Advertisement

Journal of Physiology and Biochemistry

, Volume 74, Issue 1, pp 159–169 | Cite as

Maternal obesity is associated with gut microbial metabolic potential in offspring during infancy

  • Tomás Cerdó
  • Alicia Ruiz
  • Ruy Jáuregui
  • Hatim Azaryah
  • Francisco José Torres-Espínola
  • Luz García-Valdés
  • M. Teresa Segura
  • Antonio Suárez
  • Cristina Campoy
Original Article

Abstract

Children born to obese mothers are at increased risk for obesity, but the mechanisms behind this association are not fully understood. Our study aimed to investigate differences in the functions encoded by the microbiome of infants at 18 months of age when the transition from early infant-feeding to solid family foods is established. To investigate the impact of maternal prepregnancy body mass index on infants’ gut microbiome, faecal samples from infants born to normoweight (n = 21) and obese mothers (n = 18) were analysed by 16S rRNA gene sequencing and a functional-inference-based microbiome analysis. Our results indicated that Firmicutes was significantly enriched in infants born to normoweight mothers whereas Bacteroidetes was significantly enriched in infants born to obese women. In both microbiomes, the greatest number of genes (>50%) that were assigned a function encoded for proteins involved in “metabolism” among tier 1 KEGG Orthology (KO) categories. At lower KO functional categories, the microbiome of infants born to normoweight mothers was characterized by a significant enrichment in the abundances of “pentose phosphate pathway” (p = 0.037), “lysine biosynthesis” (p = 0.043), “glycerolipid metabolism” (p = 0.042), and “C5-branched dibasic acid metabolism” (p = 0.045). Notably, the microbiome of infants born to obese mothers was significantly enriched in “streptomycin biosynthesis” (p = 0.047), “sulphur metabolism” (p = 0.041), “taurine and hypotaurine metabolism” (p = 0.036), and “lipopolysaccharide biosynthesis” (p = 0.043). In summary, our study showed that maternal prepregnancy obesity may imprint a selective gut microbial composition during late infancy with distinct functional performances.

Keywords

Gut microbiota Metabolism Maternal obesity Infant Microbiome 

Notes

Acknowledgments

This work was supported by the European Union’s 7th Framework Programme under grant agreement no. 613979 (MyNewGut Project 2013/KB/613979) and no. 329812 (MC IEF, NutriOmics) and by the Spanish Ministry of Economy and Competitiveness (MINECO) BFU2012-40254-C03-01. Tomás Cerdó participated in the PhD Program in Biomedicine of the University of Granada and is a fellow of the FPI (BES-2013-065133) Program at the Spanish Ministry of Economy and Competitiveness. This article will be part of the Doctoral PhD of Tomás Cerdó.

Supplementary material

13105_2017_577_MOESM1_ESM.docx (12 kb)
Supplementary Table S1 (DOCX 11 kb)
13105_2017_577_MOESM2_ESM.docx (12 kb)
Supplementary Table S2 (DOCX 11 kb)
13105_2017_577_MOESM3_ESM.docx (12 kb)
Supplementary Table S3 (DOCX 11 kb)
13105_2017_577_MOESM4_ESM.docx (19 kb)
Supplementary Table S4 (DOCX 18 kb)
13105_2017_577_MOESM5_ESM.docx (19 kb)
Supplementary Table S5 (DOCX 19 kb)
13105_2017_577_MOESM6_ESM.docx (14 kb)
Supplementary Table S6 (DOCX 13 kb)
13105_2017_577_MOESM7_ESM.docx (28 kb)
Supplementary Table S7 (DOCX 27 kb)

