Journal of Physiology and Biochemistry

, Volume 73, Issue 3, pp 349–357 | Cite as

Sex-dependent effects of neonatal maternal deprivation on endocannabinoid levels in the adipose tissue: influence of diet

  • Virginia Mela
  • Fabiana Piscitelli
  • Alvaro Llorente Berzal
  • Julie Chowen
  • Cristoforo Silvestri
  • Maria Paz ViverosEmail author
  • Vincenzo Di MarzoEmail author
Original Article


Maternal deprivation (MD) during neonatal life has diverse long-term effects, including modification of metabolism. We have previously reported that MD modifies the metabolic response to high-fat diet (HFD) intake, with this response being different between males and females, while previous studies indicate that in mice with HFD-induced obesity, endocannabinoid (EC) levels are markedly altered in various brown and white adipose tissue depots. Here, we analyzed the effects of MD (24 h at postnatal day 9), alone or in combination with a HFD from weaning until the end of the experiment in Wistar rats of both sexes. Brown and white perirenal and subcutaneous adipose tissues were collected and the levels of anandamide (AEA), 2-arachidonoylglycerol (2-AG), palmitoylethanolamide (PEA), and oleoylethanolamide (OEA) were determined. In males, MD increased the content of OEA in brown and 2-AG in subcutaneous adipose tissues, while in females the content of 2-AG was increased in perirenal fat. Moreover, in females, MD decreased AEA and OEA levels in perirenal and subcutaneous adipose tissues, respectively. HFD decreased the content of 2-AG in brown fat of both sexes and OEA in brown and subcutaneous adipose tissue of control females. In contrast, in subcutaneous fat, HFD increased AEA levels in MD males and OEA levels in control and MD males. The present results show for the first time that MD and HFD induce sex-dependent effects on the main ECs, AEA, and 2-AG, and of AEA-related mediators, OEA and PEA, in the rat brown and white (visceral and subcutaneous) adipose tissues.


Maternal deprivation High-fat diet Endocannabinoids Acylethanolamides Adipose tissues 


Compliance with ethical standards

Experiments were carried out in compliance with the Royal Decree 1201/2005, October 21, 2005 (BOE n° 252) about protection of experimental animals, in accordance with the European Communities Council Directive of 24 November 1986 (86/609/EEC) and the experimental design was approved by the local Animal Ethics Committee.

Supplementary material

13105_2017_558_MOESM1_ESM.docx (16 kb)
Supplementary Table 1 (DOCX 16 kb)


