkle C, Bonci D, Sala-Newby GB, Addis R, Spinetti G, Losa S, Masson R, Baker AH, Agami R, le Sage C, Condorelli G, Madeddu P, Martelli F, Emanueli C (2011) Deregulation of microRNA-503 contributes to diabetes mellitus-induced impairment of endothelial function and reparative angiogenesis after limb ischemia. Circulation 123:282–291CrossRefGoogle Scholar
  7. 7.
    Chavey C, Lazennec G, Lagarrigue S, Clapé C, Iankova I, Teyssier J, Annicotte JS, Schmidt J, Mataki C, Yamamoto H, Sanches R, Guma A, Stich V, Vitkova M, Jardin-Watelet B, Renard E, Strieter R, Tuthill A, Hotamisligil GS, Vidal-Puig A, Zorzano A, Langin D, Fajas L (2009) CXC ligand 5 is an adipose-tissue derived factor that links obesity to insulin resistance. Cell Metab 9:339–349CrossRefGoogle Scholar
  8. 8.
    Dalmas E, Clément K, Guerre-Millo M (2011) Defining macrophage phenotype and function in adipose tissue. Trends Immunol 32:307–314CrossRefGoogle Scholar
  9. 9.
    Deiuliis JA, Syed R, Duggineni D, Rutsky J, Rengasamy P, Zhang J, Huang K, Needleman B, Mikami D, Perry K, Hazey J, Rajagopalan S (2016) Visceral adipose MicroRNA 223 is upregulated in human and murine obesity and modulates the inflammatory phenotype of macrophages. PLoS One 11:e0165962CrossRefGoogle Scholar
  10. 10.
    Deng ZB, Poliakov A, Hardy RW, Clements R, Liu C, Liu Y, Wang J, Xiang X, Zhang S, Zhuang X, Shah SV, Sun D, Michalek S, Grizzle WE, Garvey T, Mobley J, Zhang HG (2009) Adipose tissue exosome-like vesicles mediate activation of macrophage-induced insulin resistance. Diabetes 58:2498–2505CrossRefGoogle Scholar
  11. 11.
    Ferrante SC, Nadler EP, Pillai DK, Hubal MJ, Wang Z, Wang JM, Gordish-Dressman H, Koeck E, Sevilla S, Wiles AA, Freishtat RJ (2015) Adipocyte-derived exosomal miRNAs: a novel mechanism for obesity-related disease. Pediatr Res 77:447–454CrossRefGoogle Scholar
  12. 12.
    Forrest ARR, Kanamori-Katayama M, Tomaru Y, Lassmann T, Ninomiya N, Takahashi Y, de Hoon MJ, Kubosaki A, Kaiho A, Suzuki M, Yasuda J, Kawai J, Hayashizaki Y, Hume DA, Suzuki H (2010) Induction of microRNAs, mir-155, mir-222, mir-424 and mir-503, promotes monocytic differentiation through combinatorial regulation. Leukemia 24:460–466CrossRefGoogle Scholar
  13. 13.
    Friedländer MR, Mackowiak SD, Li N, Chen W, Rajewsky N (2012) miRDeep2 accurately identifies known and hundreds of novel microRNA genes in seven animal clades. Nucleic Acids Res 40:37–52CrossRefGoogle Scholar
  14. 14.
    Gao X, Salomon C, Freeman DJ (2017) Extracellular vesicles from adipose tissue-a potential role in obesity and type 2 diabetes? Front Endocrinol 8:202CrossRefGoogle Scholar
  15. 15.
    Gutzeit C, Nagy N, Gentile M, Lyberg K, Gumz J, Vallhov H, Puga I, Klein E, Gabrielsson S, Cerutti A, Scheynius A (2014) Exosomes derived from Burkitt’s lymphoma cell lines induce proliferation, differentiation, and class-switch recombination in B cells. J Immunol 19:5852–5862CrossRefGoogle Scholar
  16. 16.
    Huang-Doran I, Zhang CY, Vidal-Puig A (2017) Extracellular vesicles: novel mediators of cell communication in metabolic disease. Trends Endocrinol Metab 28:3–18CrossRefGoogle Scholar
