Journal of Physiology and Biochemistry

, Volume 73, Issue 4, pp 511–521 | Cite as

Oxidative stress-dependent contribution of HMGB1 to the interplay between apoptosis and autophagy in diabetic rat liver

  • Anja Petrović
  • Desanka Bogojević
  • Aleksandra Korać
  • Igor Golić
  • Sofija Jovanović-Stojanov
  • Vesna Martinović
  • Svetlana Ivanović-Matić
  • Jelena Stevanović
  • Goran Poznanović
  • Ilijana GrigorovEmail author
Original Article


The progression of oxidative stress, resulting cell damage, and cell death underlies the etiology of liver damage/dysfunction as a complication of diabetes. High-mobility group box 1 (HMGB1) protein, a chromatin-binding nuclear protein and damage-associated molecular pattern molecule, is integral to oxidative stress and signaling pathways regulating cell death and cell survival. We previously found that in streptozotocin (STZ)-induced diabetic rats, reduction of oxidative stress after melatonin administration lowered necrotic cell death and increased expression of HMGB1 and hepatocellular damage. In the present study, we examined whether alleviation of diabetes-attendant oxidative stress and ensuing change in HMGB1 expression influence the dynamic equilibrium between apoptosis/autophagy and liver damage. We observed that elevated HMGB1 protein levels in diabetic rat liver accompanied increased interactions of HMGB1 with TLR4 and RAGE, and activation of the intrinsic apoptotic pathway and Beclin 1-dependent autophagy. The absence of p62 degradation in diabetic rat liver pointed to defective autophagy which was responsible for lower autophagosome/autophagolysosome formation and an increased apoptosis/autophagy ratio. Compared to diabetic rats, in melatonin-treated diabetic rats, the structure of liver cells was preserved, HMGB1/TLR4 interaction and downstream apoptotic signaling were significantly reduced, HMGB1/Beclin 1 colocalization and interactions were augmented and Beclin 1-mediated autophagy, mithophagy in particular, were increased. We concluded that in mild oxidative stress, HMGB1 is cytoprotective, whereas in intense oxidative stress, HMGB1 actions promote cell death and liver damage. Since reduced HMGB1 binds to RAGE but not to TLR4, redox modification of HMGB1 as a mechanism regulating the cross-talk between apoptosis and autophagy in diabetes is discussed.


Apoptosis/autophagy interplay Diabetes Liver damage HMGB1 Melatonin Oxidative stress 