  1. 1.
    Abreu AR, de Abreu AR, Santos LT et al (2014) Blunted GABA-mediated inhibition within the dorsomedial hypothalamus potentiates the cardiovascular response to emotional stress in rats fed a high-fat diet. Neuroscience 262:21–30. doi: 10.1016/j.neuroscience.2013.12.053 CrossRefPubMedGoogle Scholar
  2. 2.
    Amengual-Cladera E, Lladó I, Gianotti M, Proenza AM (2012) Sex differences in the effect of high-fat diet feeding on rat white adipose tissue mitochondrial function and insulin sensitivity. Metabolism 61:1108–1117. doi: 10.1016/j.metabol.2011.12.016 CrossRefPubMedGoogle Scholar
  3. 3.
    Bale TL, Baram TZ, Brown AS et al (2010) Early life programming and neurodevelopmental disorders. Biol Psychiatry 68:314–319. doi: 10.1016/j.biopsych.2010.05.028 CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Barbera MJ, Schluter A, Pedraza N et al (2001) Peroxisome proliferator-activated receptor alpha activates transcription of the brown fat uncoupling protein-1 gene. A link between regulation of the thermogenic and lipid oxidation pathways in the brown fat cell. J Biol Chem 276:1486–1493. doi: 10.1074/jbc.M006246200 CrossRefPubMedGoogle Scholar
  5. 5.
    Bartelt A, Orlando P, Mele C et al (2011) Altered endocannabinoid signalling after a high-fat diet in Apoe −/− mice: relevance to adipose tissue inflammation, hepatic steatosis and insulin resistance. Diabetologia 54:2900–2910. doi: 10.1007/s00125-011-2274-6 CrossRefPubMedGoogle Scholar
  6. 6.
    Bermudez-Silva FJ, Viveros MP, McPartland JM, Rodriguez de Fonseca F (2010) The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning? Pharmacol Biochem Behav 95:375–382. doi: 10.1016/j.pbb.2010.03.012 CrossRefPubMedGoogle Scholar
  7. 7.
    Bradshaw HB, Rimmerman N, Krey JF, Walker JM (2006) Sex and hormonal cycle differences in rat brain levels of pain-related cannabimimetic lipid mediators. Am J Physiol Regul Integr Comp Physiol 291:R349–R358. doi: 10.1152/ajpregu.00933.2005 CrossRefPubMedGoogle Scholar
  8. 8.
    Burke N, Llorente R, Marco E et al (2013) Maternal deprivation is associated with sex-dependent alterations in nociceptive behavior and neuroinflammatory mediators in the rat following peripheral nerve injury. J Pain 14:1173–1184. doi: 10.1016/j.jpain.2013.05.003 CrossRefPubMedGoogle Scholar
  9. 9.
    Chen X, McClusky R, Chen J et al (2012) The number of X chromosomes causes sex differences in adiposity in mice. PLoS Genet 8:1–14. doi: 10.1371/journal.pgen.1002709 Google Scholar
  10. 10.
    Cirulli F, Francia N, Berry A et al (2009) Early life stress as a risk factor for mental health: role of neurotrophins from rodents to non-human primates. Neurosci Biobehav Rev 33:573–585. doi: 10.1016/j.neubiorev.2008.09.001 CrossRefPubMedGoogle Scholar
  11. 11.
    Côté M, Matias I, Lemieux I et al (2007) Circulating endocannabinoid levels, abdominal adiposity and related cardiometabolic risk factors in obese men. Int J Obes 31:692–699. doi: 10.1038/sj.ijo.0803539 Google Scholar
  12. 12.
    De La Fuente M, Llorente R, Baeza I et al (2009) Early maternal deprivation in rats: a proposed animal model for the study of developmental neuroimmunoendocrine interactions. Ann N Y Acad Sci 1153:176–183. doi: 10.1111/j.1749-6632.2008.03979.x CrossRefPubMedGoogle Scholar
  13. 13.
    Di Marzo V (2006) Endocannabinoids: synthesis and degradation. Rev Physiol Biochem Pharmacol 1–24Google Scholar
  14. 14.
    Di Marzo V, Côté M, Matias I et al (2009) Changes in plasma endocannabinoid levels in viscerally obese men following a 1 year lifestyle modification programme and waist circumference reduction: associations with changes in metabolic risk factors. Diabetologia 52:213–217. doi: 10.1007/s00125-008-1178-6 CrossRefPubMedGoogle Scholar
  15. 15.
    Ellenbroek BA, Cools AR (2002) Early maternal deprivation and prepulse inhibition: the role of the postdeprivation environment. Pharmacol Biochem Behav 73:177–184. doi: 10.1016/S0091-3057(02)00794-3 CrossRefPubMedGoogle Scholar
  16. 16.
    Ellenbroek BA, Riva MA (2003) Early maternal deprivation as an animal model for schizophrenia. Clin Neurosci Res 3:297–302. doi: 10.1016/S1566-2772(03)00090-2 CrossRefGoogle Scholar
  17. 17.