  17. 17.
    Jordan SD, Krüger M, Willmes DM, Redemann N, Wunderlich FT, Brönneke HS, Merkwirth C, Kashkar H, Olkkonen VM, Böttger T, Braun T, Seibler J, Brüning JC (2011) Obesity-induced overexpression of miRNA-143 inhibits insulin-stimulated AKT activation and impairs glucose metabolism. Nat Cell Biol 13:434–446CrossRefGoogle Scholar
  18. 18.
    Kabir SM, Lee E-S, Son D-S (2014) Chemokine network during adipogenesis in 3T3-L1 cells: differential response between growth and proinflammatory factor in preadipocytes vs. adipocytes. Adipocyte 3:97–106CrossRefGoogle Scholar
  19. 19.
    Keuper M, Dzyakanchuk A, Amrein KE, Wabitsch M, Fischer-Posovszky P (2011) THP-1 macrophages and SGBS adipocytes—a new human in vitro model system of inflamed adipose tissue. Front Endocrinol 2:89CrossRefGoogle Scholar
  20. 20.
    Koeck ES, Iordanskaia T, Sevilla S, Ferrante SC, Hubal MJ, Freishtat RJ, Nadler EP (2014) Adipocyte exosomes induce transforming growth factor beta pathway dysregulation in hepatocytes: a novel paradigm for obesity-related liver disease. J Surg Res 192:268–275CrossRefGoogle Scholar
  21. 21.
    Kranendonk ME, Visseren FL, van Balkom BW, Nolte-‘t Hoen EN, van Herwaarden JA, de Jager W, Schipper HS, Brenkman AB, Verhaar MC, Wauben MH, Kalkhoven E (2014) Human adipocyte extracellular vesicles in reciprocal signaling between adipocytes and macrophages. Obesity 22:1296–1308CrossRefGoogle Scholar
  22. 22.
    Kranendonk ME, Visseren FL, van Herwaarden JA, Nolte-‘t Hoen EN, de Jager W, Wauben MH, Kalkhoven E (2014) Effect of extracellular vesicles of human adipose tissue on insulin signaling in liver and muscle cells. Obesity 22:2216–2223CrossRefGoogle Scholar
  23. 23.
    Lin J, Liu Q, Zhang H, Huang X, Zhang R, Chen S, Wang X, Yu B, Hou J (2017) C1q/tumor necrosis factor-related protein-3 protects macrophages against LPS-induced lipid accumulation, inflammation and phenotype transition via PPARγ and TLR4-mediated pathways. Oncotarget 8:82541–82557PubMedPubMedCentralGoogle Scholar
  24. 24.
    Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550CrossRefGoogle Scholar
  25. 25.
    Man X-F, Tan S-W, Tang H-N, Guo Y, Tang C-Y, Tang J, Zhou CL, Zhou HD (2016) MiR-503 inhibits adipogenesis by targeting bone morphogenetic protein receptor 1a. Am J Transl Res 8:2727–2737PubMedPubMedCentralGoogle Scholar
  26. 26.
    Marques-Rocha JL, Samblas M, Milagro FI, Bressan J, Martínez JA, Marti A (2015) Noncoding RNAs, cytokines, and inflammation-related diseases. FASEB J 29:3595–3611CrossRefGoogle Scholar
  27. 27.
    McGregor RA, Choi MS (2011) microRNAs in the regulation of adipogenesis and obesity. Curr Mol Med 11:304–316CrossRefGoogle Scholar
  28. 28.
    Müller G, Schneider M, Biemer-Daub G, Wied S (2011) Microvesicles released from rat adipocytes and harboring glycosylphosphatidylinositol-anchored proteins transfer RNA stimulating lipid synthesis. Cell Signal 23:1207–1223CrossRefGoogle Scholar
  29. 29.