References

  1. 1.
    Adlerberth I, Wold AE (2009) Establishment of the gut microbiota in Western infants. Acta paediatrica (Oslo, Norway: 1992);98:229–38Google Scholar
  2. 2.
    Allin KH, Nielsen T, Pedersen O (2015) Mechanisms in endocrinology: gut microbiota in patients with type 2 diabetes mellitus. Eur J Endocrinol 172:R167–R177CrossRefPubMedGoogle Scholar
  3. 3.
    Arrieta M-C, Stiemsma LT, Dimitriu PA, Thorson L, Russell S, Yurist-Doutsch S, et al. (2015) Early infancy microbial and metabolic alterations affect risk of childhood asthma Sci Transl Med, 7(307), 307ra152-307ra152Google Scholar
  4. 4.
    Bäckhed F, Roswall J, Peng Y, Feng Q, Jia H, Kovatcheva-Datchary P et al (2015) Dynamics and stabilization of the human gut microbiome during the first year of life. Cell Host Microbe 17(5):690–703CrossRefPubMedGoogle Scholar
  5. 5.
    Berglund SK, García-Valdés L, Torres-Espinola FJ, Segura MT, Martínez-Zaldívar C, Aguilar MJ et al (2016) Maternal, fetal and perinatal alterations associated with obesity, overweight and gestational diabetes: an observational cohort study (PREOBE). BMC Public Health 16:207CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Brook I, Finegold SM (1979) Bacteriology and therapy of lung abscess in children. J Pediatr 94:10–12CrossRefPubMedGoogle Scholar
  7. 7.
    Cabreiro F, Gems D (2013) Worms need microbes too: microbiota, health and aging in Caenorhabditis elegans. EMBO molecular medicine 5:1300–1310CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Camarinha-Silva A, Jauregui R, Chaves-Moreno D, Oxley AP, Schaumburg F, Becker K et al (2014) Comparing the anterior nare bacterial community of two discrete human populations using Illumina amplicon sequencing. Environ Microbiol 16:2939–2952CrossRefPubMedGoogle Scholar
  9. 9.
    Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O et al (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58:1091–1103CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cerdó T, García-Valdés L, Altmäe S, Ruíz A, Suárez A, Campoy C (2016) Role of microbiota function during early life on child’s neurodevelopment. Trends Food Sci Technol 57:273–288CrossRefGoogle Scholar
  12. 12.
    Cerdó T, Ruiz A, Campoy C. (2017) Human gut microbiota and obesity during development. Adiposity-Omics and Molecular Understanding: InTech; 2017Google Scholar
  13. 13.
    Clarke SF, Murphy EF, O’Sullivan O, Ross RP, O’Toole PW, Shanahan F et al (2013) Targeting the microbiota to address diet-induced obesity: a time dependent challenge. PLoS One 8:e65790CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Clemente JC, Ursell LK, Parfrey LW, Knight R (2012) The impact of the gut microbiota on human health: an integrative view. Cell 148:1258–1270CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Cole JR, Chai B, Farris RJ, Wang Q, Kulam-Syed-Mohideen AS, McGarrell DM et al (2007) The ribosomal database project (RDP-II): introducing myRDP space and quality controlled public data. Nucleic Acids Res 35:D169–DD72CrossRefPubMedGoogle Scholar
  16. 16.
    Collado MC, Isolauri E, Laitinen K, Salminen S (2010) Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during early infancy: a prospective follow-up study initiated in early pregnancy. Am J Clin Nutr 92:1023–1030CrossRefPubMedGoogle Scholar
  17. 17.
    Cox LM, Yamanishi S, Sohn J, Alekseyenko AV, Leung JM, Cho I et al (2014) Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158:705–721CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, et al (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proceedings of the National Academy of Sciences;107:11971-5Google Scholar
  19. 19.
    De Filippis F, Pellegrini N, Vannini L, Jeffery IB, La Storia A, Laghi L, et al (2015) High-level adherence to a Mediterranean diet beneficially impacts the gut microbiota and associated metabolome. Gut: gutjnl-2015-309957Google Scholar
  20. 20.
    Erkosar B, Storelli G, Defaye A, Leulier F (2013) Host-intestinal microbiota mutualism:“learning on the fly”. Cell Host Microbe 13:8–14CrossRefPubMedGoogle Scholar
  21. 21.
    Fernandes J, Su W, Rahat-Rozenbloom S, Wolever TMS, Comelli EM (2014) Adiposity, gut microbiota and faecal short chain fatty acids are linked in adult humans. Nutr Diabetes 4(6):e121CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Ferrer M, Ruiz A, Lanza F, Haange SB, Oberbach A, Till H et al (2013) Microbiota from the distal guts of lean and obese adolescents exhibit partial functional redundancy besides clear differences in community structure. Environ Microbiol 15:211–226CrossRefPubMedGoogle Scholar
  23. 23.