    Ellenbroek BA, van den Kroonenberg PTJM, Cools AR (1998) The effects of an early stressful life event on sensorimotor gating in adult rats. Schizophr Res 30:251–260. doi: 10.1016/S0920-9964(97)00149-7 CrossRefPubMedGoogle Scholar
  18. 18.
    Ellenbroek BA, Derks N, Park H-J (2005) Early maternal deprivation retards neurodevelopment in Wistar rats. Stress 8:247–257. doi: 10.1080/10253890500404634 CrossRefPubMedGoogle Scholar
  19. 19.
    Fuente-Martín E, Granado M, García-Cáceres C et al (2012) Early nutritional changes induce sexually dimorphic long-term effects on body weight gain and the response to sucrose intake in adult rats. Metabolism 61:812–822. doi: 10.1016/j.metabol.2011.11.003 CrossRefPubMedGoogle Scholar
  20. 20.
    Galve-Roperh I, Palazuelos J, Aguado T, Guzmán M (2009) The endocannabinoid system and the regulation of neural development: potential implications in psychiatric disorders. Eur Arch Psychiatry Clin Neurosci 259:371–382. doi: 10.1007/s00406-009-0028-y CrossRefPubMedGoogle Scholar
  21. 21.
    Gamelin FX, Aucouturier J, Iannotti FA, Piscitelli F, Mazzarella E, Aveta T, Leriche M, Dupont E, Cieniewski-Bernard C, Montel V, Bastide B, Di Marzo V, Heyman E (2016) Effects of chronic exercise on the endocannabinoid system in Wistar rats with high-fat diet-induced obesity. J Physiol Biochem 72:183–199CrossRefPubMedGoogle Scholar
  22. 22.
    Gruss M, Braun K, Frey JU, Korz V (2008) Maternal separation during a specific postnatal time window prevents reinforcement of hippocampal long-term potentiation in adolescent rats. Neuroscience 152:1–7. doi: 10.1016/j.neuroscience.2007.12.033 CrossRefPubMedGoogle Scholar
  23. 23.
    Herling AW, Kilp S, Elvert R et al (2008) Increased energy expenditure contributes more to the body weight-reducing effect of rimonabant than reduced food intake in candy-fed wistar rats. Endocrinology 149:2557–2566. doi: 10.1210/en.2007-1515 CrossRefPubMedGoogle Scholar
  24. 24.
    Hochberg Z, Feil R, Constancia M et al (2011) Child health, developmental plasticity, and epigenetic programming. Endocr Rev 32:159–224. doi: 10.1210/er.2009-0039 CrossRefPubMedGoogle Scholar
  25. 25.
    Izzo AA, Piscitelli F, Capasso R et al (2009) Peripheral endocannabinoid dysregulation in obesity: relation to intestinal motility and energy processing induced by food deprivation and re-feeding. Br J Pharmacol 158:451–461. doi: 10.1111/j.1476-5381.2009.00183.x CrossRefPubMedPubMedCentralGoogle Scholar
  26. 26.
    Jbilo O, Ravinet-Trillou C, Arnone M et al (2005) The CB1 receptor antagonist rimonabant reverses the diet-induced obesity phenotype through the regulation of lipolysis and energy balance. FASEB J 19:1567–1569. doi: 10.1096/fj.04-3177fje PubMedGoogle Scholar
  27. 27.
    Kida R, Yoshida H, Murakami M et al (2016) Direct action of capsaicin in brown adipogenesis and activation of brown adipocytes. Cell Biochem Funct 34:34–41. doi: 10.1002/cbf.3162 CrossRefPubMedGoogle Scholar
  28. 28.
    Krebs-Kraft DL, Hill MN, Hillard CJ, McCarthy MM (2010) Sex difference in cell proliferation in developing rat amygdala mediated by endocannabinoids has implications for social behavior. Proc Natl Acad Sci U S A 107:20535–20540. doi: 10.1073/pnas.1005003107 CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Krott LM, Piscitelli F, Heine M et al (2016) Endocannabinoid regulation in white and brown adipose tissue following thermogenic activation. J Lipid Res 57:464–473. doi: 10.1194/jlr.M065227 CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Kubant R, Poon AN, Sánchez-Hernández D et al (2015) A comparison of effects of lard and hydrogenated vegetable shortening on the development of high-fat diet-induced obesity in rats. Nutr Diabetes 5:e188. doi: 10.1038/nutd.2015.40 CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Lee YH, Mottillo EP, Granneman JG (2014) Adipose tissue plasticity from WAT to BAT and in between. Biochim Biophys Acta - Mol Basis Dis 1842:358–369. doi: 10.1016/j.bbadis.2013.05.011 CrossRefGoogle Scholar
  32. 32.
    Llorente R, Arranz L, Marco EM et al (2007) Early maternal deprivation and neonatal single administration with a cannabinoid agonist induce long-term sex-dependent psychoimmunoendocrine effects in adolescent rats. Psychoneuroendocrinology 32:636–650. doi: 10.1016/j.psyneuen.2007.04.002 CrossRefPubMedGoogle Scholar
  33. 33.
