Journal of Physiology and Biochemistry

, Volume 73, Issue 3, pp 457–464 | Cite as

Effects of pterostilbene in brown adipose tissue from obese rats

  • Leixuri Aguirre
  • Iñaki Milton-Laskibar
  • Elizabeth Hijona
  • Luis Bujanda
  • Agnes M. Rimando
  • María P. Portillo
Original Article


In recent years, much attention has been paid by the scientific community to phenolic compounds as active biomolecules naturally present in foods. Pterostilbene is a resveratrol dimethylether derivative which shows higher bioavailability. The aim of the present study was to analyze the effect of pterostilbene on brown adipose tissue thermogenic markers in a model of genetic obesity, which shows reduced thermogenesis. The experiment was conducted with 30 Zucker (fa/fa) rats that were distributed in three experimental groups: control and two groups orally administered with pterostilbene at 15 and 30 mg/kg body weight/day for 6 weeks. Gene expression of uncoupling protein 1 (Ucp1), peroxisome proliferator-activated receptor γ co-activator 1 α (Pgc-1α), carnitine palmitoyl transferase 1b (Cpt1b), peroxisome proliferator-activated receptor α (Pparα), nuclear respiratory factor 1 (Nfr1), and cyclooxygenase-2 (Cox-2); protein expression of PPARα, PGC-1α, p38 mitogen-activated protein kinase (p38 MAPK), UCP1 and glucose transporter (GLUT4); and enzyme activity of CPT 1b and citrate synthase (CS) were assessed in interscapular brown adipose tissue. With the exception of Pgc-1α expression, all these parameters were significantly increased by pterostilbene administration. These results show for the first time that pterostilbene increases thermogenic and oxidative capacity of brown adipose tissue in obese rats. Whether these effects effectively contribute to the antiobesity properties of these compound needs further research.


Pterostilbene Brown adipose tissue Obese rats Fatty acid oxidation GLUT4 



This study was supported by grants from the Ministerio de Economía y Competitividad (AGL-2015-65719-R), Fondo Europeo de Desarrollo Regional (FEDER), Instituto de Salud Carlos III (CIBERobn), Government of the Basque Country (IT-572-13), and University of the Basque Country (UPV/EHU) (ELDUNANOTEK UFI11/32). The authors would also like to acknowledge the financial support of Biodonostia Institute. I. Milton-Laskibar is a predoctoral fellows from the Government of the Basque Country.

Compliance with ethical standards

The experiment was conducted with thirty 5-week-old male Zucker (fa/fa) rats purchased from Charles Rivers Laboratories (Barcelona, Spain) and was conducted in accordance with the institution’s guide for the care and use of laboratory animals (approval document reference CEBA CEEA14/018).