    Flint HJ, Scott KP, Duncan SH, Louis P, Forano E (2012) Microbial degradation of complex carbohydrates in the gut. Gut Microbes 3:289–306CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Flint HJ, Scott KP, Louis P, Duncan SH (2012) The role of the gut microbiota in nutrition and health. Nat Rev Gastroenterol Hepatol 9:577–589CrossRefPubMedGoogle Scholar
  25. 25.
    Galley JD, Bailey M, Dush CK, Schoppe-Sullivan S, Christian LM (2014) Maternal obesity is associated with alterations in the gut microbiome in toddlers. PLoS One 9:e113026CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Garcia-Mantrana I, Collado MC (2016) Obesity and overweight: impact on maternal and milk microbiome and their role for infant health and nutrition. Mol Nutr Food Res 60:1865–1875CrossRefPubMedGoogle Scholar
  27. 27.
    Human Microbiome Project C (2012) A framework for human microbiome research. Nature 486:215–221CrossRefGoogle Scholar
  28. 28.
    Ignacio A, Fernandes MR, Rodrigues VAA, Groppo FC, Cardoso AL, Avila-Campos MJ et al (2016) Correlation between body mass index and faecal microbiota from children. Clin Microbiol Infect 22:258. e1–258. e8CrossRefGoogle Scholar
  29. 29.
    Kanehisa M, Goto S, Sato Y, Furumichi M, Tanabe M (2011) KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids research: gkr988Google Scholar
  30. 30.
    Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B et al (2013) Gut metagenome in European women with normal, impaired and diabetic glucose control. Nature 498:99–103CrossRefPubMedGoogle Scholar
  31. 31.
    Langille MG, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA et al (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    La Rosa PS, Warner BB, Zhou Y, Weinstock GM, Sodergren E, Hall-Moore CM, et al (2014) Patterned progression of bacterial populations in the premature infant gut. Proceedings of the National Academy of Sciences;111:12522-7Google Scholar
  33. 33.
    Lam YY, Ha CWY, Campbell CR, Mitchell AJ, Dinudom A, Oscarsson J et al (2012) Increased gut permeability and microbiota change associate with mesenteric fat inflammation and metabolic dysfunction in diet-induced obese mice. PLoS One 7:e34233CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Laursen MF, Andersen LBB, Michaelsen KF, Mølgaard C, Trolle E, Bahl MI et al (2016) Infant gut microbiota development is driven by transition to family foods independent of maternal obesity. Msphere 1:e00069–e00015CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023CrossRefPubMedGoogle Scholar
  36. 36.
    Linden, D. R., Levitt, M. D., Farrugia, G., & Szurszewski, J. H (2010) Endogenous production of H2S in the gastrointestinal tract: still in search of a physiologic function. Antioxid Redox Signal, 12(9), 1135–1146Google Scholar
  37. 37.
    Linden DR. (2014) Hydrogen sulfide signaling in the gastrointestinal tract. Antioxid Redox Signal. 10;20(5):818-30. doi:  10.1089/ars.2013.5312
  38. 38.
    Machiels K, Joossens M, Sabino J, De Preter V, Arijs I, Eeckhaut V, et al. (2013) A decrease of the butyrate-producing species Roseburia hominis and Faecalibacterium prausnitzii defines dysbiosis in patients with ulcerative colitis. Gut: gutjnl-2013Google Scholar
  39. 39.
    Martínez I, Lattimer JM, Hubach KL, Case JA, Yang J, Weber CG et al (2013) Gut microbiome composition is linked to whole grain-induced immunological improvements. ISME J 7:269–280CrossRefPubMedGoogle Scholar
  40. 40.
    McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A et al (2012) An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. The ISME Journal 6:610–618CrossRefPubMedGoogle Scholar
  41. 41.
    Miller TL, Wolin MJ (1996) Pathways of acetate, propionate, and butyrate formation by the human fecal microbial flora. Appl Environ Microbiol 62:1589–1592PubMedPubMedCentralGoogle Scholar
  42. 42.
    Mueller NT, Shin H, Pizoni A, Werlang IC, Matte U, Goldani MZ, Goldani HAS, Dominguez-Bello MG (2016) Birth mode-dependent association between pre-pregnancy maternal weight status and the neonatal intestinal microbiome. Sci Rep 6Google Scholar
  43. 43.
    Nakayama J, Yamamoto A, Palermo-Conde LA, Higashi K, Sonomoto K, Tan J, et al. (2017) Impact of westernized diet on gut microbiota in children on Leyte Island. Front Microbiol. 2017 Feb 14;8:197.Google Scholar
  44. 44.
    Natamba BK, Sanchez SE, Gelaye B, Williams MA (2016) Concordance between self-reported pre-pregnancy body mass index (BMI) and BMI measured at the first prenatal study contact. BMC Pregnancy and Childbirth 16(1):187CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB et al (2013) Package ‘vegan’. Community Ecology package, version 2(9)Google Scholar
  46. 46.
    Parks DH, Beiko RG (2010) Identifying biologically relevant differences between metagenomic communities. Bioinformatics (Oxford, England);26:715-21Google Scholar
  47. 47.