    Ogawa R, Tanaka C, Sato M, Nagasaki H, Sugimura K, Okumura K, Nakagawa Y, Aoki N (2010) Adipocyte-derived microvesicles contain RNA that is transported into macrophages and might be secreted into blood circulation. Biochem Biophys Res Commun 398:723–729CrossRefGoogle Scholar
  30. 30.
    Onat A, Hergenç G, Can G, Kaya Z, Yuksel H (2010) Serum complement C3: a determinant of cardiometabolic risk, additive to the metabolic syndrome, in middle-aged population. Metabolism 59:628–634CrossRefGoogle Scholar
  31. 31.
    Palacios-Ortega S, Varela-Guruceaga M, Algarabel M, Ignacio Milagro F, Alfredo Martínez J, de Miguel C (2015) Effect of TNF-alpha on caveolin-1 expression and insulin signaling during adipocyte differentiation and in mature adipocytes. Cell Physiol Biochem 36:1499–1516CrossRefGoogle Scholar
  32. 32.
    Palacios-Ortega S, Varela-Guruceaga M, Martínez JA, de Miguel C, Milagro FI (2016) Effects of high glucose on caveolin-1 and insulin signaling in 3T3-L1 adipocytes. Adipocyte 5:65–80CrossRefGoogle Scholar
  33. 33.
    Regassa A, Kim WK (2015) Transcriptome analysis of hen preadipocytes treated with an adipogenic cocktail (DMIOA) with or without 20(S)-hydroxylcholesterol. BMC Genomics 16:1–15CrossRefGoogle Scholar
  34. 34.
    Sano S, Izumi Y, Yamaguchi T, Yamazaki T, Tanaka M, Shiota M, Osada-Oka M, Nakamura Y, Wei M, Wanibuchi H, Iwao H, Yoshiyama M (2014) Lipid synthesis is promoted by hypoxic adipocyte-derived exosomes in 3T3-L1 cells. Biochem Biophys Res Commun 445:327–333CrossRefGoogle Scholar
  35. 35.
    Scholz-Romero K, Zuñiga F, Lamperti L, Truong G, Kobayashi M, Duncombe G, Mitchell M, Rice G, Salomon C (2015) Trophoblast-derived exosomes under diabetic conditions modulate glucose uptake in skeletal muscle cells involving mTOR pathway. Placenta 36:A40CrossRefGoogle Scholar
  36. 36.
    Suganami T, Nishida J, Ogawa Y (2005) A paracrine loop between adipocytes and macrophages aggravates inflammatory changes: role of free fatty acids and tumor necrosis factor. Arterioscler Thromb Vasc Biol 25:2062–2068CrossRefGoogle Scholar
  37. 37.
    Takanabe R, Ono K, Abe Y, Takaya T, Horie T, Wada H, Kita T, Satoh N, Shimatsu A, Hasegawa K (2008) Up-regulated expression of microRNA-143 in association with obesity in adipose tissue of mice fed high-fat diet. Biochem Biophys Res Commun 376:728–732CrossRefGoogle Scholar
  38. 38.
    Xie T, Liang J, Liu N, Wang Q, Li Y, Noble PW, Jiang D (2012) miRNA-127 inhibits lung inflammation by targeting IgG Fcγ receptor I. J Immunol 188:2437–2444CrossRefGoogle Scholar
  39. 39.
    Ying H, Kang Y, Zhang H, Zhao D (2015) MiR-127 modulates macrophage polarization and promotes lung inflammation and injury by activating the JNK pathway. J Immunol 194:1239–1251CrossRefGoogle Scholar

Copyright information

© University of Navarra 2018

Authors and Affiliations

  1. 1.Department of Nutrition, Food Science and Physiology, Centre for Nutrition ResearchUniversity of NavarraPamplonaSpain
  2. 2.CIBERobn, Fisiopatología de la Obesidad y la NutriciónCarlos III Health InstituteMadridSpain
  3. 3.IdiSNA, Navarra Institute for Health ResearchPamplonaSpain
  4. 4.IMDEA FoodMadridSpain

Personalised recommendations