  1. 1.
    Aguirre L, Hijona E, Macarulla MT, Gracia A, Larrechi I, Bujanda L, Hijona L, Portillo MP (2013) Several statins increase body and liver fat accumulation in a model of metabolic syndrome. J Physiol Pharmacol 64:281–288PubMedGoogle Scholar
  2. 2.
    Ajmo JM, Liang X, Rogers CQ, Pennock B, You M (2008) Resveratrol alleviates alcoholic fatty liver in mice. Am J Physiol Gastrointest Liver Physiol 295:G833–G842CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Arias N, Andrés-Lacueva C, Portillo MP (2011) Changes in white adipose tissue metabolism induced by resveratrol in rats. Nutr Metab (Lond) 8:29CrossRefGoogle Scholar
  4. 4.
    Alberdi G, Rodríguez VM, Miranda J, Macarulla MT, Churruca I, Portillo MP (2013) Thermogenesis is involved in the body-fat lowering effects of resveratrol in rats. Food Chem 141:1530–1535CrossRefPubMedGoogle Scholar
  5. 5.
    Andrade JM, Paraíso AF, de Oliveira MV, Martins AM, Neto JF, Guimarães AL, de Paula AM, Qureshi M, Santos SH (2014) Resveratrol attenuates hepatic steatosis in high-fat fed mice by decreasing lipogenesis and inflammation. Nutrition 30:915–919CrossRefPubMedGoogle Scholar
  6. 6.
    Argilés JM (1989) The obese Zucker rat: a choice for fat metabolism 1968-1988: twenty years of research on the insights of the Zucker mutation. Prog Lipid Res 28:53–66CrossRefPubMedGoogle Scholar
  7. 7.
    Arias N, Miranda J, Macarulla MT, Aguirre L, Fernández-Quintela A, Andres-Lacueva C, Urpi-Sarda M, Portillo MP (2014) The combination of resveratrol and conjugated linoleic acid attenuates the individual effects of these molecules on triacylglycerol metabolism in adipose tissue. Eur J Nutr 53:575–582CrossRefPubMedGoogle Scholar
  8. 8.
    Bai L, Pang WJ, Yang YJ, Yang GS (2008) Modulation of Sirt1 by resveratrol and nicotinamide alters proliferation and differentiation of pig preadipocytes. Mol Cell Biochem 307:129–140CrossRefPubMedGoogle Scholar
  9. 9.
    Bieber LL, Abraham T, Helmrath T (1972) A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem 50:509–518CrossRefPubMedGoogle Scholar
  10. 10.
    Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefPubMedGoogle Scholar
  11. 11.
    Cai YJ, Fang JG, Ma LP, Yang L, Liu ZL (2003) Inhibition of free radical-induced peroxidation of rat liver microsomes by resveratrol and its analogues. Biochim Biophys Acta 1637:31–38CrossRefPubMedGoogle Scholar
  12. 12.
    Cannon B, Nedergaard J (2012) Yes, even human brown fat is on fire! J Clin Invest 122:486–489CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Crozier A, Jaganath IB, Clifford MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26:1001–1043CrossRefPubMedGoogle Scholar
  14. 14.
    Del Rio D, Rodriguez-Mateos A, Spencer JP, Tognolini M, Borges G, Crozier A (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18:1818–1892CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Etxeberria U, Hijona E, Aguirre L, Milagro FI, Bujanda L, Rimando AM, Martínez JA, Portillo MP (2017) Pterostilbene-induced changes in gut microbiota composition in relation to obesity. Mol Nutr Food Res 61:1–12CrossRefGoogle Scholar
  16. 16.
    Gomez-Zorita S, Fernandez-Quintela A, Lasa A, Aguirre L, Rimando AM, Portillo MP (2014) Pterostilbene, a dimethyl ether derivative of resveratrol, reduces fat accumulation in rats fed an obesogenic diet. J Agric Food Chem 62:8371–8378CrossRefPubMedGoogle Scholar
  17. 17.
    Gómez-Zorita S, Fernández-Quintela A, Aguirre L, Macarulla MT, Rimando AM, Portillo MP (2015) Pterostilbene improves glycaemic control in rats fed an obesogenic diet: involvement of skeletal muscle and liver. Food Funct 6:1968–1976CrossRefPubMedGoogle Scholar
  18. 18.
    Gómez-Zorita S, Fernández-Quintela A, Macarulla MT, Aguirre L, Hijona E, Bujanda L, Milagro F, Martínez JA, Portillo MP (2012) Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress. Br J Nutr 107:202–210CrossRefPubMedGoogle Scholar
  19. 19.
    Joseph JA, Fisher DR, Cheng V, Rimando AM, Shukitt-Hale B (2008) Cellular and behavioral effects of stilbene resveratrol analogues: implications for reducing the deleterious effects of aging. J Agric Food Chem 56:10544–10551CrossRefPubMedGoogle Scholar
  20. 20.
    Kapetanovic IM, Muzzio M, Huang Z, Thompson TN, McCormick DL (2011) Pharmacokinetics, oral bioavailability, and metabolic profile of resveratrol and its dimethylether analog, pterostilbene, in rats. Cancer Chemother Pharmacol 68:593–601CrossRefPubMedGoogle Scholar
  21. 21.
    Kava R, Greenwood M, PR J (1990) New rat models of obesity and type II diabetes: Zucker (fa/fa) rat. In, ILAR, p 4–88Google Scholar
  22. 22.
    Kosuru R, Rai U, Prakash S, Singh A, Singh S (2016) Promising therapeutic potential of pterostilbene and its mechanistic insight based on preclinical evidence. Eur J Pharmacol 789:229–243CrossRefPubMedGoogle Scholar
  23. 23.
    Livak K, Schmittgen T Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Method 25:402–408Google Scholar
  24. 24.
    López-Soriano EJ, Carbó N, Argilés JM (1991) Lipid metabolism in the obese Zucker rat. Disposal of an oral [14C]triolein load and lipoprotein lipase activity. Biochem J 274(Pt 3):651–656CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Maggio CA, Greenwood MR (1982) Adipose tissue lipoprotein lipase (LPL) and triglyceride uptake in Zucker rats. Physiol Behav 29:1147–1152CrossRefPubMedGoogle Scholar