This work was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia, Grant No. 173020.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Aloya R, Shirvan A, Grimberg H, Reshef A, Levin G, Kidron D, Cohen A, Ziv I (2006) Molecular imaging of cell death in vivo by a novel small molecule probe. Apoptosis 11:2089–2101CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Arambašić J, Mihailović M, Bogojević D, Ivanović-Matić S, Uskoković A, Poznanović G, Grigorov I (2013) Haptoglobin and the inflammatory and oxidative status in experimental diabetic rats: antioxidant role of haptoglobin. J Physiol Biochem 69:45–58CrossRefGoogle Scholar
  3. 3.
    Bjorkoy G, Lamark T, Pankiv S, Overvatn A, Brech A, Johansen T (2009) Monitoring autophagic degradation of p62/SQSTM1. Methods Enzymol 452:181–197CrossRefPubMedGoogle Scholar
  4. 4.
    Brenner C, Galluzzi L, Kepp O, Kroemer G (2013) Decoding cell death signals in liver inflammation. J Hepatol 59:583–594CrossRefPubMedGoogle Scholar
  5. 5.
    Chatila R, West AB (1996) Hepatomegaly and abnormal liver tests due to glycogenosis in adults with diabetes. Medicine 75:327–333CrossRefPubMedGoogle Scholar
  6. 6.
    Ding HS, Yang J, Chen P, Yang J, Bo SQ, Ding JW, Yu QQ (2013) The HMGB1-TLR4 axis contributes to myocardial ischemia/reperfusion injury via regulation of cardiomyocyte apoptosis. Gene 527:389–393CrossRefPubMedGoogle Scholar
  7. 7.
    Eşrefoğlu M, Gul M, Ateş B, Selimoğlu MA (2006) Ultrastructural clues for the protective effect of melatonin against oxidative damage in cerulein-induced pancreatitis. J Pineal Res 40:92–97CrossRefPubMedGoogle Scholar
  8. 8.
    Grigorov I, Bogojević D, Jovanović S, Petrović A, Ivanović-Matić S, Zolotarevski L, Poznanović G, Martinović V (2014) Hepatoprotective effects of melatonin against pronecrotic cellular events in streptozotocin-induced diabetic rats. J Physiol Biochem 70:441–450CrossRefPubMedGoogle Scholar
  9. 9.
    González-Rodríguez A, Mayoral R, Agra N, Valdecantos MP, Pardo V, Miquilena-Colina ME, Vargas-Castrillón J, Lo Iacono O, Corazzari M, Fimia GM, Piacentini M, Muntané J, Boscá L, García-Monzón C, Martín-Sanz P, Valverde ÁM (2014) Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD. Cell Death Dis 5:e1179CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Guo Y, Wang J, Wang Z, Yang Y, Wang X, Duan Q (2010) Melatonin protects N2a against ischemia/reperfusion injury through autophagy enhancement. J Huazhong Univ Sci Technol Med Sci 30:1–7CrossRefPubMedGoogle Scholar
  11. 11.
    Hengartner MO (2000) The biochemistry of apoptosis. Nature 407:770–776CrossRefPubMedGoogle Scholar
  12. 12.
    Janko C, Filipović M, Munoz LE, Schorn C, Schett G, Ivanović-Burmazović I, Herrmann M (2014) Redox modulation of HMGB1-related signaling. Antioxid Redox Signal 20:1075–1085CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Kang R, Livesey KM, Zeh HJ, Loze MT, Tang D (2010) HMGB1: a novel Beclin 1-binding protein active in autophagy. Autophagy 6:1209–1211CrossRefPubMedGoogle Scholar
  14. 14.
    Kim I, Rodriguez-Enriquez S, Lemasters JJ (2007) Selective degradation of mitochondria by mitophagy. Arch Biochem Biophys 462:245–253CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Klionsky DJ, Abdalla FC, Abeliovich H, Abraham RT, Acevedo-Arozena A, Adeli K et al (2012) Guidelines for the use and interpretation of assays for monitoring autophagy. Autophagy 8:445–544CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Komatsu M, Ichimura Y (2010) Physiological significance of selective degradation of p62 by autophagy. FEBS Lett 584:1374–1378CrossRefPubMedGoogle Scholar
  17. 17.
    Kroemer G, Marino G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132:27–42CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Livesey KM, Kang R, Vernon P, Buchser W, Loughran P, Watkins SC, Zhang L, Manfredi JJ, Zeh HJ 3rd, Li L, Lotze MT, Tang D (2012) p53/HMGB1 complexes regulate autophagy and apoptosis. Cancer Res 72:1996–2005CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Lotze MT, Tracey KJ (2005) High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nat Rev Immunol 5:331–342CrossRefPubMedGoogle Scholar
  21. 21.