    Llorente-Berzal A, Mela V, Borcel E et al (2012) Neurobehavioral and metabolic long-term consequences of neonatal maternal deprivation stress and adolescent olanzapine treatment in male and female rats. Neuropharmacology 62:1332–1341. doi: 10.1016/j.neuropharm.2011.07.031 CrossRefPubMedGoogle Scholar
  34. 34.
    López-Gallardo M, López-Rodríguez AB, Llorente-Berzal Á et al (2012) Maternal deprivation and adolescent cannabinoid exposure impact hippocampal astrocytes, CB1 receptors and brain-derived neurotrophic factor in a sexually dimorphic fashion. Neuroscience 204:90–103. doi: 10.1016/j.neuroscience.2011.09.063 CrossRefPubMedGoogle Scholar
  35. 35.
    Marco EM, Adriani W, Llorente R et al (2009) Detrimental psychophysiological effects of early maternal deprivation in adolescent and adult rodents: altered responses to cannabinoid exposure. Neurosci Biobehav Rev 33:498–507. doi: 10.1016/j.neubiorev.2008.03.008 CrossRefPubMedGoogle Scholar
  36. 36.
    Marco EM, Valero M, de la Serna O et al (2013) Maternal deprivation effects on brain plasticity and recognition memory in adolescent male and female rats. Neuropharmacology 68:223–231. doi: 10.1016/j.neuropharm.2012.08.014 CrossRefPubMedGoogle Scholar
  37. 37.
    Marco EM, Llorente R, López-Gallardo M et al (2015a) The maternal deprivation animal model revisited. Neurosci Biobehav Rev:1–13. doi: 10.1016/j.neubiorev.2015.01.015
  38. 38.
    Marco EM, Llorente R, López-Gallardo M et al (2015b) The maternal deprivation animal model revisited. Neurosci Biobehav Rev 51:151–163. doi: 10.1016/j.neubiorev.2015.01.015 CrossRefPubMedGoogle Scholar
  39. 39.
    Matias I, Gonthier M-P, Orlando P et al (2006) Regulation, function, and dysregulation of endocannabinoids in models of adipose and beta-pancreatic cells and in obesity and hyperglycemia. J Clin Endocrinol Metab 91:3171–3180. doi: 10.1210/jc.2005-2679 CrossRefPubMedGoogle Scholar
  40. 40.
    Matias I, Gonthier M-P, Petrosino S et al (2007) Role and regulation of acylethanolamides in energy balance: focus on adipocytes and beta-cells. Br J Pharmacol 152:676–690. doi: 10.1038/sj.bjp.0707424 CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Matias I, Petrosino S, Racioppi A et al (2008) Dysregulation of peripheral endocannabinoid levels in hyperglycemia and obesity: effect of high fat diets. Mol Cell Endocrinol. doi: 10.1016/j.mce.2008.01.026 PubMedGoogle Scholar
  42. 42.
    Mela V, Llorente-Berzal A, Diaz F et al (2012) Maternal deprivation exacerbates the response to a high fat diet in a sexually dimorphic manner. PLoS One 7:e48915. doi: 10.1371/journal.pone.0048915\nPONE-D-12-26781
  43. 43.
    Muccioli GG (2010) Endocannabinoid biosynthesis and inactivation, from simple to complex. Drug Discov Today 15:474–483. doi: 10.1016/j.drudis.2010.03.007 CrossRefPubMedGoogle Scholar
  44. 44.
    Nadal-Casellas A, Proenza AM, Gianotti M et al (2011) Brown adipose tissue redox status in response to dietary-induced obesity-associated oxidative stress in male and female rats. Stress 14:174–184. doi: 10.3109/10253890.2010.524681 CrossRefPubMedGoogle Scholar
  45. 45.
    Perwitz N, Fasshauer M, Klein J (2006) Cannabinoid receptor signaling directly inhibits thermogenesis and alters expression of adiponectin and visfatin. Horm Metab Res 38:356–358. doi: 10.1055/s-2006-925401 CrossRefPubMedGoogle Scholar
  46. 46.
    Piscitelli F, Carta G, Bisogno T, Murru E, Cordeddu L, Berge K, Tandy S, Cohn JS, Griinari M, Banni S, Di Marzo V Effect of dietary krill oil supplementation on the endocannabinoidome of metabolically relevant tissues from high-fat-fed mice. Nutr Metab (Lond) 8:51Google Scholar
  47. 47.
    Rentesi G, Antoniou K, Marselos M et al (2010) Long-term consequences of early maternal deprivation in serotonergic activity and HPA function in adult rat. Neurosci Lett 480:7–11. doi: 10.1016/j.neulet.2010.04.054 CrossRefPubMedGoogle Scholar
  48. 48.
    Roche R, Hoareau L, Bes-Houtmann S et al (2006) Presence of the cannabinoid receptors, CB1 and CB2, in human omental and subcutaneous adipocytes. Histochem Cell Biol 126:177–187. doi: 10.1007/s00418-005-0127-4 CrossRefPubMedGoogle Scholar
  49. 49.