  26. 26.
    Marette A, Tulp O, Buckowiecki L (1990) Defective brown adipose tissue thermogenesis in obesity. Role insulin resistance and diabetes. John Libbey and Company Ltd, LondonGoogle Scholar
  27. 27.
    McCormack D, McFadden D (2013) A review of pterostilbene antioxidant activity and disease modification. Oxidative Med Cell Longev 2013:575482CrossRefGoogle Scholar
  28. 28.
    Nedergaard J, Bengtsson T, Cannon B (2011) New powers of brown fat: fighting the metabolic syndrome. Cell Metab 13:238–240CrossRefPubMedGoogle Scholar
  29. 29.
    Nedergaard J, Petrovic N, Lindgren EM, Jacobsson A, Cannon B (2005) PPARgamma in the control of brown adipocyte differentiation. Biochim Biophys Acta 1740:293–304CrossRefPubMedGoogle Scholar
  30. 30.
    Otake Y, Nolan AL, Walle UK, Walle T (2000) Quercetin and resveratrol potently reduce estrogen sulfotransferase activity in normal human mammary epithelial cells. J Steroid Biochem Mol Biol 73:265–270CrossRefPubMedGoogle Scholar
  31. 31.
    Pan MH, Chiou YS, Chen WJ, Wang JM, Badmaev V, Ho CT (2009) Pterostilbene inhibited tumor invasion via suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Carcinogenesis 30:1234–1242CrossRefPubMedGoogle Scholar
  32. 32.
    Paul S, DeCastro AJ, Lee HJ, Smolarek AK, So JY, Simi B, Wang CX, Zhou R, Rimando AM, Suh N (2010) Dietary intake of pterostilbene, a constituent of blueberries, inhibits the beta-catenin/p65 downstream signaling pathway and colon carcinogenesis in rats. Carcinogenesis 31:1272–1278CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Rayalam S, Della-Fera MA, Yang JY, Park HJ, Ambati S, Baile CA (2007) Resveratrol potentiates genistein’s antiadipogenic and proapoptotic effects in 3T3-L1 adipocytes. J Nutr 137:2668–2673PubMedGoogle Scholar
  34. 34.
    Rimando AM, Khan SI, Mizuno CS, Ren G, Mathews ST, Kim H, Yokoyama W (2016) Evaluation of PPARα activation by known blueberry constituents. J Sci Food Agric 96:1666–1671CrossRefPubMedGoogle Scholar
  35. 35.
    Rimando AM, Nagmani R, Feller DR, Yokoyama W (2005) Pterostilbene, a new agonist for the peroxisome proliferator-activated receptor alpha-isoform, lowers plasma lipoproteins and cholesterol in hypercholesterolemic hamsters. J Agric Food Chem 53:3403–3407CrossRefPubMedGoogle Scholar
  36. 36.
    Rimando AM, Suh N (2008) Biological/chemopreventive activity of stilbenes and their effect on colon cancer. Planta Med 74:1635–1643CrossRefPubMedGoogle Scholar
  37. 37.
    Seale P (2015) Transcriptional regulatory circuits controlling brown fat development and activation. Diabetes 64:2369–2375CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Srere P (1969) Citrate synthase. In, Methods Enzymology, p 3–11Google Scholar
  39. 39.
    Stern JS, Johnson PR (1977) Spontaneous activity and adipose cellularity in the genetically obese zucker rat (fafa). Metabolism 26:371–380CrossRefPubMedGoogle Scholar
  40. 40.
    Szkudelska K, Nogowski L, Szkudelski T (2009) Resveratrol, a naturally occurring diphenolic compound, affects lipogenesis, lipolysis and the antilipolytic action of insulin in isolated rat adipocytes. J Steroid Biochem Mol Biol 113:17–24CrossRefPubMedGoogle Scholar
  41. 41.
    Vasselli JR, Cleary MP, Jen KL, Greenwood MR (1980) Development of food motivated behavior in free feeding and food restricted Zucker fatty (fa/fa) rats. Physiol Behav 25:565–573CrossRefPubMedGoogle Scholar
  42. 42.
    Walle T, Hsieh F, DeLegge MH, Oatis JE, Walle UK (2004) High absorption but very low bioavailability of oral resveratrol in humans. Drug Metab Dispos 32:1377–1382CrossRefPubMedGoogle Scholar
  43. 43.
    Wenzel E, Somoza V (2005) Metabolism and bioavailability of trans-resveratrol. Mol Nutr Food Res 49:472–481CrossRefPubMedGoogle Scholar
  44. 44.
    Zhang Y, Yin L, Hillgartner F (2003) SREBP-1 integrates the actions of thyroid hormone, insulin, cAMP, and medium-chain fatty acids on ACCalpha transcription in hepatocytes. J Lipid Res 44:356–368CrossRefPubMedGoogle Scholar
  45. 45.
    Zulet MA, Marti A, Parra MD, Martinez JA (2005) Inflammation and conjugated linoleic acid: mechanisms of action and implications for human health. J Physiol Biochem 61:483–494CrossRefPubMedGoogle Scholar

Copyright information

© University of Navarra 2017

Authors and Affiliations

  • Leixuri Aguirre
    • 1
    • 2
  • Iñaki Milton-Laskibar
    • 1
  • Elizabeth Hijona
    • 3
    • 4
  • Luis Bujanda
    • 3
    • 4
  • Agnes M. Rimando
    • 5
  • María P. Portillo
    • 1
    • 2
  1. 1.Nutrition and Obesity Group, Department of Nutrition and Food Sciences, Faculty of PharmacyUniversity of the Basque Country (UPV/EHU) and Lucio Lascaray Research CentreVitoriaSpain
  2. 2.CIBER Obesity and Physiopathology of Nutrition (CIBERobn)Institute of Health Carlos IIIMadridSpain
  3. 3.Department of GastroenterologyUniversity of the Basque Country (UPV/EHU), Donostia Hospital and Biodonostia InstituteSan SebastiánSpain
  4. 4.CIBER Hepatic and Digestive Pathologies (CIBERehd)Institute of Health Carlos IIIMadridSpain
  5. 5.United States Department of Agriculture, Agricultural Research ServiceNatural Products Utilization Research UnitUniversityUSA

Personalised recommendations