    Luedde T, Kaplowitz N, Schwabe RF (2014) Cell death and cell death responses in liver disease: mechanisms and clinical relevance. Gastroenterology 147:765–783CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G (2014) Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 15:81–94CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Matough FA, Budin SB, Hamid ZA, Alwahaibi N, Mohamed J (2012) The role of oxidative stress and antioxidants in diabetic complications. Sultan Qaboos Univ Med J 12:5–18CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Müller S, Scaffidi P, Degryse B, Bonaldi T, Ronfani L, Agresti A, Beltrame M, Bianchi ME (2001) New EMBO member’s review: the double life of HMGB1 chromatin protein: architectural factor and extracellular signal. EMBO J 20:4337–4340CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Nikoletopoulou V, Markaki M, Palikaras K, Tavernarakis N (2013) Crosstalk between apoptosis, necrosis and autophagy. Biochim Biohys Acta 1833:3448–3459CrossRefGoogle Scholar
  26. 26.
    Nowotny K, Jung T, Höhn A, Weber D, Grune T (2015) Advanced glycation end products and oxidative stress in type 2 diabetes mellitus. Biomolecules 5:194–222Google Scholar
  27. 27.
    Oltvai Z, Milliman C, Korsmeyer SJ (1993) Bcl-2 heterodimerizes in vivo with a conversed homolog, Bax, that accelerates programmed cell death. Cell 74:609–619CrossRefPubMedGoogle Scholar
  28. 28.
    Radogna F, Diederich M, Ghibelli L (2010) Melatonin: a pleiotropic molecule regulating inflammation. Biochem Pharmacol 80:1844–1852CrossRefPubMedGoogle Scholar
  29. 29.
    Singhal NK, Srivastava G, Patel DK, Jain SK, Singh MP (2011) Melatonin or silymarin reduces maneb- and paraquat-induced Parkinson′s disease phenotype in the mouse. J Pineal Res 50:97–109PubMedGoogle Scholar
  30. 30.
    Steer SA, Scarim AL, Chambers KT, Corbett JA (2006) Interleukin-1 stimulates β-cell necrosis and release of the immunological adjuvant HMGB1. PLoS Med 3:e17CrossRefPubMedGoogle Scholar
  31. 31.
    Tang D, Kang R, Cheh CW, Livesey KM, Liang X, Schapiro NE, Benschop R, Sparvero LJ, Amoscato AA, Tracey KJ, Zeh HJ, Lotze MT (2010) HMGB1 release and redox regulates autophagy and apoptosis in cancer cells. Oncogene 29:5299–5310CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Tang D, Kang R, Livesey KM, Cheh CW, Farkas A, Loughran P, Hoppe G, Bianchi ME, Tracey KJ, Zeh HJ 3rd, Lotze MT (2010) Endogenous HMGB1 regulates autophagy. J Cell Biol 190:881–892CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tang D, Kang R, Livesey KM, Zeh HJ, Lotze MT (2011) High mobility group box 1 (HMGB1) activates an autophagic response to oxidative stress. Antioxid Redox Signal 15:2185–2195CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Tang D, Loze MT, Zeh HJ, Kang R (2010) The redox protein HMGB1 regulates cell death and survival in cancer treatment. Autophagy 6:1181–1183CrossRefPubMedGoogle Scholar
  35. 35.
    Tsuruta F, Sunayama J, Mori Y, Hattori S, Shimizu S, Tsujimoto Y, Yoshioka K, Masuyama N, Gotoh Y (2004) JNK promotes Bax translocation to mitochondria through phosphorylation of 14-3-3 proteins. EMBO J 2:1889–1899CrossRefGoogle Scholar
  36. 36.
    Urbonaviciute V, Meister S, Fürnrohr BG, Frey B, Gückel E, Schett G, Herrmann M, Voll RE (2009) Oxidation of the alarmin high-mobility group box 1 protein (HMGB1) during apoptosis. Autoimmunity 42:305–307CrossRefPubMedGoogle Scholar
  37. 37.
    Wirawan E, Vande Walle L, Kersse K, Cornelis S, Claerhout S, Vanoverberghe I, Roelandt R, De Rycke R, Verspurten J, Declercq W, Agostinis P, Vanden Berghe T, Lippens S, Vandenabeele P (2010) Caspase-mediated cleavage of Beclin-1 inactivates Beclin-1-induced autophagy and enhances apoptosis by promoting the release of proapoptotic factors from mitochondria. Cell Death Dis 1:e18–Google Scholar
  38. 38.
    Yang H, Antoine DJ, Andersson U, Tracey KJ (2013) The many faces of HMGB1: molecular structure-functional activity in inflammation, apoptosis, and chemotaxis. J Leukoc Biol 93:865–873CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Yang H, Wang H, Chavan SS, Andersson U (2015) High mobility group box protein 1 (HMGB1): the prototypical endogenous danger molecule. Mol Med 21(Suppl 1):S6–S12CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Zhang S, Zhong J, Yang P, Gong F, Wang C-Y (2009) HMGB1, an innate alarmin, in the pathogenesis of type 1 diabetes. Int J Clin Exp Pathol 3:24–38PubMedGoogle Scholar

Copyright information

© University of Navarra 2017

Authors and Affiliations

  • Anja Petrović
    • 1
  • Desanka Bogojević
    • 1
  • Aleksandra Korać
    • 2
  • Igor Golić
    • 2
  • Sofija Jovanović-Stojanov
    • 1
  • Vesna Martinović
    • 1
  • Svetlana Ivanović-Matić
    • 1
  • Jelena Stevanović
    • 1
  • Goran Poznanović
    • 1
  • Ilijana Grigorov
    • 1
    Email author
  1. 1.Department of Molecular Biology, Institute for Biological Research “Siniša Stanković”University of BelgradeRepublic of BelgradeSerbia
  2. 2.Faculty of Biology, Center for Electron MicroscopyUniversity of BelgradeBelgradeSerbia

Personalised recommendations