    Payne AN, Chassard C, Zimmermann M, Müller P, Stinca S, Lacroix C (2011) The metabolic activity of gut microbiota in obese children is increased compared with normal-weight children and exhibits more exhaustive substrate utilization. Nutr Diabetes 1(7):e12CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F et al (2012) A metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 490:55–60CrossRefPubMedGoogle Scholar
  49. 49.
    Qin J, Li R, Raes J, Arumugam M, Burgdorf KS, Manichanh C et al (2010) A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464:59–65CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Rahat-Rozenbloom, S., Fernandes, J., Gloor, G. B., & Wolever, T. M (2014) Evidence for greater production of colonic short-chain fatty acids in overweight than lean humans. Int J Obes, 38(12), 1525–1531Google Scholar
  51. 51.
    Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, et al (2013) Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science (New York, NY);341:1241214Google Scholar
  52. 52.
    Ríos-Covián D, Ruas-Madiedo P, Margolles A, Gueimonde M, de los Reyes-Gavilán CG, Salazar N (2016) Intestinal short chain fatty acids and their link with diet and human health. Front Microbiol 7Google Scholar
  53. 53.
    Roca-Saavedra P, Mendez-Vilabrille V, Miranda JM, Nebot C, Cardelle-Cobas A, Franco CM, Cepeda A (2017) Food additives, contaminants and other minor components: effects on human gut microbiota—a review. J Physiol Biochem:1–15Google Scholar
  54. 54.
    Saad MJ, Santos A, Prada PO. (2016) Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda). 2016 Jul;31(4):283-93. doi:  10.1152/physiol.00041.2015
  55. 55.
    Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB et al (2009) Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol 75:7537–7541CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Schwiertz A, Taras D, Schafer K, Beijer S, Bos NA, Donus C, et al (2010) Microbiota and SCFA in lean and overweight healthy subjects. Obesity (Silver Spring, Md);18:190-5Google Scholar
  57. 57.
    Shreiner AB, Kao JY, Young VB (2015) The gut microbiome in health and in disease. Curr Opin Gastroenterol 31(1):69CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Soderborg TK, Borengasser SJ, Barbour LA, Friedman JE (2016) Microbial transmission from mothers with obesity or diabetes to infants: an innovative opportunity to interrupt a vicious cycle. Diabetologia 59:895–906CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Tagliabue A, Elli M (2013) The role of gut microbiota in human obesity: recent findings and future perspectives. Nutrition, Metabolism, and Cardiovascular Diseases: NMCD 23:160–168CrossRefPubMedGoogle Scholar
  60. 60.
    Tomasova L, Konopelski P, Ufnal M. (2016) Gut bacteria and hydrogen sulfide: the new old players in circulatory system homeostasis. Molecules. 2016 Nov 17;21(11). pii: E1558Google Scholar
  61. 61.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1031CrossRefPubMedGoogle Scholar
  62. 62.
    Villanueva-Millán MJ, Pérez-Matute P, Oteo JA (2015) Gut microbiota: a key player in health and disease. A review focused on obesity. J Physiol Biochem 71(3):509–525CrossRefPubMedGoogle Scholar
  63. 63.
    Wexler HM (2007) Bacteroides: the good, the bad, and the nitty-gritty. Clin Microbiol Rev 20:593–621CrossRefPubMedPubMedCentralGoogle Scholar
  64. 64.
    Yao CK, Muir JG, Gibson PR (2016) Review article: insights into colonic protein fermentation, its modulation and potential health implications. Aliment Pharmacol Ther 43:181–196CrossRefPubMedGoogle Scholar
  65. 65.
    Yu Z, Han S, Zhu J, Sun X, Ji C, Guo X (2013) Pre-pregnancy body mass index in relation to infant birth weight and offspring overweight/obesity: a systematic review and meta-analysis. PLoS One 8(4):e61627CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© University of Navarra 2017

Authors and Affiliations

  • Tomás Cerdó
    • 1
    • 2
  • Alicia Ruiz
    • 2
    • 3
  • Ruy Jáuregui
    • 4
  • Hatim Azaryah
    • 1
    • 2
  • Francisco José Torres-Espínola
    • 1
    • 2
  • Luz García-Valdés
    • 1
    • 2
  • M. Teresa Segura
    • 1
    • 2
  • Antonio Suárez
    • 3
  • Cristina Campoy
    • 1
    • 2
    • 5
    • 6
  1. 1.Department of Pediatrics, School of MedicineUniversity of GranadaGranadaSpain
  2. 2.EURISTIKOS Excellence Centre for Paediatric Research, Biomedical Research CentreUniversity of GranadaGranadaSpain
  3. 3.Department of Biochemistry and Molecular Biology 2, Biomedical Research CentreUniversity of GranadaGranadaSpain
  4. 4.AgResearch GrasslandsPalmerston NorthNew Zealand
  5. 5.Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Carlos III Health InstituteGranadaSpain
  6. 6.Department of Pediatrics, Faculty of MedicineUniversity of GranadaGranadaSpain

Personalised recommendations