    Rubino T, Parolaro D (2011) Sexually dimorphic effects of cannabinoid compounds on emotion and cognition. Front Behav Neurosci 5:64. doi: 10.3389/fnbeh.2011.00064 CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Schwartz GJ, Fu J, Astarita G et al (2008) The lipid messenger OEA links dietary fat intake to satiety. Cell Metab 8:281–288. doi: 10.1016/j.cmet.2008.08.005 CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    Silvestri C, Di Marzo V (2013) The endocannabinoid system in energy homeostasis and the etiopathology of metabolic disorders. Cell Metab 17:475–490. doi: 10.1016/j.cmet.2013.03.001 CrossRefPubMedGoogle Scholar
  52. 52.
    Starowicz KM, Cristino L, Matias I et al (2008) Endocannabinoid dysregulation in the pancreas and adipose tissue of mice fed with a high-fat diet. Obesity (Silver Spring) 16:553–565. doi: 10.1038/oby.2007.106 CrossRefGoogle Scholar
  53. 53.
    Suárez J, Llorente R, Romero-Zerbo SY et al (2009) Early maternal deprivation induces gender-dependent changes on the expression of hippocampal CB(1) and CB(2) cannabinoid receptors of neonatal rats. Hippocampus 19:623–632. doi: 10.1002/hipo.20537 CrossRefPubMedGoogle Scholar
  54. 54.
    Suárez J, Rivera P, Arrabal S et al (2014) Oleoylethanolamide enhances β-adrenergic-mediated thermogenesis and white-to-brown adipocyte phenotype in epididymal white adipose tissue in rat. Dis Model Mech 7:129–141. doi: 10.1242/dmm.013110 CrossRefPubMedGoogle Scholar
  55. 55.
    Sugiyama MG, Agellon LB (2012) Sex differences in lipid metabolism and metabolic disease risk. Biochem Cell Biol 90:124–141. doi: 10.1139/o11-067 CrossRefPubMedGoogle Scholar
  56. 56.
    Tannenbaum BM, Brindley DN, Tannenbaum GS et al (1997) High-fat feeding alters both basal and stress-induced hypothalamic-pituitary-adrenal activity in the rat. Am J Phys 273:E1168–E1177Google Scholar
  57. 57.
    Verty ANA, Evetts MJ, Crouch GJ et al (2011) The cannabinoid receptor agonist THC attenuates weight loss in a rodent model of activity-based anorexia. Neuropsychopharmacology 36:1349–1358. doi: 10.1038/npp.2011.19 CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Viveros MP, Díaz F, Mateos B et al (2010a) Maternal deprivation induces a rapid decline in circulating leptin levels and sexually dimorphic modifications in hypothalamic trophic factors and cell turnover. Horm Behav 57:405–414. doi: 10.1016/j.yhbeh.2010.01.009 CrossRefPubMedGoogle Scholar
  59. 59.
    Viveros M-P, Llorente R, Díaz F et al (2010b) Maternal deprivation has sexually dimorphic long-term effects on hypothalamic cell-turnover, body weight and circulating hormone levels. Horm Behav 58:808–819. doi: 10.1016/j.yhbeh.2010.08.003 CrossRefPubMedGoogle Scholar
  60. 60.
    White UA, Tchoukalova YD (2014) Sex dimorphism and depot differences in adipose tissue function. Biochim Biophys Acta - Mol Basis Dis 1842:377–392. doi: 10.1016/j.bbadis.2013.05.006 CrossRefGoogle Scholar
  61. 61.
    Xu Y, Nedungadi TP, Zhu L et al (2011) Distinct hypothalamic neurons mediate estrogenic effects on energy homeostasis and reproduction. Cell Metab 14:453–465. doi: 10.1016/j.cmet.2011.08.009 CrossRefPubMedPubMedCentralGoogle Scholar
  62. 62.
    Yan ZC, Liu DY, Zhang LL et al (2007) Exercise reduces adipose tissue via cannabinoid receptor type 1 which is regulated by peroxisome proliferator-activated receptor-delta. Biochem Biophys Res Commun 354:427–433. doi: 10.1016/j.bbrc.2006.12.213 CrossRefPubMedGoogle Scholar

Copyright information

© University of Navarra 2017

Authors and Affiliations

  • Virginia Mela
    • 1
  • Fabiana Piscitelli
    • 2
  • Alvaro Llorente Berzal
    • 1
  • Julie Chowen
    • 3
    • 4
  • Cristoforo Silvestri
    • 2
  • Maria Paz Viveros
    • 1
    • 5
    Email author
  • Vincenzo Di Marzo
    • 2
    Email author
  1. 1.Departamento de Fisiologia (Fisiología Animal II), Facultad de BiologíaUniversidad Complutense and Instituto de Investigación Sanitaria del Hospital Clínico San CarlosMadridSpain
  2. 2.Endocannabinoid Research Group, Institute of Biomolecular ChemistryConsiglio Nazionale delle RicerchePozzuoliItaly
  3. 3.Department of Endocrinology, Instituto de Investigación la PrincesaHospital Infantil Universitario Niño JesúsMadridSpain
  4. 4.CIBER de Fisiopatología de Obesidad y Nutrición, Instituto Carlos IIIMadridSpain
  5. 5.Department of Physiology (Animal Physiology II), Faculty of BiologyComplutense UniversityMadridSpain

Personalised recommendations